Skip to main content

The Multiple Roles of Macrophages in Wound Healing

  • Chapter
Book cover The Molecular and Cellular Biology of Wound Repair

Abstract

The process of wound healing is associated with dynamic changes in the type and density of various infiltrating cell populations (Ross and Benditt, 1961). Tissue injury, in response to a variety of agents (e.g., surgical trauma or burns), rapidly induces a nonspecific inflammation probably as a result of blood coagulation, with accompanying platelet aggregation and activation of the complement and kinin systems (see Chapters 2 and 3). The first blood leukocytes to be attracted and demobilized at the site of tissue injury are neutrophils, the number of which increases steadily before peaking at 24–48 hr (see Chapter 6). The main function of neutrophils is apparently to destroy bacteria introduced into the tissue during injury. However, in the absence of gross infection, depletion of circulating neutrophils in guinea pigs by treatment with antineutrophil serum has no effect on the subsequent healing of experimentally induced wounds (Simpson and Ross, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. O., and Hamilton, T. A., 1984, The cell biology of macrophage activation, Annu. Rev. Immunol. 2:283–318.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. C., 1976, Glycoproteins of the connective tissue matrix, Int. Rev. Connect. Tissue Res. 7:251–322.

    PubMed  CAS  Google Scholar 

  • Baird, A., Mormede, P., and Bohlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.

    Article  PubMed  CAS  Google Scholar 

  • Banda, M. J., and Werb, Z., 1981, Mouse macrophage elastase. Purification and characterization as a metalloproteinase, Biochem. J. 193:589–605.

    PubMed  CAS  Google Scholar 

  • Banda, M. J., Knighton, D. R., Hunt, and Werb, Z., 1982, Isolation of a nonmitogenic angiogenesis factor from wound fluid, Proc. Natl. Acad. Sci. USA 79:7773–7777.

    Article  PubMed  CAS  Google Scholar 

  • Banda, M. J., Clark, E. J., and Werb, Z., 1983, Selective proteolysis of immunoglobulins by mouse macrophage elastase, J. Exp. Med. 157:1184–1196.

    Article  PubMed  CAS  Google Scholar 

  • Banda, M. J., Clark, E. J., and Werb, Z., 1985, Macrophage elastase: Regulatory consequences of the proteolysis of non-elastin substrates, in: Mononuclear Phagocytes: Characteristics, Physiology and Function (R. van Furth, ed.), pp. 295–300, Martinus Nijhoff, Dordrecht, Holland.

    Google Scholar 

  • Bar-Shavit, R., Kahn, A., Fenton, J. W., and Wilner, G. D., 1983, Chemotactic response of monocytes to thrombin, J. Cell Biol. 96:282–285.

    Article  PubMed  CAS  Google Scholar 

  • Becker, S., 1984, Interferons as modulators of a human monocyte-macrophage differentiation. I. Interferon-γ increases HLA-DR expression and inhibits phagocytosis of zymosan, J. Immunol. 132:1249–1354.

    PubMed  CAS  Google Scholar 

  • Bevilacqua, M. P., Amrani, D., Mosesson, M. W., and Bianco, C., 1981, Receptors for cold insoluble globulin (plasma fibronectin) on human monocytes, J. Exp. Med. 153:42–60.

    Article  PubMed  CAS  Google Scholar 

  • Bianco, C., 1983, Fibrin, fibronectin and macrophages, Ann. NY Acad. Sci. 408:602–609.

    Article  PubMed  CAS  Google Scholar 

  • Blair, H. C., Kahn, A. J., Crouch, E. C., Jeffrey, J. J., and Teitelbaum, S. L., 1982, Isolated osteoclasts resorb the organic and inorganic components of bone, J. Cell Biol. 102:1164–1172.

    Article  Google Scholar 

  • Blusse van Oud Alblas, A., van der Linden-Schrever, B., and van Furth, R., 1981, Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intravenous administration of heat-killed bacillus Calmette-Guérin, J. Exp. Med. 154:235–252.

    Article  PubMed  CAS  Google Scholar 

  • Blusse van Oud Alblas, A., van der Linden-Schrever, B., and van Furth, R., 1983, Oirgin and kinetics of pulmonary macrophage during an inflammatory reaction induced by intra-alveolar administration of aerosolized heat-killed BCG, Am. Rev. Respir. Dis. 128:276–281.

    PubMed  CAS  Google Scholar 

  • Bonney, R. J., Gery, I., Lin, T. Y., Meyenhofer, M. F., Acevedo, W., and Davies, P., 1978, Mononuclear phagocytes from carrageenan-induced granulomas. Isolation, cultivation, and characterization, J. Exp. Med. 148:261–275.

    Article  PubMed  CAS  Google Scholar 

  • Bouwens, L., and Wisse, E., 1985, Proliferation, kinetics, and fate of monocytes in rat liver during zymosan-induced inflammation, J. Leukocyte Biol. 37:531–544.

    PubMed  CAS  Google Scholar 

  • Brown, M. S., Basu, S. K., Falck, J. R., Ho, Y. K., and Goldstein, J. L., 1980, The scavenger cell pathway for lipoprotein degradation: Specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages, J. SupramoJ. Struct. 13:67–81.

    Article  CAS  Google Scholar 

  • Cianciolo, G. J., and Snyderman, R., 1981, Monocyte responsiveness to chemotactic stimuli is a property of a subpopulation of cells that can respond to multiple chemoattractants, J. Clin. Invest. 67:60–68.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Horsburgh, R. C., Hoffman, A. A., Dvorak, H. F., Mosesson, M. W., and Colvin, R. B., 1984, Fibronectin deposition in delayed-type hypersensitivity, J. Clin. Invest. 74:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Wilkner, N. E., Norris, D. A., and Howell, S. E., 1985, Cryptic chemotactic activity for human monocytes resides in the cell-binding domain of fibronectin, J. Cell. Biol. 101:217a.

    Article  Google Scholar 

  • Coggle, J. E., and Tarling, J. D., 1984, The proliferation kinetics of pulmonary alveolar macrophages, J. Leukocyte Biol. 35:317–327.

    PubMed  CAS  Google Scholar 

  • Crofton, R. W., Diesselhoff-den Dulk, M. M. C., and van Furth, R., 1978, The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state, J. Exp. Med. 148:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Daems, W. T., 1980, Peritoneal macrophages, in: The Reticuloendohelial System, A Comprehensive Treatise: Morphology, Vol. 1 (I. Carr and W. T. Daems, eds.), pp. 57–127, Plenum, New York.

    Google Scholar 

  • Dayer, J. M., Breard, J., Chess, L., and Krane, S. M., 1979, Participation of monocyte-macrophages and lymphocytes in the production of a factor that stimulates collagenase and prostaglandin release by rheumatoid synovial cells, J. Clin. Invest. 64:1386–1392.

    Article  PubMed  CAS  Google Scholar 

  • Dayer, J. M., deRochemonteix, B., Burrus, B., Demczuk, S., and Dinarello, C. A., 1986, Human recombinant interleukin 1 stimulates collagenase and prostaglandin E2 production by human synovial cells, J. Clin. Invest. 77:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Deimann, W., and Fahimi, D., 1980, Hepatic granulomas induced by glucan. An ultrastructural and peroxidase-cytochemical study, Lab. Invest. 43:172–181.

    PubMed  CAS  Google Scholar 

  • Deuel, T. F., Senior, R. M., Chang, D., Griffin, G. L., Heinrikson, R. L., and Kaiser, E. T., 1981, Platelet factor 4 is chemotactic for neutrophils and monocytes, Proc. Natl. Acad. Sci. USA 78:4584–4587.

    Article  PubMed  CAS  Google Scholar 

  • Dingle, J. T., 1975, The secretion of enzymes into the pericellular environment, Philos. Trans. R. Soc. Lond. B Biol. Sci. 271:315–324.

    Article  PubMed  CAS  Google Scholar 

  • Doherty, D. E., Haslett, C., Tonneson, M. G., and Henson, P. M., 1987, The adhesion of human peripheral monocytes in vitro is enhanced by chemotactic peptides, J. Immunol. 138:1762–1771.

    PubMed  CAS  Google Scholar 

  • Etherington, D. J., 1976, Bovine spleen cathepsin B1 and collagenolytic cathepsin: a comparative study of the properties of the two enzymes in the degradation of native collagen, Biochem. J. 153:199–209.

    PubMed  CAS  Google Scholar 

  • Falk, W., and Leonard, E. J., 1980, Human monocyte chemotaxis: Migrating cells are a subpopulation with multiple chemotaxin specificities on each cell, Infect. Immun. 29:953–959.

    PubMed  CAS  Google Scholar 

  • Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J., 1980, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature (Lond.) 286:264–265.

    Article  CAS  Google Scholar 

  • Ginsel, L. A., Rijfkogel, L. P., and Daems, W. T., 1985, A dual origin of macrophages? Review and hypothesis, in: Macrophage Biology (S. Reichard and M. Kojima, eds.), pp. 621–649, Alan R. Liss, New York.

    Google Scholar 

  • Glenn, K. C., and Ross, R., 1981, Human monocyte-derived growth factor(s) for mesenchymal cells: Activation of secretion by endotoxin and concanavalin A, Cell 25:603–615.

    Article  PubMed  CAS  Google Scholar 

  • Goud, T. J. L. M., and van Furth, R., 1975, Proliferative characteristics of monoblasts grown in vitro, J. Exp. Med. 142:1200–1217.

    Article  PubMed  CAS  Google Scholar 

  • Goud, T. J. L. M., Schotte, C., and van Furth, R., 1975, Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro, J. Exp. Med. 142:1180–1198.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, G. B., and Hunt, T. K., 1978, The proliferation response in vitro of vascular endothelial and smooth muscle cells exposed to wound fluid and macrophages, J. Cell. Physiol. 97:353–360.

    Article  Google Scholar 

  • Gudewicz, P. W., Molnar, J., Lai, M. Z., Beezhold, D. W., Siefring, G. E., Jr., Credo, R. B., and Lorand, L., 1980, Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages, J. Cell Biol. 87:427–433.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, T., Bitterman, P. B., Mornex, J-F., and Crystal, R. G., 1986, Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation, J. Immunol. 136: 1339–1345.

    PubMed  CAS  Google Scholar 

  • Horsburgh, C. R., Clark, R. A. F., and Kirkpatrick, C. H., 1987, Lymphokines and platelets promote human monocyte adherence to fibrinogen and fibronectin in vitro, J. Leukocyte Biol. 41:14–24.

    PubMed  CAS  Google Scholar 

  • Hosein, B., and Bianco, C., 1985, Monocyte receptors for fibronectin characterized by a monoclonal antibody that interferes with receptor activity, J. Exp. Med. 112:157–170.

    Article  Google Scholar 

  • Hosein, B., Mosessen, M. W., and Bianco, C., 1985, Monocyte receptors for fibronectin, in: Mononuclear Phagocytes: Characteristics, Physiology, and Function (R. van Furth, ed.), pp. 723–730, Martinus Nijhoff, Dordrecht, Holland.

    Google Scholar 

  • Hunt, T. K., Knighton, D. R., Thakral, K. K., Goodson, W. H., and Andrews, W. S., 1984, Studies on inflammation and wound healing: Angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages, Surgery 96:48–54.

    PubMed  CAS  Google Scholar 

  • Huybrechts-Godin, G., Hauser, P., and Vaes, G., 1979, Macrophage-fibroblast interaction in collagenase production and cartilage degradation, Biochem. J. 184:643–650.

    PubMed  CAS  Google Scholar 

  • Huybrechts-Godin, G., Peeters-Joris, C., and Vaes, G., 1985, Partial characterization of the macrophage factor that stimulates fibroblasts to produce collagenase and to degrade collagen, Biochim. Biophys. Acta 846:51–54.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, M., Honda, M., and Heyashi, H., 1978, In vitro macrophage chemotactic generation from serum immunoglobulin G by neutrophil neutral seryl protease, Immunology 35:167–176.

    PubMed  CAS  Google Scholar 

  • Jauchem, J. R., Lopez, M., Sprague, E. A., and Schwartz, C. J., 1982, Mononuclear cell chemoattractant activity from cultured arterial smooth muscle cells, Exp. Mol. Pathol. 37:166–174.

    Article  PubMed  CAS  Google Scholar 

  • Jilek, F., and Hormann, H., 1977, Cold insoluble globulin. II. Plasminolysis of cold insoluble globulin, Hoppe Seylers Z. Physiol. Chem. 358:133–136.

    PubMed  CAS  Google Scholar 

  • Jones, P. A., and Scott-Burden, T., 1979, Activated macrophages digest the extracellular matrix proteins produced by cultured cells, Biochem. Biophys. Res. Commun. 86:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A., and Werb, Z., 1980, Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin and collagen by macrophages in culture, J. Exp. Med. 152:1527–1536.

    Article  PubMed  CAS  Google Scholar 

  • Jungo, T. W., and Hafner, S., 1986, Quantitative assessment of Fc receptor expression and function during in vitro differentiation of human monocytes to macrophages, Immunology 58:131–137.

    Google Scholar 

  • Kambara, T., Ueda, K., and Maeda, S., 1977, The chemical mediation of delayed hypersensitivity skin reactions. I. Purification of a macrophage-chemotactic factor from bovine gamma-globulin induced skin reactions in guinea pigs, Am. J. Pathol. 87:359–374.

    PubMed  CAS  Google Scholar 

  • Kay, A. B., Pepper, D. S., and Ewart, M. R., 1973, Generation of chemotactic activity for leukocytes by the action of thrombin of human fibrinogen, Nature (Lond.) 243:56–57.

    Article  CAS  Google Scholar 

  • Knighton, D. R., Silver, I. A., and Hunt, T. K., 1981, Regulation of wound-healing angiogenesis— Effect of oxygen gradients and inspired oxygen concentration, Surgery 90:262–270.

    PubMed  CAS  Google Scholar 

  • Knighton, D. R., Hunt, T. K., Scheuenstuhl, H., Halliday, B. J., Werb, Z., and Banda, M. J., 1983, Oxygen tension regulates the expression of angiogenesis factor by macrophages, Science 221:1283–1285.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. E., Polverini, P. J., and Leibovitch, S. J., 1986, Induction of neuvascularization by activated human monocytes, J. Leukocyte Biol. 39:233–238.

    PubMed  CAS  Google Scholar 

  • Lavie, G., Zucker-Franklin, D., and Franklin, E. C., 1980, Elastase-type proteases on the surface of human blood monocytes: Possible role in amyloid formation, J. Immunol. 125:175–180.

    PubMed  CAS  Google Scholar 

  • Lee, S. H. S., and Epstein, L., 1980, Reversible inhibition of the maturation of human peripheral blood monocytes to macrophages, Cell Immunol. 50:177–190.

    Article  PubMed  CAS  Google Scholar 

  • Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71–100.

    PubMed  CAS  Google Scholar 

  • Leibovich, S. J., and Ross, R., 1976, A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am. J. Pathol. 84:501–513.

    PubMed  CAS  Google Scholar 

  • Leslie, C. C., Musson, R. R., and Henson, P. M., 1984, Production of growth factor activity for fibroblasts by human monocyte-derived macrophages, J. Leukocyte Biol. 36:143–160.

    PubMed  CAS  Google Scholar 

  • Libby, P., Wyler, D. J., Janicka, M. W., and Dinarello, C. A., 1985, Differential effects of human interleukin 1 on growth of human fibroblasts and vascular smooth muscle cells, Atherosclerosis 5:186–191.

    CAS  Google Scholar 

  • Lin, H. S., Kuhn, C., and Chen, D. M., 1982, Effects of hydrocortisone acetate on pulmonary alveolar macrophage colony-forming cells, Ann. Rev. Respir. Dis. 125:712–715.

    CAS  Google Scholar 

  • Loike, J. D., Kozler, V. F., and Silverstein, S. C., 1984, Creatine kinase expression and creatine phosphate accumulation are developmentally regulated during differentiation of mouse and human monocytes, J. Exp. Med. 159:746–757.

    Article  PubMed  CAS  Google Scholar 

  • Marder, S. R., Chenoweth, D. E., Goldstein, I. M., and Perez, H. D., 1985, Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5a des Arg, J. Immunol. 134:3325–3331.

    PubMed  CAS  Google Scholar 

  • Martin, B. M., Gimbrone, M. A., Unanue, E. R., and Cotran, R. S., 1981, Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor, J. Immunol. 126:1510–1515.

    PubMed  CAS  Google Scholar 

  • Martin, B. M., Gimbrone, M. A., Majeau, G.R., Unanue, E. R., and Cotran, R. S., 1983, Stimulation of human monocyte/macrophage-derived growth factor (MDGF) production by plasma fibro-nectin, Am. J. Pathol. 111:367–373.

    PubMed  CAS  Google Scholar 

  • McDonald, J. A., and Kelley, D. G., 1980, Degradation of fibronectin by human leukocyte elastase, J. Biol. Chem. 255:8848–8858.

    PubMed  CAS  Google Scholar 

  • Miller, B., Miller, H., Patterson, R., and Ryan, S. J., 1986, Retinal wound healing. Cellular activity at the vitreoretinal interface, Arch. Ophthalmol. 104:281–285.

    Article  PubMed  CAS  Google Scholar 

  • Mizel, S. B., Dayer, J. M., Krane, S. M., and Mergenhagen, S. E., 1981, Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyteactivating factor (interleukin 1), Proc. Natl. Acad. Sci. USA 78:2474–2477.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., Reynolds, J. J., Bretz, U., and Baggiolini, M., 1977, Collagenase is a component of the specific granules of human neutrophil leukocytes, Biochem. J. 162:195–197.

    PubMed  CAS  Google Scholar 

  • Murtaugh, M. P., Arend, W. P., and Davies, P. J. A., 1984, Induction of tissue transglutaminase in human peripheral blood monocytes, J. Exp. Med. 159:114–125.

    Article  PubMed  CAS  Google Scholar 

  • Musson, R. A., 1983, Human serum induces maturation of human monocytes in vitro, Am. J. Pathol. 111:331–340.

    PubMed  CAS  Google Scholar 

  • Musson, P. A., Shafran, H., and Henson, P. M., 1980, Intracellular and stimulated release of lysosomal enzymes from human peripheral blood monocytes and monocyte-derived macrophages, J. Reticuloendothel. Soc. 28:249–264.

    PubMed  CAS  Google Scholar 

  • Nakagawara, A., Nathan, C. F., and Cohn, Z. A., 1981, Hydrogen peroxide metabolism in human monocytes during differentiation in vitro, J. Clin. Invest. 68:1243–1252.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S. L., Musson, R. A., and Henson, P. M., 1980, Development of functional complement receptors during in vivo maturation of human monocytes into macrophages, J. Immunol. 125:2236–2244.

    PubMed  CAS  Google Scholar 

  • Nicola, N. A., and Metcalf, D., 1986, Specificity of action of colony-stimulating factors in the differentiation of granulocytes and macrophages, Ciba Found. Symp. 118:7–22.

    PubMed  CAS  Google Scholar 

  • Norris, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Weston, W. L., and Howell, S. E., 1982, Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.

    PubMed  CAS  Google Scholar 

  • Ogawa, T., Kotani, S., Kusumoto, S., and Shiba, T., 1983, Possible chemotaxis of human monocytes by N-acetylmuramyl-L-ananyl-D-isoglutamine, Infect. Immun. 39:449–451.

    PubMed  CAS  Google Scholar 

  • Parakkal, P. F., 1972, Macrophages: The time course and sequence of their distribution in the post-partum uterus, J. Ultrastruct Res. 40:284–291.

    Article  PubMed  CAS  Google Scholar 

  • Polverini, P. J., Cotran, R. S., Gimbrone, M. A., and Unanue, E. R., 1977, Activated macrophages induce vascular proliferation, Nature (Lond.) 269:804–806.

    Article  CAS  Google Scholar 

  • Polverini, P. J., and Leibovich, S. J., 1984, Induction of neuvascularization in vivo and endothelial cell proliferation in vitro by tumor-associated macrophages, Lab. Invest. 51:635–642.

    PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., and Kang, A. H., 1976, Collagen-and collagen peptide-induced chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Seyer, J. M., and Kang, A. H., 1978, Chemotactic attraction of human fibro-blasts to type I, II, and III collagens and collagen-derived peptides, Proc. Natl. Acad. Sci. USA 75:871–875.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Keski-Oja, J., Bahan, G., and Kang, A. H., 1981, Induction of fibroblast chemotaxis by fibronectin, J. Exp. Med. 153:494–499.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Lachman, L. B., Mainardi, C. L., and Kang, A. H., 1983, Interleukin 1 stimulation of collagenase production by cultured fibroblasts, J. Exp. Med. 157:801–806.

    Article  PubMed  CAS  Google Scholar 

  • Proveddini, D. M., Deftos, L. J., and Manolagas, S. C., 1986, 1,25-dihydroxyvitamin D3 promotes in vitro morphologic and enzymatic changes in normal human monocytes consistent with their differentiation into macrophages, Bone 7:23–28.

    Article  Google Scholar 

  • Rinehart, J. J., Wuest, D., and Ackerman, G. A., 1982, Corticosteroid lateration of human monocyte to macrophage differentiation, J. Immunol. 129:1436–1440.

    PubMed  CAS  Google Scholar 

  • Robertson, P. B., Ryel, R. B., Taylor, R. E., Shyu, K. W., and Fullmer, H. M., 1972, Collagenase: Localization in polymorphonuclear leukocyte granules in the rabbit, Science 177:64–65.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., and Benditt, E. P., 1961, Wound healing and collagen formation. I. Sequential changes in components of guinea pig skin wounds observed in the electron microscope, J. Biophys. Biochem. Cytol. 11:677–700.

    Article  PubMed  CAS  Google Scholar 

  • Sandhaus, R. A., McCarthy, K. M., Musson, R. A., and Henson, P. M., 1983, Elastinolytic proteinases of the human macrophage, Chest 83S:60S–62S.

    Google Scholar 

  • Satodate, R., Madarame, T., Monma, N., Masuda, T., Oikawa, K., and Sato, S., 1985, Importance of the sinusoidal fenestration for blood monocytes to settle on the sinusoidal surface of the liver, in: Macrophage Biology: Progress in Leukocyte Biology, Vol. 4 (S. Reichard and M. Kojima, eds.), pp. 651–658, Alan R. Liss, New York.

    Google Scholar 

  • Sawyer, R. T., Strausbach, P. H., and Volkman, A., 1982, Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89, Lab. Invest. 46:165–170.

    PubMed  CAS  Google Scholar 

  • Sawyer, R. T., 1986, The ontogeny of pulmonary alveolar macrophages in parabiotic mice, J. Leukocyte Biol. 40:347–354.

    PubMed  CAS  Google Scholar 

  • Schenk, R. K., 1974, The ultrastructure of bone (report), Verh. Dtsch. Ges. Pathol. 58:72–83.

    PubMed  CAS  Google Scholar 

  • Schmidt, J. A., Oliver, C. N., Lepe-Zuniga, J. L., Green, I., and Gery, I., 1984, Silica-stimulated monocytes release fibroblast proliferation factors identical to interleukin 1. A potential role for interleukin 1 in the pathogenesis of silicosis, J. Clin. Invest. 73:1462–1472.

    Article  PubMed  CAS  Google Scholar 

  • Senior, R. M., Griffin, G. L., and Mecham, R. P., 1980, Chemotactic activity of elastin-derived peptides, J. Clin. Invest. 66:859–862.

    Article  PubMed  CAS  Google Scholar 

  • Senior, R. M., Griffin, G. L., Mecham, R. P., Wrenn, D. S., Prasad, K. U., and Urry, D. W., 1984, Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes, J. Cell Biol. 99:870–874.

    Article  PubMed  CAS  Google Scholar 

  • Shimokado, K., Raines, E. W., Madtes, D. K., Barrett, T. B., Benditt, E. P., and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of at least two forms of PDGF, Cell 43:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D. M., and Ross, R., 1972, The neutrophilic leukocyte in wound repair, J. Clin. Invest. 51:2009–2023.

    Article  PubMed  CAS  Google Scholar 

  • Snyderman, R., and Fudman, E. J., 1980, Demonstration of a chemotactic factor receptor on macrophages, J. Immunol. 124:2754–2757.

    PubMed  CAS  Google Scholar 

  • Stewart, R. J., Duley, J. A., Dewdney, J., Allardyce, R. A., Beard, M. E. J., and Fitzgerald, P. H., 1981, The wound fibroblast and macrophage. II. Their origin studied in a human after bone marrow transplantation, Br. J. Surg. 68:129–131.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Abe, E., Miyaura, C., Shiina, Y., and Suda, T., 1983, 1,25-dihydroxyvitamin D3 induces differentiation of human promyelocytic leukemia cells (HL-60) into monocyte-macrophages, but not into granulocytes, Biochem. Biophys. Res. Commun. 117:86–92.

    Article  PubMed  CAS  Google Scholar 

  • Tarling, J. D., and Coggle, J. E., 1982, Evidence for the pulmonary origin of alveolar macrophages, Cell Tissue Kinet. 15:577–584.

    PubMed  CAS  Google Scholar 

  • Thakral, K. K., Goodson, W. H., and Hunt, T. K., 1979, Stimulation of wound blood vessel growth by wound macrophages, J. Surg. Res. 26:430–436.

    Article  PubMed  CAS  Google Scholar 

  • Unkeless, J. C., Gordon, S., and Reich, E., 1974, Secretion of plasminogen activator by stimulated macrophages, J. Exp. Med. 139:834–850.

    Article  PubMed  CAS  Google Scholar 

  • van Furth, R., and Cohn, Z. A., 1968, The origin and kinetics of mononuclear phagocytes, J. Exp. Med. 128:415–435.

    Article  PubMed  Google Scholar 

  • van Furth, R., Diesselhoff-den Dulk, M. M. C., and Mattie, H., 1973, Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction, J. Exp. Med. 138:1314–1330.

    Article  PubMed  Google Scholar 

  • van Furth, R., Diesselhoff-den Dulk, M. M. C., Sluiter, W., and van Dissel, J. T., 1985a, New perspectives on the kinetics of mononuclear phagocytes, in: Mononuclear Phagocytes: Characteristics, Physiology and Function (R. van Furth, ed.), pp. 201–208, Martinus Nijhoff, Dordrecht, Holland.

    Google Scholar 

  • van Furth, R., Nibberin, P. H., van Dissel, J. T., and Disselhoff-den Dulk, M. M. C., 1985b, The characterization, origin, and kinetics of skin macrophages during inflammation, J. Invest. Dermatol. 85:398–402.

    Article  PubMed  Google Scholar 

  • Vartio, T., 1981, Characterization of the binding domains in the fragments cleaved by cathepsin G from human plasma fibronectin, Eur. J. Biochem. 123:223–233.

    Article  Google Scholar 

  • Wedmore, C. V., and Williams, T. J., 1981, Control of vascular permeability by polymorphonuclear leukocytes in inflammation, Nature (Lond.) 289:646–650.

    Article  CAS  Google Scholar 

  • Wenger, G. D., and O’Dorisio, M. S., 1985, Induction of cAMP-dependent protein kinease I during human monocyte differentation, J. Immunol. 134:1836–1843.

    PubMed  CAS  Google Scholar 

  • Werb, Z., and Gordon, S., 1975a, Secretion of a specific collagenase by stimulated macrophages, J. Exp. Med. 142:346–360.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., and Gordon, S., 1975b, Elastase secretion by stimulated macrophages. Characterization and regulation, J. Exp. Med. 142:361–377.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., Banda, M. J., and Jones, P. A., 1980a, Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages, J. Exp. Med. 152:1340–1357.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., Bainton, D. F., and Jones, P. A., 1980b, Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular and intracellular events in macrox proteolysis by macrophages in culture, J. Exp. Med. 152:1537–1553.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S. D., Craigmyle, L. S., and Silverstein, S. C., 1983, Fibronectin and serum amyloid P component stimulate C3b-and C3bi-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 158:1339–1343.

    Google Scholar 

  • Wright, S. D., and Meyer, B. C., 1985, Fibronectin receptor of human macrophages recognizes the sequence Arg-Gly-Asp-Ser, J. Exp. Med. 162:762–767.

    Article  PubMed  CAS  Google Scholar 

  • Yancey, K. B., Hammer, C. H., Harvath, L., Renfer, L., Frank, M. M., and Lawley, T. J., 1985, Studies of human C5a as a mediator of inflammation in normal human skin, J. Clin. Invest. 75:486–495.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman, S. H., Ackerman, S. K., and Douglas, S. D., 1979, Long term human peripheral blood monocyte cultures: Establishment, metabolism, and morphology of primary human mono-cyte-macrophage cultures, Immunology 38:401–411.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Riches, D.W.H. (1988). The Multiple Roles of Macrophages in Wound Healing. In: Clark, R.A.F., Henson, P.M. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1795-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1795-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5725-4

  • Online ISBN: 978-1-4615-1795-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics