Skip to main content

Fractal Patterns in Porous Media Flow

Modeling of Laboratory Experiments

  • Chapter
Fractals in Petroleum Geology and Earth Processes

Abstract

Patterns and fronts arise in most fluid flow situations. Waves, clouds, convection patterns, and turbulence are well-known examples. In porous media the displacement of one fluid by another fluid leads to fronts and patterns that are often fractal (Mandelbrot, 1982; Feder, 1988). The disorder of the porous matrix plays a key role that is not well understood. Depending on the displacement rates, viscosity ratios, miscibility, interfacial tensions, and pore geometry a bewildering variety of displacement fronts arise. Lenormand (Lenormand and Zarcone, 1985a, Lenormand and Zarcone, 1985b; Lenormand, 1985; Lenormand et al., 1988) has studied many of the regimes observed under various conditions during two fluid displacement processes in micromodels of porous media. In our group (Måløy et al., 1985; Feder et al., 1986; Måløy et al., 1987; Furuberg et al., 1988; Oxaal et al., 1987; Måløy et al., 1987; Måløy et al., 1988; Hinrichsen et al., 1989; Oxaal, 1991; Oxaal et al., 1991; Birovljev et al., 1991; Meakin et al., 1992; Frette et al., 1992) we have also studied displacement fronts in two-dimensional micromodels and random bead packs. We have also studied the three-dimensional displacement in transparent models (Frette et al., 1990, Frette et al., 1992). Theoretical simulations are compared in detail to the observed displacement fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aharony, A., Percolation, in: Directions in Condensed Matter Physics (G. Grinstein and G. Mazenko, eds.), World Scientific, Singapore, pp. 1–50 (1986).

    Google Scholar 

  • Aharony, A., and Feder, J., eds., Fractals in Physics: Essays in Honour of Benoit B. Mandebrot, North-Holland, Amsterdam (1989).

    Google Scholar 

  • Bak, P., and Chen, K., Fractal dynamics of earthquakes, in: Fractals and Their Uses in Earth Sciences Chapter (C. C. Barton and P. R. La Pointe, eds.), Geological Society of America (1990a).

    Google Scholar 

  • Bak, P., and Chen, K., Predicting earthquakes, in: Nonlinear Structures in Physical Systems—Pattern Formation, Chaos and Waves (L. Lam and H. C. Morris, eds.), Springer, Heidelberg (1990b).

    Google Scholar 

  • Bak, P., and Tang, C., Earthquakes as a self-organized critical phenomena, J. Geophys. Res. 94, 15635–15637 (1989).

    Article  ADS  Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59, 381–384 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality, Phys. Rev. A 38, 364–374 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bear, J., Dynamics of Fluids in Porous Media, American Elsevier, New York (1972).

    MATH  Google Scholar 

  • Bear, J., and Bachmat, Y., Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht, Boston, London (1990).

    Book  Google Scholar 

  • Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B., and Tang, C., Viscous flows in two dimensions, Rev. Mod. Phys. 58, 977–999 (1986).

    Article  ADS  Google Scholar 

  • Birovljev, A., Furuberg, L., Feder, J., Jøssang, T., Måløy, K. J., and Aharony, A., Gravity invasion percolation in two dimensions: Experiment and simulation, Phys. Rev. Lett. 67, 584–587 (1991).

    Article  ADS  Google Scholar 

  • Bonnet, J., and Lenormand, R., Constructing micromodels for the study of multiphase flow in porous media, Rev. Inst. Fr. Pet. 42, 477–480 (1977).

    Google Scholar 

  • Cancelliere, A., Chang, C., Foti, E., Rothman, D. H., and Succi, S., The permeability of a random medium: Comparison of simulation with theory, Physics of Fluids 2, 2085–2088 (1991).

    ADS  Google Scholar 

  • Carman, P. C., Fluid flow through granular beds, Trans. Inst. Chem. Eng. Lond. 15, 150–166 (1937).

    Google Scholar 

  • Chandler, R., Koplik, J., Lerman, K., and Willemsen, J. E., Capillary displacement and percolation in porous media, J. Fluid Mech. 119, 249–267 (1982).

    Article  ADS  MATH  Google Scholar 

  • Charlaix, E., Hulin, J. P., and Plona, T. J., Experimental study of tracer dispersion in sintered glass porous materials of variable compaction, Phys. Fluids 30, 1690–1698 (1987).

    Article  ADS  Google Scholar 

  • Chen, J. D., and Wilkinson, D., Pore-scale viscous fingering in porous media, Phys. Rev. Lett. 55, 1892–1895 (1985).

    Article  ADS  Google Scholar 

  • Chuoke, R. L., van Meurs, P., and van der Poel, C., The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media, Trans. Metall. Soc. of AIME 216, 188–194 (1959).

    Google Scholar 

  • Clément, E., Baudet, and Hulin, J. P., Multiple scale structure of nonwetting fluid invasion fronts in 3d model porous media, J. Physique Lett. 46, L1163–L1171 (1985).

    Article  Google Scholar 

  • Daccord, G., Chemical dissolution of a porous medium by a reactive fluid, Phys. Rev. Lett. 58, 479–482 (1987).

    Article  ADS  Google Scholar 

  • Daccord, G., Nittmann, J., and Stanley, H. E., Fractal viscous fingers: Experimental results, in: On Growth and Form (H. E. Stanley and N. Ostrowsky, eds.), Martinus Nijhoff, Dordrecht, pp. 203–210 (1986).

    Google Scholar 

  • Darcy, D., Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris (1856).

    Google Scholar 

  • de Gennes, P. G., and Guyon, E., Lois générales pour l’injection d’un fluide dans un milieu poreux aléatoire, J. Mec. 17, 403–432 (1978).

    Google Scholar 

  • DeGregoria, A. J., and Schwartz, L. W., Saffman-Taylor finger width at low interfacial tension, Phys. Rev. Lett. 58, 1742–1744 (1987).

    Article  ADS  Google Scholar 

  • Deutch, J. M., and Meakin, P., Diffusion controlled colloidal growth rates for nonspherical clusters, J. Chem. Phys. 78, 2093–2094 (1983).

    Article  ADS  Google Scholar 

  • Dhar, D., Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64, 1613–1616 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dullien, A. L., Fluid Transport and Pore Structure, Academic Press, New York (1979).

    Google Scholar 

  • Engelberts, W. F., and Klinkenberg, L. J., Laboratory experiments on the displacement of oil by water from packs of granular material, Petr. Congr. Proc. Third World, 544–554 (1951).

    Google Scholar 

  • Essam, J. W., Percolation theory, Rep. Prog. Phys. 43, 833–912 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  • Feder, H. J. S., and Feder, J., Self-organized criticality in a stick-slip process, Phys. Rev. Lett. 66, 2669–2672 (1991) Erratum: Phys. Rev. Lett. 67, 282 (1991).

    Article  ADS  Google Scholar 

  • Feder, J., Fractals, Plenum Press, New York (1988).

    MATH  Google Scholar 

  • Feder, J., Hinrichsen, E. L., Måløy, K. J., and Jøssang, T., Geometrical crossover and self-similarity of DLA and viscous fingering clusters, in: Fractals in Physics (A. Aharony and J. Feder, eds.), North-Holland, Amsterdam, pp. 104–11 (1989).

    Google Scholar 

  • Feder, J., Jøssang, T., Frette, V., and Birovljev, A., Fysisk modell for en horisontal brønn i Tabertformasjonen, Gullfaks sør Fracton a/s (1988) unpublished.

    Google Scholar 

  • Feder, J., Jøssang, T., Måløy, K.J., and Oxaal, U., Models of viscous fingering, in Fragmentation Form and Flow in Fractured Media (R. Englman and Z. Jaeger, eds.), Ann Israel Phys. Soc. 8, 531–548 (1986).

    Google Scholar 

  • Frette, V., Feder, J., Jøssang, T., and Meakin, P., Buoyancy driven fluid migration in porous media, Phys. Rev. Lett. 68, 3164–3167 (1992).

    Article  ADS  Google Scholar 

  • Frette, V., Måløy, K. J., Boger, F., Feder, J., Jøssang, T., and Meakin, P., Diffusion-limited-aggregation-like displacement structure in a three-dimensional porous medium, Phys. Rev. A 42, 3432–3437 (1990).

    Article  ADS  Google Scholar 

  • Frisch, U., Hasslacher, B., and Pomeau, Y., Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett. 56, 1505–1507 (1986).

    Article  ADS  Google Scholar 

  • Furuberg, L., Computer Simulations of Percolation Phenomena, Master’s thesis, University of Oslo (1988).

    Google Scholar 

  • Furuberg, L., Feder, J., Aharony, A., and Jøssang, T., Dynamics of invasion percolation, Phys. Rev. Lett. 61, 2117–2120 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  • Grossman, T., and Aharony, A., Structure and perimeters of percolation clusters, J. Phys. A 19, L745–L751 (1986).

    Article  ADS  Google Scholar 

  • Gunstensen, A., Rothman, D. H., Zaleski, S., and Zanetti, G., A lattice-Boltzman model of immiscible fluids, Phys. Rev. A 43, 4320–4327 (1991).

    Article  ADS  Google Scholar 

  • Guyon, E., Nadal, J., and Pomeau, Y., Disorder and Mixing, NATO ASI Series E: Vol. 152, Kluwer Academic Publishers, Dordrecht (1988).

    Book  Google Scholar 

  • Held, G. A., Solina, D. H., Keane, D. T., Haag, W. J., Horn, R. M., and Grinstein, G., Experimental study of critical-mass fluctuations in an evolving sandpile, Phys. Rev. Lett. 65, 1120–1123 (1990).

    Article  ADS  Google Scholar 

  • Hele-Shaw, H. S., The flow of water, Nature 58, 34–36 (1898).

    Article  ADS  Google Scholar 

  • Hentschel, H. G. E., Deutch, J. M., and Meakin, P., Dynamical scaling and the growth of diffusion-limited aggregates, J. Chem. Phys. 81, 2496–2502 (1984).

    Article  ADS  Google Scholar 

  • Hill, S., Channeling in packed columns, Chemical Engineering Sciences 1, 247–253 (1952).

    Article  Google Scholar 

  • Hinrichsen, E. L., The large scale off-lattice simulation was performed using a program that is a modification of programs developed by P. Meakin (1988).

    Google Scholar 

  • Hinrichsen, E. L., Måløy, K. J., Feder, J., and Jøssang, T., Self-similarity and structure of DLA and viscous fingering clusters, J. Phys. A: Math. Gen. 22, L271–L277 (1989).

    Article  ADS  Google Scholar 

  • Homsy, G. M., Viscous fingering in porous media, Ann. Rev. Fluid Mech. 19, 271–311 (1987).

    Article  ADS  Google Scholar 

  • Hong, D. C., and Langer, J. S., Pattern selection and tip perturbations in the Saffman-Taylor problem, Phys. Rev. A 36, 2325–2332 (1987).

    Article  ADS  Google Scholar 

  • Horton, R. E., Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull. 56, 275–370 (1945).

    Article  Google Scholar 

  • Hulin, J. P., Cazabat, A. M., Guyon, E., and Carmona, F., eds., Hydrodynamics of Dispersed Media, North-Holland, Amsterdam (1990).

    Google Scholar 

  • Jensen, M. H., Libchaber, A., Pelcé, P., and Zocchi, G., Effect of gravity on the Saffman-Taylor meniscus: Theory and experiment, Phys. Rev. A 35, 2221–2227 (1987).

    Article  ADS  Google Scholar 

  • Jullien, R., and Botet, R., Aggregation and Fractal Aggregates, World Scientific, Singapore (1987).

    MATH  Google Scholar 

  • Kadanoff, L. P., Simulating hydrodynamics: A pedestrian model, J. Stat. Phys. 39, 267–283 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  • Kadanoff, L. P., Exact solutions for the Saffman-Taylor problem with surface tension, Phys. Rev. Lett. 65, 2986–2988 (1990).

    Article  ADS  Google Scholar 

  • Kadanoff, L. P., Nagel, S. R., Wu, L., and Zhou, S., Scaling and universality in avalanches, Phys. Rev. A 39, 6524–6537 (1989).

    Article  ADS  Google Scholar 

  • Kessler, D. A., and Levine, H., Stability of finger patterns in Hele-Shaw cells, Phys. Rev. A 32, 1930–1933 (1985).

    Article  ADS  Google Scholar 

  • Lee, J., and Stanley, H. E., Phase transition in the multifractal spectrum of diffusion-limited aggregation, Phys. Rev. Lett. 61, 2945–2948 (1985).

    Article  ADS  Google Scholar 

  • Lenormand, R., Différentes méchanismes de déplacements visqueux et capillaries en milieux poreux: Diagramme de phase, C. R. Acad. Sci. Paris Ser. II 301, 247–250 (1985).

    Google Scholar 

  • Lenormand, R., Touboul, E., and Zarcone, C., Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165–187 (1988).

    Article  ADS  Google Scholar 

  • Lenormand, R., and Zarcone, C., Invasion percolation in an etched network: Measurement of a fractal dimension, Phys. Rev. Lett. 54, 2226–2229 (1985a).

    Article  ADS  Google Scholar 

  • Lenormand, R., and Zarcone, C., Two-phase flow experiments in a two-dimensional permeable medium, Physico-Chemical Hydrodynamics 6, 497–506 (1985b).

    Google Scholar 

  • Lutsko, J. F., Boon, J. P., and Somers, J. A., Lattice gas automata simulations of viscous fingering in a porous medium preprint (1991).

    Google Scholar 

  • Maher, J. V., Development of viscous fingering patterns, Phys. Rev. Lett. 54, 1498–1501 (1985).

    Article  ADS  Google Scholar 

  • Måløy, K.J., Feder, J., and Jøssang, T. Unpublished observations made during the preparation of Feder et al., 1986 (1985).

    Google Scholar 

  • Måløy, K. J., Feder, J., and Jøssang, T., Viscous fingering fractals in porous media, Phys. Rev. Lett. 55, 2688–2691 (1985b).

    Article  ADS  Google Scholar 

  • Måløy, K. J., Boger, F., Feder, J., and Jøssang, T., Dynamics and structure of viscous fingers in porous media, in: Time-Dependent Effects in Disordered Materials (R. Pynn and T. Riste, eds.), Plenum Press, New York, pp. 111–138 (1987).

    Chapter  Google Scholar 

  • Måløy, K. J., Boger, F., Feder, J., Jøssang, T., and Meakin, P., Dynamics of viscous-fingering fractals in porous media, Phys. Rev. A 36, 318–324 (1987b).

    Article  ADS  Google Scholar 

  • Måløy, K. J., Feder, J., Boger, F., and Jøssang, T., Fractal structure of hydrodynamic dispersion in porous media, Phys. Rev. Lett. 61, 2925–2928 (1988).

    Article  ADS  Google Scholar 

  • Mandelbrot, B. B., How long is the coast of Britain? statistical self-similarity and fractal dimension, Science 155, 636–638 (1967).

    Article  ADS  Google Scholar 

  • Mandelbrot, B. B., The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).

    MATH  Google Scholar 

  • Mandelbrot, B. B., Self-affine fractals and fractal dimension, Physica Scripta 32, 257–260 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mandelbrot, B. B., Self-affine fractal sets, in: Fractals in Physics, North-Holland, Amsterdam, pp. 3–28 (1986).

    Google Scholar 

  • Mandelbrot, B. B., and Evertz, C. J. G., The potential distribution around growing fractal clusters, Nature 348, 143–145 (1990).

    Article  ADS  Google Scholar 

  • Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H., and Sawada, Y., Fractal structures of zinc metal leaves grown by electrodeposition, Phys. Rev. Lett. 53, 286 (1984).

    Article  ADS  Google Scholar 

  • McLean, J. W., and Saffman, P. G., The effect of surface tension on the shape of fingers in a Hele-Shaw cell, J. Fluid Mech. 102, 455–469 (1981).

    Article  ADS  MATH  Google Scholar 

  • Meakin, P., Diffusion-controlled cluster formation in 2–6 dimensional space, Phys. Rev. A 27, 1495–1507 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  • Meakin, P., Fractal aggregates and their fractal measures, in: Phase Transitions and Critical Phenomena (C. Domb and J. L. Lebowitz, eds.), Academic Press, New York, pp. 336–489 (1987).

    Google Scholar 

  • Meakin, P., and Deutch, J. M., Monte Carlo simulations of diffusion controlled growth rates in two and three dimensions, J. Chem. Phys. 80, 2115–2122 (1984).

    Article  ADS  Google Scholar 

  • Meakin, P., Feder, J., Frette, V., and Jøssang, T., Invasion percolation in a destabilizing gradient, Phys. Rev. A 46, 3357–3368 (1992).

    Article  ADS  Google Scholar 

  • Nittmann, J., Daccord, G., and Stanley, H. E., Fractal growth of viscous fingers: Quantitative characterization of a fluid instability phenomenon, Nature 314, 141–144 (1985).

    Article  ADS  Google Scholar 

  • Nittmann, J., and Stanley, H. E., Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy, Nature 321, 663–668 (1986).

    Article  ADS  Google Scholar 

  • Oxaal, U., Fractal viscous fingering in inhomogeneous porous models, Phys. Rev. A 44, 5038–5051 (1991).

    Article  ADS  Google Scholar 

  • Oxaal, U., Murat, M., Boger, F., Aharony, A., Feder, J., and Jøssang, J., Viscous fingering on percolation clusters, Nature 329, 32–37 (1987).

    Article  ADS  Google Scholar 

  • Oxaal, U., Boger, F., Feder, J., Jøssang, T., Meakin, P., and Aharony, A., Viscous fingering in square-lattice model with two types of bonds, Phys. Rev. A 44, 6564–6576 (1991).

    Article  ADS  Google Scholar 

  • Paterson, L., Diffusion-limited aggregation and two-fluid displacements in porous media, Phys. Rev. Lett. 52, 1621–1624 (1984).

    Article  ADS  Google Scholar 

  • Paterson, L., Radial fingering in a Hele-Shaw cell, J. Fluid Mech. 113, 513–529 (1981).

    Article  ADS  Google Scholar 

  • Pitts, E., Penetration of a fluid into a Hele-Shaw cell: The Saffman-Taylor experiment, J. Fluid Mech. 97, 53–64 (1980).

    Article  ADS  Google Scholar 

  • Rabaud, M., Couder, Y., and Gerard, N., Dynamics and stability of Saffman-Taylor fingers, Phys. Rev. A 37, 935–947 (1988).

    Article  ADS  Google Scholar 

  • Rothman, D. H., Cellular-automaton fluids: A model for flow in porous media, Geophysics 53, 509–518 (1988).

    ADS  Google Scholar 

  • Rothman, D. H., and Keller, J. M., Immiscible cellular-automaton fluids, J. Stat. Phys. 52, 1119–1127 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Roux, S., and Guyon, E., Temporal development of invasion percolation, J. Phys. A: Math. Gen. 22, 3693–3705 (1989).

    Article  ADS  Google Scholar 

  • Saffman, P. G., A theory of dispersion in a porous medium, J. Fluid Mech. 6, 321–349 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  • Saffman, P.G., Dispersion due to molecular diffusion and macroscopic mixing through a network of capillaries, J. Fluid Mech. 7, 194–208 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Saffman, P. G., and Taylor, G., The penetration of a fluid into a medium or Hele-Shaw cell containing a more viscous liquid, Proc. Soc. London, Ser. A 245, 312–329 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sahimi, M., Davis, H. T., and Scriven, L. E., Dispersion on percolation clusters, Chem. Eng. Com. 23, 329 (1983).

    Article  Google Scholar 

  • Sapoval, B., Rosso, M., and Gouyet, J. F., The fractal nature of a diffusing front and the relation to percolation, J. Phys. Lett. 46, L149–L156 (1985).

    Article  Google Scholar 

  • Sapoval, B., Rosso, M., Gouyet, J. F., and Colonna, J. F., Dynamics of the creation of fractal objects by diffusion and 1/f noise, Solid State Ionics 18, 21–30 (1986).

    Article  Google Scholar 

  • Scheidegger, A. E., The Physics of Flow Through Porous Media, University of Toronto Press, Toronto (1974).

    Google Scholar 

  • Shaw, T. M., Movement of a drying front in a porous material, Better Ceramics Through Chemistry II, Materials Research Society Symposia Proceedings 73, 215–223 (1986).

    Google Scholar 

  • Shaw, T. M., Drying as an immiscible displacement process with fluid counterflow, Phys. Rev. Lett. 59, 1671–1674 (1987).

    Article  ADS  Google Scholar 

  • Sornette, A., and Sornette, D., Self-organized criticality and earthquakes, Europhys. Lett. 9, 197–202 (1989).

    Article  ADS  Google Scholar 

  • Stauffer, D., Introduction to Percolation Theory, Taylor & Francis, London (1985).

    Book  MATH  Google Scholar 

  • Stauffer, D., and Aharony, A., Introduction to Percolation Theory, 2nd edition, Taylor & Francis, London (1992).

    Google Scholar 

  • Tang, C., and Bak, P., Mean field theory of self-organized critical phenomena, J. Stat. Phys. 51, 797–802 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tryggvason, G., and Aref, H., Numerical experiments on Hele-Shaw flow with a sharp interface, J. Fluid Mech. 136, 1–30 (1983).

    Article  ADS  MATH  Google Scholar 

  • VanDamme, H., Obrecht, F., Levitz, P., Gatineau, L., and Laroche, C., Fractal viscous fingering in clay slurries, Nature 320, 731–733 (1986).

    Article  ADS  Google Scholar 

  • Vicsek, T., Fractal Growth Phenomena, World Scientific, Singapore (1989).

    MATH  Google Scholar 

  • Voss, R. F., The fractal dimension of percolation cluster hulls, J. Phys. A 17, L373–L377 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  • Wilkinson, D., Percolation model of immiscible displacement in the presence of buoyancy forces, Phys. Rev. A 30, 520–531 (1984).

    Article  ADS  Google Scholar 

  • Wilkinson, D., Percolation effects in immiscible displacement, Phys. Rev. A 34, 1380–1391 (1986).

    Article  ADS  Google Scholar 

  • Wilkinson, D., and Willemsen, J. F., Invasion percolation: A new form of percolation theory, J. Phys. A: Math. Gen. 16, 3365–3376 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  • Witten, T. A., and Sander, L. M., Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  ADS  Google Scholar 

  • Wolfram, S., Cellular automaton fluids: I: Basic theory, J. Stat. Phys. 45, 471–526 (1986a).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wolfram, S., Theory and Applications of Cellular Automata, World Scientific, Singapore (1986b).

    MATH  Google Scholar 

  • Zaitoun, A., Kalaydjian, F., and Jacquin, C., Two-phase flow through porous media: Influence of viscosity ratio on relative permeabilities, in: Fundamentals of Fluid Transport in Porous Media (ed.), IFP Institut Français du Pétrole, Réf. I.F.P. 37 981-1, pp. 83–86 (1990).

    Google Scholar 

  • Zick, A. A., and Homsy, G. M., Stokes flow through periodic arrays of spheres, J. Fluid Mech. 115, 13–26 (1982).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feder, J., Jøssang, T. (1995). Fractal Patterns in Porous Media Flow. In: Barton, C.C., La Pointe, P.R. (eds) Fractals in Petroleum Geology and Earth Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1815-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1815-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5733-9

  • Online ISBN: 978-1-4615-1815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics