Advertisement

Neutrophil Emigration, Activation, and Tissue Damage

  • Marcia G. Tonnesen
  • G. Scott Worthen
  • Richard B. JohnstonJr.

Abstract

The early inflammatory phase of wound healing is characterized by a rapid accumulation of neutrophils. Despite this observation, the neutrophil does not appear to play a central or essential role in the wound healing process per se. The classic study by Simpson and Ross (1972), in which wound repair was monitored in guinea pigs depleted of neutrophils by the administration of antineutrophil serum, failed to demonstrate that either wound debridement or formation of granulation tissue is dependent on the presence of neutrophils.

Keywords

Human Neutrophil Chronic Granulomatous Disease Neutrophil Elastase Cationic Protein Neutrophil Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adye, J. C., and Springer, G. F., 1977, Binding of endotoxin (LPS) by glycerophosphatides from human platelets and leukocytes, Naturwissenschaften 64:150–151.PubMedGoogle Scholar
  2. Alexander, J. W., Bossert, J. E., McClellan, M. A., and Alternier, W. A., 1971, Stimulants of cellular proliferation in wounds, Arch. Surg. 103:167–174.PubMedGoogle Scholar
  3. Allison, F., Jr., Smith, M. R., and Wood, W. B., 1955, Studies on the pathogenesis of acute inflammation. I. The inflammatory reaction to thermal injury as observed in the rabbit ear chamber, J. Exp. Med. 102:655–668.PubMedGoogle Scholar
  4. Andersen, L., Attstrom, R., and Fejerskov, O., 1978, Effect of experimental neutropenia on oral wound healing in guinea pigs, Scand. J. Dent. Res. 86:237–247.PubMedGoogle Scholar
  5. Anderson, D. C., and Springer, T. A., 1987, Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins, Annu. Rev. Med. 38:175–194.PubMedGoogle Scholar
  6. Anderson, D. C., Schmalstieg, F. C., Arnaout, M. A., Kohl, S., Tosi, M. F., Dana, N., Buffone, G. J., Hughes, B. J., Brinkley, B. R., Dickey, W. D., Abramson, J. S., Springer, T. A., Boxer, L. A., Hollers, J. M., and Smith, C. W., 1984, Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): Common relationship to diminished cell adherence, J. Clin. Invest. 74:536–551.PubMedGoogle Scholar
  7. Anderson, D. C., Schmalstieg, F. C., Finegold, M. J., Hughes, B. J., Rothlein, R., Miller, L. J., Kohl, S., Tosi, M. F., Jacobs, R. L., Waldrop, T. C., Goldman, A. S., Shearer, W. T., and Springer, T. A., 1985, The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: Their quantitative definition and relation to leukocyte dysfunction and clinical features, J. Infect. Dis. 152:668–689.PubMedGoogle Scholar
  8. Armstrong, P. B., and Lackie, J. M., 1975, Studies on intercellular invasion in vitro using rabbit peritoneal neutrophil granulocytes (PMNs). 1. Role of contact inhibition on locomotion, J. Cell Biol. 65:439–462.PubMedGoogle Scholar
  9. Arnaout, M. A., Pitt, J., Cohen, H. J., Melamed, J., Rosen, F. S., and Colten, H. R., 1982, Deficiency of a granulocyte membrane glycoprotein (gp 150) in a boy with recurrent bacterial infections, N. Engl. J. Med. 306:693–699.PubMedGoogle Scholar
  10. Arnaout, M. A., Spits, H., Terhorst, C., Pitt, J., and Todd, R. F., 1984, Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mol deficiency: Effects of cell activation on Mol/LFA-1 surface experssion in normal and deficient leukocytes, J. Clin. Invest. 74:1291–1300.PubMedGoogle Scholar
  11. Athens, J. W., Haab, O. P., Raab, S. O., Mauer, A. M., Ashenbrucker, H., Cartwright, G. E., and Wintrobe, M. M., 1961, Leukokinetic studies IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects, J. Clin. Invest. 40:989–995.PubMedGoogle Scholar
  12. Atherton, A., and Born, G. V. R., 1973, Relationship between the velocity of rolling granulocytes and that of the blood flow in venules, J. Physiol. (Lond.) 233:157–165.Google Scholar
  13. Babior, B. M., 1984, The respiratory burst of phagocytes, J. Clin. Invest. 73:599–601.PubMedGoogle Scholar
  14. Babior, B. M., Kipnes, R. S., and Curnutte, J. T., 1973, Biological defense mechanisms: The production by leukocytes of Superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741–744.PubMedGoogle Scholar
  15. Baehner, R. L., and Nathan, D. G., 1967, Leukocyte oxidase: Defective activity in chronic granulomatous disease, Science 155:835–836.PubMedGoogle Scholar
  16. Baldrige, C. W., and Gerard, R. W., 1933, The extra respiration of phagocytosis, Am. J. Physiol. 103:235–236.Google Scholar
  17. Bannatyne, R. M., Harnett, N. M., Lee, K. Y., and Biggar, W. D., 1977, Inhibition of the biologic effects of endotoxin on neutrophils by polymyxin B sulfate, J. Infect. Dis. 136:469–474.PubMedGoogle Scholar
  18. Barcikowski, S., Tchorzewski, H., Warno, O., and Dancewicz, R., 1978, Untersuchungen uber die rolle der leukozyten im heilprozess chirurgischer Verletzungen, Z. Exp. Chir. 11:371–376.PubMedGoogle Scholar
  19. Beesley, J. E., Pearson, J. D., Carleton, J. S., Hutchings, A., and Gordon, J. L., 1978, Interaction of leukocytes with vascular cells in culture, J. Cell Sci. 33:85–101.PubMedGoogle Scholar
  20. Beesley, J. E., Pearson, J. D., Hutchings, A., Carleton, J. S., and Gordon, J. L., 1979, Granulocyte migration through endothelium in culture, J. Cell Sci. 38:237–248.PubMedGoogle Scholar
  21. Bernstein, I. D., and Self, S., 1986, The joint report of the myeloid section of the Second International Workshop on Human Leukocyte Differentiation Antigens, in: Leukocyte Typing II: Report of the Second International Workshop on Human Leukocyte Differentiation Antigens, Vol. 3, Human MyeJoid and Hematopoietic Cells (E. L. Reinherz, B. S. Haynes, L. M. Nadler, and I. D. Bernstein, eds.), pp. 1–25, Springer-Verlag, New York.Google Scholar
  22. Bevilacqua, M. P., Pober, J. S., Wheeler, M. E., Cotran, R. S., and Gimbrone, M. A., Jr., 1985, Interleukin-1 acts on cultured human vascular endothelium to increase the adhesion of poly-morphonuclear leukocytes, monocytes and related leukocyte cell lines, J. Clin. Invest. 76:2003–2011.PubMedGoogle Scholar
  23. Bjork, J., Lindbom, L., Gerdin, B., Smedegard, G., Arfors, K. E., and Benveniste, J., 1983, Paf-acether (platelet-activating factor) increases microvascular permeability and affects endothelium-granulocyte interaction in microvascular beds, Acta PhysioJ. Scand. 119:305–308.Google Scholar
  24. Bonney, R. J., and Smith, R. J., 1986, Evidence for the role of neutral proteases in chronic inflammatory diseases in humans, Adv. Inflamm. Res. 11:127–133.Google Scholar
  25. Boudier, C., Holle, C., and Bieth, J. G., 1981, Stimulation of the elastolytic activity of leukocyte elastase by leukocyte cathepsin G, J. Biol. Chem. 256:10256–10258.PubMedGoogle Scholar
  26. Bowen, T. J., Ochs, H. D., Altman, L. C., Price, T. H., VanEpps, D. E., Brautigan, D. L., Rosin, R. E., Perkins, W. D., Babior, B. M., Klebanoff, S. J., and Wedgwood, R. J., 1982, Severe recurrent bacterial infections associated with defective adherence and chemotaxis in two patients with neutrophils deficient in a cell-associated glycoprotein, J. Pediatr. 101:932–940.PubMedGoogle Scholar
  27. Brown, A. F., 1982, Neutrophil granulocytes: Adhesion and locomotion on collagen substrata and in collagen matrices, J. Cell Sci. 58:445–467.Google Scholar
  28. Carp, H., and Janoff, A., 1979, In vitro suppression of serum elastase-inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes, J. Clin. Invest. 63:793–797.PubMedGoogle Scholar
  29. Carrel, A., 1922, Growth-promoting function of leukocytes, J. Exp. Med. 36:385–391.PubMedGoogle Scholar
  30. Carrel, A., 1924, Leukocytic trephones, JAMA 82:255–258.Google Scholar
  31. Clark, E. R., and Clark, E. L., 1935, Observations on changes in blood vascular endothelium in the living animal, Am. J. Anat. 57:385–438.Google Scholar
  32. Cochrane, C. G., and Aikin, B. S., 1966, Polymorphonuclear leukocytes in immunologie reactions. The destruction of vascular basement membrane in vivo and in vitro, J. Exp. Med. 124:733–752.PubMedGoogle Scholar
  33. Cohn, Z. A., and Hirsch, J. G., 1960, The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes, J. Exp. Med. 112:983–1004.PubMedGoogle Scholar
  34. Cohn, Z. A., and Morse, S. I., 1960, Functional and metabolic properties of polymorphonuclear leukocytes. II. The influence of a lipopolysaccharide endotoxin, J. Exp. Med. 111:689–704.PubMedGoogle Scholar
  35. Colditz, I. G., and Movat, H. Z., 1984, Kinetics of neutrophil accumulation in acute inflammatory lesions induced by chemotaxins and chemotaxinigens, J. Immunol. 133:2169–2173.PubMedGoogle Scholar
  36. Cramer, E. B., Migliorisi, G., Pologe, L., Abrahams, E., Pawlowski, N. A., Cohn, Z., and Scott, W. A., 1984, Effect of leukotrienes on endothelium and the transendothelial migration of neutrophils, J. Allergy Clin. Immunol. 74:386–390.PubMedGoogle Scholar
  37. Crowley, C. A., Curnutt, J. T., Rosin, R. E., Andre-Schwartz, J., Gallin, J. L, Klempner, M., Snyderman, R., Southwick, F. S., Stossel, T. P., and Babior, B. M, 1980, An inherited abnormality of neutrophil adhesion: Its genetic transmission and its association with a missing protein, N. Engl. J. Med. 302:1163–1168.PubMedGoogle Scholar
  38. Dahinden, C., Galanos, C., and Fehr, J., 1983, Granulocyte activation by endotoxin. I. Correlation between adherence and other granulocyte functions, and role of endotoxin structure on biologic activity, J. Immunol. 130:857–862.PubMedGoogle Scholar
  39. Damiano, V. V., Cohen, A., Tsang, A. L., Batra, G., and Petersen, R., 1980, A morphologic study of the influx of neutrophils into dog lung alveoli after lavage with sterile saline, Am. J. Pathol. 100:349–364.PubMedGoogle Scholar
  40. Dewald, B., Bretz, U., and Baggiolini, M., 1982, Release of gelatinase from a novel secretory compartment of human neutrophils, J. Clin. Invest. 70:518–525.PubMedGoogle Scholar
  41. Doroszewski, J., Skierski, J., and Przadka, L., 1977, Interaction of neoplastic cells with glass surface under flow conditions, Exp. Cell Res. 104:335–343.PubMedGoogle Scholar
  42. Dutrochet, M. H., 1824, Recherches anatomiques et physiologiques sur la structure intime des animaux et des végétaux, et sur leur motilité, Bailliere et Fils, Paris.Google Scholar
  43. Edwards, L. C., and Dunphy, J. E., 1958, Wound healing. I. Injury and normal repair, N. Engl. J. Med. 259:224–233.PubMedGoogle Scholar
  44. Ekerot, L., and Ohlsson, K., 1982, Immunoreactive granulocyte elastase in rheumatoid synovial fluid and membrane, Scand J. Plast. Reconstr. Surg. 16:117–122.PubMedGoogle Scholar
  45. Fantone, J. C., and Ward, P. A., 1982, Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions, Am. J. Pathol. 107:397–418.Google Scholar
  46. Farber, J. L., 1982, Biology of disease: membrane injury and calcium homeostasis in the patho-genesis of coagulative necrosis, Lab. Invest. 47:114–123.PubMedGoogle Scholar
  47. Fischer, A., Descamps-Latscha, B., Gerota, I., Scheinmetzler, C., Virelizier, J. L., Trung, P. H., Lisowska-Grospierre, B., Perez, N., Durandy, A., and Griscelli, C., 1983, Bone-marrow transplantation for inborn error of phagocytic cells associated with defective adherence, chemotaxis and oxidative response during opsonised particle phagocytosis, Lancet 2:473–476.PubMedGoogle Scholar
  48. Florey, H. W., and Grant, L. H., 1961, Leukocyte migration from small blood vessels stimulated with ultraviolet light: An electron-microscope study, J. Pathol. 82:13–17.Google Scholar
  49. Fong, J. S. C., and Good, R. A., 1971, Prevention of the localized and generalized Shwartzman reactions by an anticomplementary agent, cobra venom factor, J. Exp. Med. 135:642–655.Google Scholar
  50. Forrester, J. V., and Lackie, J. M., 1984, Adhesion of neutrophil leucocytes under conditions of flow, J. Cell Sci. 70:93–110.PubMedGoogle Scholar
  51. Gabay, J. E., Heiple, J. M., Cohn, Z. A., and Nathan, C. F., 1986, Subcellular location and properties of bactericidal factors from human neutrophils, J. Exp. Med. 164:1407–1421.PubMedGoogle Scholar
  52. Gaehtgens, P., Pries, A. R., and Nobis, U., 1984, Flow behavior of white cells in capillaries, in: White CeJI Mechanics: Basic Science and Clinical Aspects, (J. Meiselman, M. A. Lichtman, P. L. LaCelle, eds.), pp. 147–158, Alan R. Liss, New York.Google Scholar
  53. Galanos, C., Luderitz, O., Rietschel, E., and Westphal, O., 1977, New aspects of the chemistry and biology of bacterial lipopolysaccharides with special reference to their Lipid A component, in: Biochemistry of Lipids. II, Vol. 14 (International Review of Biochemistry), (T. W. Goodwin, ed.), pp. 239–335, University Park Press, Baltimore.Google Scholar
  54. Gallin, J. I., 1984, Neutrophil specific granules: A fuse that ignites the inflammatory response, Clin. Res. 32:320–328.PubMedGoogle Scholar
  55. Gamble, J. R., Harlan, J. M., Klebanoff, S. J., and Vadas, M. A., 1985, Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor, Proc. Natl. Acad. Sci. USA 82:8667–8671.PubMedGoogle Scholar
  56. Gimber, P. E., and Rafter, G. W., 1969, The interaction of Escherichia coli endotoxin with leukocytes, Arch. Biochem. 135:14–20.PubMedGoogle Scholar
  57. Gimbrone, M. A., Jr., 1976, Culture of vascular endothelium, Prog. Hemost. Thromb. 3:1–28.PubMedGoogle Scholar
  58. Goihman-Yahr, M., Rodriguez-Ochoa, G., Aranzazu, N., and Convit, J., 1975, Polymorphonuclear activation in leprosy. I. Spontaneous and endotoxin-stimulated reduction of nitroblue tetrazolium: Effects of serum and plasma on endotoxin-induced activation, Clin. Exp. Immu-nol. 20:257–264.Google Scholar
  59. Goldstein, I. M., Roos, D., Kaplan, H. B., and Weissmann, G., 1975, Complement and immunoglobulins stimulate Superoxide production by human leukocytes independently of phagocytosis, J. Clin. Invest. 56:1155–1163.PubMedGoogle Scholar
  60. Graham, R. C., Jr., Kamovosky, M. J., Shafer, A. W., Glass, E. A., and Karnovsky, M. L., 1967, Metabolic and morphological observations on the effect of surface-active agents on leukocytes, J. Cell. Biol. 32:629–647.PubMedGoogle Scholar
  61. Grant, L., 1973, The sticking and emigration of white blood cells in inflammation, in: The Inflammatory Process, Vol. II (B. W. Zweifach, L. Grant, and R. T. McCluskey, eds.), pp. 205–249, Academic Press; New York.Google Scholar
  62. Grinnell, F., 1982, Migration of human neutrophils in hydrated collagen lattices. J. Cell Sci. 58:95–108.PubMedGoogle Scholar
  63. Guthrie, L. A., McPhail, L. C., Henson, P. M., and Johnston, R. B., Jr., 1984, Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide: Evidence for increased activity of the superoxide-producing enzyme, J. Exp. Med. 160:1656–1671.PubMedGoogle Scholar
  64. Haeffner-Cavaillon, N., Cavaillon, J.-M., Etievant, M., Lebbar, S., and Szabo, L., 1985, Specific binding of endotoxin to human monocytes and mouse macrophages: Serum requirement, Cell Immunol. 91:119–131.PubMedGoogle Scholar
  65. Harlan, J. M., Killen, P. D., Harker, L. A., Striker, G. E., and Wright, D. C., 1981, Neutrophilmediated endothelial injury in vitro. Mechanisms of cell detachment, J. Clin. Invest. 68:1394–1403.PubMedGoogle Scholar
  66. Harlan, J. M., Killen, P. D., Senecal, F. M., Schwartz, B. R., Yee, E. K., Taylor, R. F., Beatty, P. G., Price, T. H., and Ochs, H. D., 1985, The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro, Blood 66:167–178.PubMedGoogle Scholar
  67. Haslett, C., Guthrie, L. A., Kopaniak, M. M., Johnston, R. B., Jr., and Henson, P. M., 1985, Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharides, Am. J. Pathol. 119:101–110.PubMedGoogle Scholar
  68. Hasty, K. A., Hibbs, M. S., Kang, A. H., and Mainardi, C. L., 1986, Secreted forms of human neutrophil collagenase, J. Biol. Chem. 261:5645–5650.PubMedGoogle Scholar
  69. Hawkins, D., and Cochrane, C. G., 1968, Glomerular basement membrane damage in immunologi-cal glomerulonephritis, Immunology 14:665–681.PubMedGoogle Scholar
  70. Henson, P. M., 1971, The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces, J. Immunol. 107:1547–1557.PubMedGoogle Scholar
  71. Henson, P. M., 1972, Pathologic mechanisms in neutrophil-mediated injury, Am. J. Pathol. 68:593–612.PubMedGoogle Scholar
  72. Henson, P. M., and Johnston, R. B., Jr., 1987, Tissue injury in inflammation: Oxidants, proteinases and cationic proteins, J. Clin. Invest. 79:669–674.PubMedGoogle Scholar
  73. Herring, W. B., Herion, J. C., Walter, R. I., and Palmer, J. G., 1963, Distribution and clearance of circulating endotoxin, J. Clin. Invest. 42:79–87.PubMedGoogle Scholar
  74. Hibbs, M. S., Hasty, K. A., Seyer, J. M., Kang, A. H., and Mainardi, C. L., 1985, Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase, J. Biol. Chem. 260:2493–2500.PubMedGoogle Scholar
  75. Hoover, R. L., Briggs, R. T., and Karnovsky, M. J., 1978, The adhesive interaction between polymorphonuclear leukocytes and endothelial cells in vitro, Cell 14:423–428.PubMedGoogle Scholar
  76. Hopkins, N. K., Schaub, R. G., and Gorman, R. R., 1984, Acetyl glyceryl ether phosphorylcholine (PAF-Acether) and leukotriene B4-mediated neutrophil chemotaxis through an intact endothelial cell monolayer, Biochim. Biophys. Acta 805:30–36.PubMedGoogle Scholar
  77. Iyer, G. Y. N., Islam, D. M. F., and Quastel, J. H., 1961, Biochemical aspects of phagocytosis, Nature (Lond.) 192:535–541.Google Scholar
  78. Janoff, A., 1985, Elastase in tissue injury, Annu. Rev. Med. 36:207–216.PubMedGoogle Scholar
  79. Janoff, A., and Zeligs, J. D., 1968, Vascular injury and lysis of basement membrane in vitro by neutral protease of human leukocytes, Science 161:702–704.PubMedGoogle Scholar
  80. Janoff, A., and Zweifach, B.W., 1964, Production of inflammatory changes in the microcirculation by cationic proteins extracted from lysosomes, J. Exp. Med. 120:747–764.PubMedGoogle Scholar
  81. Johnson, K. J., and Ward, P. A., 1981, Role of oxygen metabolites in immune complex injury of lung, J. Immunol. 126:2365–2369.PubMedGoogle Scholar
  82. Johnston, R. B., Jr., and Baehner, R. L., 1971, Chronic granulomatous disease: Correlation between pathogenesis and clinical findings, Pediatrics 48:730–739.PubMedGoogle Scholar
  83. Johnston, R. B., Jr., and Lehmeyer, J. E., 1976, Elaboration of toxic oxygen by-products by neutrophils in a model of immune complex disease, J. Clin. Invest. 57:836–841.PubMedGoogle Scholar
  84. Johnston, R. B., Jr., Keele, B., Webb, L., Kessler, D., and Rajagopalan, K. V., 1973, Inhibition of phagocytic bactericidal activity by Superoxide dismutase: A possible role for Superoxide anion in the killing of phagocytized bacteria, J. Clin. Invest. 52:44a.Google Scholar
  85. Johnston, R. B., Jr., Keele, B. B., Jr., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L., and Rajagopalan, K. V., 1975, The role of Superoxide anion generation in phagocytic bactericidal activity: Studies with normal and chronic granulomatous disease leukocytes, J. Clin. Invest. 55:1357–1372.PubMedGoogle Scholar
  86. Johnston, R. B., Jr., Lehmeyer, J. E., and Guthrie, L. A., 1976, Generation of Superoxide anion and chemiluminescence by human monocytes during phagocytosis and on contact with surfacebound immunoglobulin G, J. Exp. Med. 143:1551–1556.PubMedGoogle Scholar
  87. Kane, M. A., May, J. E., and Frank, M. M., 1973, Interactions of the classical and alternate complement pathways with endotoxin lipopolysaccharide. Effect on platelets and blood coagulation, J. Clin. Invest. 52:370–376.PubMedGoogle Scholar
  88. Karnovsky, M. L., 1968, The metabolism of leukocytes, Semin. Hematol. 5:156–165.PubMedGoogle Scholar
  89. Kern, P. A., Knedler, A., and Eckel, R. H., 1983, Isolation and culture of microvascular endothelium from human adipose tissue, J. Clin. Invest. 71:1822–1829.PubMedGoogle Scholar
  90. Klebanoff, S. J., and Hamon, C. B., 1972, Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes, J. Reticuloendothel. Soc. 12:170–196.PubMedGoogle Scholar
  91. Lackie, J. M., and DeBono, D., 1977, Interactions of neutrophil granulocytes and endothelium in vitro, Microvasc. Res. 13:107–112.PubMedGoogle Scholar
  92. Larsen, G. L., McCarthy, K., Webster, R. O., Henson, J., and Henson, P. M., 1980, A differential effect of C5a and C5a des arg in the induction of pulmonary inflammation, Am. J. Pathol. 100:179–188.PubMedGoogle Scholar
  93. Lee, C. T., Fein, A. M., Lippmann, M., Holtzman, H., Kimbel, P., and Weinbaum, G., 1981, Elastolytic activity in pulmonary lavage fluid from patients with adult respiratory-distress syndrome, N. Engl. J. Med. 304:192–196.PubMedGoogle Scholar
  94. Lindbom, L., Hedquist, P., Dahlen, S. E., Lindgren, J. A., and Arfors, K. E., 1982, Leukotriene B4 induces extravasation and migration of polymorphonuclear leukocytes in vivo, Acta Physiol. Scand. 116:105–108.PubMedGoogle Scholar
  95. Liotta, L. A., 1984, Tumor invasion and metastases: Role of the basement membrane, Am. J. Pathol. 117:339–348.PubMedGoogle Scholar
  96. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., and Shafie, S., 1980, Metastatic potential correlates with enzymatic degradation of basement membrane collagen, Nature (Lond.) 284:67–68.Google Scholar
  97. Lipscomb, M. F., Onotrio, J. M., Nash, E. J., Pierce, A. K., and Toews, G. B., 1983, A morphological study of the role of phagocytes in the clearance of Staphylococcus aureus from the lung, J. Reticuloendothel. Soc. 33:429–442.PubMedGoogle Scholar
  98. MacGregor, R. R., Macarak, E. J., and Kefalides, N. A., 1978, Comparative adherence of granulocytes to endothelial monolayers and nylon fiber, J. Clin. Invest. 61:697–702.PubMedGoogle Scholar
  99. Mainardi, C. L., Dixit, S. N., and Kang, A. H., 1980, Degradation of type IV (basement membrane) collagen by a protease isolated from human polymorphonuclear leukocyte granules, J. Biol. Chem. 255:5435–5441.PubMedGoogle Scholar
  100. Marchesi, V. T., 1961, The site of leukocyte emigration during inflammation, Q. J. Exp. Physiol. 46:115–118.Google Scholar
  101. Marchesi, V. T., and Florey, H. W., 1960, Electron micrographic observations on the emigration of leukocytes, Q. J. Exp. Physiol. 45:343–348.Google Scholar
  102. Maridonneau, I., Braquet, P., and Garay, R. P., 1983, Na+ and K+ transport damage induced by oxygen free radicals in human red-cell membranes, J. Biol. Chem. 258:3107–3113.PubMedGoogle Scholar
  103. Martin, W. J., Gadek, J. E., Hunninghake, G. W., and Crystal, R. G., 1981, Oxidant injury of lung parenchymal cells, J. Clin. Invest. 68:1277–1288.PubMedGoogle Scholar
  104. McCall, C. E., DeChatelet, L. R., Brown, D., and Lachman, P., 1974, New biological activity following intravascular activation of the complement cascade, Nature (Lond.) 249:841–842.Google Scholar
  105. McCormick, J. R., Harkin, M. M., Johnson, K. J., and Ward, P. A., 1981, Suppression by Superoxide dismutase of immune-complex-induced pulmonary alveolitis and dermal inflammation, Am. J. Pathol. 102:55–61.PubMedGoogle Scholar
  106. Mclntyre, T. M., Zimmerman, G. A., and Prescott, S. M., 1986, Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils, Proc. Natl. Acad. Sci. USA 83:2204–2208.Google Scholar
  107. Mead, J. F., 1976, Free radical mechanisms of lipid damage and consequences for cellular membranes, in:Free Radicals in Biology, Vol. I (W. A. Pryor, ed.), pp. 51–70, Academic Press, New York.Google Scholar
  108. Metchnikoff, E., 1893, Lectures on the Comparative Pathology of Inflammation, Kegan, Paul, Trench, Trubner, London.Google Scholar
  109. Meyrick, B., Hoffman, L. H., and Brigham, K. L., 1984, Chemotaxis of granulocytes across bovine pulmonary artery intimai explants without endothelial injury, Tissue Cell 16:1–16.PubMedGoogle Scholar
  110. Morrison, D. C., and Ulevitch, R. J., 1978, The effects of bacterial endotoxin on host mediation systems, Am. J. Pathol. 93:527–617.Google Scholar
  111. Muller-Berghaus, G., and Lohmann, E., 1974, The role of complement in endotoxin-induced disseminated intravascular coagulation: Studies in congenitally C6-deficient rabbits, Br. J. Haematol. 28:403–418.PubMedGoogle Scholar
  112. Nagy, Z., Peters, H., and Huttner, I., 1983, Charge-related alterations of the cerebral endothelium, Lab. Invest. 49:662–671.PubMedGoogle Scholar
  113. Niedermeyer, M. E., Meyrick, B., Parl, F. F., and Brigham, K. L., 1984, Facilitation of granulocyte migration into bovine pulmonary artery intimai explants by intact viable endothelium, Am. J. Pathol. 117:252–261.PubMedGoogle Scholar
  114. Peterson, M. W., Clark, R., Stone, P., and Shasby, D. M., 1985, Neutrophil cationic protein increases endothelial albumin transport, Am. Rev. Respir. Dis. 131(Suppl.):A421.Google Scholar
  115. Petrone, W. F., English, D. K., Wong, K., and McCord, J. M., 1980, Free radicals and inflammation: The Superoxide dependent activation of a neutrophil chemotactic factor in plasma, Proc. Natl. Acad. Sci. USA 77:1159–1163.PubMedGoogle Scholar
  116. Pohlman, T. H., Stanness, K. A., Beatty, P. G., Ochs, H. D., and Harlan, J. M., 1986, An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin-1, and tumor necrosis factor increases neutrophil adherence by a CDw18-dependent mechanism, J. Immunol. 136:4548–4553.PubMedGoogle Scholar
  117. Quie, P. G., White, J. G., Holmes, B., and Good, R. A., 1967, In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood, J. Clin. Invest. 46:668–679.PubMedGoogle Scholar
  118. Ranadive, N. S., and Cochrane, C. G., 1970, Basic proteins in rat neutrophils that increase vascular permeability, Clin. Exp. Immunol. 6:905–911.PubMedGoogle Scholar
  119. Rindler-Ludwig, R., and Braunsteiner, H., 1975, Cationic proteins from human neutrophil granulocytes. Evidence for their chymotrypsin-like properties, Biochim. Biophys. Acta 379:606–617.PubMedGoogle Scholar
  120. Ross, G. D., Thompson, R. A., Walport, M. J., Springer, T. A., Watson, J. V., Ward, R. H. R., Lida, J., Newman, S. L., Harrison, R. A., and Lachmann, P. J., 1985, Characterization of patients with an increased susceptibility to bacterial infections and a genetic deficiency of leukocyte membrane complement receptor type 3 and the related membrane antigen LFA-1, Blood 66:882–890.PubMedGoogle Scholar
  121. Russo, R. G., Liotta, L. A., Thorgeirsson, U., Brundage, R., and Schiffmann, E., 1981, Polymorphonuclear leukocyte migration through human amnion membrane, J. Cell Biol. 91:459–467.PubMedGoogle Scholar
  122. Ryan, U. S., Mortara, M., and Whitaker, C., 1980, Methods for microcarrier culture of bovine pulmonary artery endothelial cells avoiding the use of enzymes, Tissue Cell 12:619–635.PubMedGoogle Scholar
  123. Sacks, T., Moldow, C. F., Craddock, P. R., Bowers, T. K., and Jacob, H. S., 1978, Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes: An in vitro model of immune vascular damage, J. Clin. Invest. 61:1161–1167.PubMedGoogle Scholar
  124. Sanchez-Madrid, F., Nagy, J. A., Robbins, E., Simon, P., and Springer, T. A., 1983, A human leukocyte differentiation antigen family with distinct alpha subunits and a common beta subunit: The lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1) and the p150,95 molecule, J. Exp. Med. 158:1785–1803.PubMedGoogle Scholar
  125. Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234:1355–1362.PubMedGoogle Scholar
  126. Schmalstieg, F. C., Rudloff, H. E., Hillman, G. R., and Anderson, D. C., 1986, Two-dimensional and three-dimensional movement of human polymorphonuclear leukocytes: Two fundamentally different mechanisms of locomotion, J. Leukocyte Biol. 40:677–691.PubMedGoogle Scholar
  127. Schmid-Schonbein, G. W., Fung, Y. C., and Zweifach, B. W., 1975, Vascular endothelium-leuko-cyte interaction; sticking shear force in venules, Circ. Res. 36:173–184.Google Scholar
  128. Senior, R. M., and Campbell, E. J., 1983, Neutral proteinases from human inflammatory cells: A critical review of their role in extracellular matrix degradation, Clin. Lab. Med. 3:645–666.PubMedGoogle Scholar
  129. Shaw, J. O., 1980, Leukocytes in chemotactic-fragment-induced lung inflammation, Am. J. Pathol. 101:283–291.PubMedGoogle Scholar
  130. Shaw, J. O., Henson, P. M., Henson, J., and Webster, R. O., 1980, Lung inflammation induced by complement-derived chemotactic fragments in the alveolus, Lab. Invest. 42:547–558.PubMedGoogle Scholar
  131. Sibille, Y., Lwebuga-Mukasa, J. S., Polomski, L., Merrill., W. W., Ingbar, D. H., and Gee, J. B. L., 1986, An in vitro model for polymorphonuclear-leukocyte-induced injury to an extracellular matrix, Am. Rev. Respir. Dis. 134:134–140.PubMedGoogle Scholar
  132. Simon, R. H., Scoggin, C. H., and Patterson, D., 1981, Hydrogen peroxide causes fatal injury to human fibroblasts exposed to oxygen radicals, J. Biol. Chem. 256:7181–7186.PubMedGoogle Scholar
  133. Simionescu, D., and Simionescu, M., 1983, Differentiated distribution of the cell surface charge on the alveolar-capillary unit. Characteristic paucity of anionic sites on the air-blood barrier, Microvasc. Res. 25:85–100.PubMedGoogle Scholar
  134. Simpson, D. M., and Ross, R., 1972, The neutrophilic leukocyte in wound repair. A study with antineutrophil serum, J. Clin. Invest. 51:2009–2023.PubMedGoogle Scholar
  135. Smedly, L. A., Tonnesen, M. G., Worthen, G. S., Mason, R. J., and Henson, P. M., 1983, Neutrophil recognition of endothelial cells: Preferential adherence and transmigration, Fed. Proc. 42:386.Google Scholar
  136. Smedly, L. A., Tonnesen, M. G., Sandhaus, R. A., Haslett, C., Guthrie, L. A., Johnston, R. B., Jr., Henson, P. M., and Worthen, G. S., 1986, Neutrophil-mediated injury to endothelial cells: Enhancement by endotoxin and essential role of neutrophil elastase, J. Clin. Invest. 77:1233–1243.PubMedGoogle Scholar
  137. Snider, G. L., 1981, Patbogenesis of emphysema and chronic bronchitis, Med. Clin. North Am. 65:647–665.PubMedGoogle Scholar
  138. Springer, T. A., Thompson, W. S., Miller, L. J., Schmalstieg, F. C., and Anderson, D. C., 1984, Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis, J. Exp. Med. 160:1901–1918.PubMedGoogle Scholar
  139. Stetson, C. A., Jr., 1951, Studies on mechanism of Shwartzman phenomenon. Certain factors involved in the production of the local hemorrhagic necrosis, J. Exp. Med. 93:489–504.PubMedGoogle Scholar
  140. Taylor, R. F., Price, T. H., Schwartz, S. M., and Dale, D. C., 1981, Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters, J. Clin. Invest. 67:584–587.PubMedGoogle Scholar
  141. Terranova, V. P., DiFlorio, R., Hujanen, E. S., Lyall, R. M., Liotta, L. A., Thorgeirsson, U., Siegal, G. P., and Schiffmann, E., 1986, Laminin promotes rabbit neutrophil motility and attachment, J. Clin. Invest. 77:1180–1186.PubMedGoogle Scholar
  142. Thomas, E. L., 1979, Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli, Infect. Immun. 23:522–531.PubMedGoogle Scholar
  143. Thorgeirsson, U. P., Liotta, L. A., Kalebic, T., Margulies, I. M., Thomas, K., Rios-Candelore, M., and Russo, R. G., 1982, Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro, J. Natl. Cancer Inst. 69:1049–1054.PubMedGoogle Scholar
  144. Todd, R. F., Arnaout, M. A., Rosin, R. E., Crowley, C. A., Peters, W. A., and Babior, B. M., 1984, Subcellular localization of the large subunit of Mo1 (Molα; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion, J. Clin. Invest. 74:1280–1290.PubMedGoogle Scholar
  145. Tonnesen, M. G., Smedly, L., Goins, A., and Henson, P. M., 1982, Inteaction between neutrophils and vascular endothelial cells, in: Agents and Actions, Vol. 11, Cologne Atherosclerosis Conference (M. J. Parnham and J. Winkelmann, eds.), pp. 25–38, Birkhauser Verlag, Basel.Google Scholar
  146. Tonnesen, M. G., Smedly, L. A., and Henson, P. M., 1984, Neutrophil-endothelial cell interactions: Modulation of neutrophil adhesiveness induced by complement fragments C5a and C5a des arg and formyl-methionyl-leucyl-phenylalanine in vitro, J. Clin. Invest. 74:1581–1592.PubMedGoogle Scholar
  147. Tonnesen, M. G., Anderson, D. C., Springer, T. A., Knedler, A., Avdi, N. J., and Henson, P. M., 1986a, MAC-1 glycoprotein family mediates adherence of neutrophils to endothelial cells stimulated by chemotactic peptides, Clin. Res. 34:419 (abst.).Google Scholar
  148. Tonnesen, M. G., Anderson, D. C., Springer, T. A., Knedler, A., Avdi, N. J., and Henson, P. M., 1986b, MAC-1 glycoprotein family mediates adherence of neutrophils to endothelial cells stimulated by leukotriene B4 and platelet activating factor, Fed. Proc. 45:379.Google Scholar
  149. Tonnesen, M. G., Anderson, D. C., Springer, T. A., Knedler, A., Avdi, N., and Henson, P. M., 1987, Endotoxin directly enhances neutrophil adherence to endothelial cells by a Mac-1 glycopro-tein-dependent mechanism, Clin. Res. 35:722 (abst.).Google Scholar
  150. Ulevitch, R. J., Cochrane, C. G., Bangs, K., Herman, C. M., Fletcher, J. R., and Rice, C. L., 1978, The effect of complement depletion on bacterial lipopolysaccharide (LPS)-induced hemodynamic and hemostatic changes in the Rhesus monkey, Am. J. Pathol. 92:227–240.PubMedGoogle Scholar
  151. van Grondelle, A., Worthen, G. S., Ellis, D., Mathias, M. M., Murphy, R. C., Strife, R. J., Reeves, J. T., and Voelkel, N. F., 1984, Altering hydrodynamic variables influences PGI2 production by isolated lungs and endothelial cells, J. Appl. Physiol. 57:388–395.PubMedGoogle Scholar
  152. Wagoner, M. D., Kenyon, K. R., Gipson, I. K., Hanninen, L. A., and Seng, W. L., 1984, Polymorphonuclear neutrophils delay corneal epithelial wound healing in vitro, Invest. Ophthalmol. Vis. Sci. 25:1217–1220.PubMedGoogle Scholar
  153. Webster, R. O., Hong, S. R., Johnston, R. B., Jr., and Henson, P. M., 1980, Biological effects of the human complement fragments C5a and C5a desarg on neutrophil function, Immunophar-macology 2:201–219.Google Scholar
  154. Weiss, S. J., and Regiani, S., 1984, Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor, J. Clin. Invest. 73:1297–1303.PubMedGoogle Scholar
  155. Weiss, S. J., King, G. W., and LoBuglio, A. F., 1977, Evidence for hydroxyl radical generation by human monocytes, J. Clin. Invest. 60:370–373.PubMedGoogle Scholar
  156. Westphal, O., Westphal, U., and Sommer, T., 1977, History of pyrogen research, in: Microbiology 1977 (D. Schlessinger, ed.), pp. 221–228, The American Society for Microbiology, Washington, D.C.Google Scholar
  157. Wilkinson, P. C., 1982, Chemotaxis and Inflammation, 2nd ed., Churchill Livingstone, New York.Google Scholar
  158. Wilkinson, P. C., and Lackie, J. M., 1983, The influence of contact guidance on chemotaxis of human neutrophil leukocytes, Exp. Cell Res. 145:255–264.PubMedGoogle Scholar
  159. Wilkinson, P. C., Shields, J. M., and Haston, W. S., 1982, Contact guidance of human neutrophil leukocytes, Exp. Cell Res. 140:55–62.PubMedGoogle Scholar
  160. Williamson, J. R., and Grisham, J. W., 1961, Electron microscopy of leukocyte margination and emigration in acute inflammation in dog pancreas, Am. J. Pathol. 39:239–256.PubMedGoogle Scholar
  161. Yoon, P. S., Boxer, L. A., Mayo, L. A., Yang, A. X., and Wicha, M. S., 1987, Human neutrophil laminin receptors: Activation-dependent receptor expression, J. Immunol. 138:259–265.PubMedGoogle Scholar
  162. Zimmerman, G. A., Mclntyre, T. M., and Prescott, S. M., 1985, Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro, J. Clin. Invest. 76:2235–2246.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Marcia G. Tonnesen
    • 1
    • 4
  • G. Scott Worthen
    • 2
  • Richard B. JohnstonJr.
    • 3
  1. 1.Department of PediatricsNational Jewish Center for Immunology and Respiratory MedicineDenverUSA
  2. 2.Department of MedicineNational Jewish Center for Immunology and Respiratory MedicineDenverUSA
  3. 3.Department of PediatricsThe University of Pennsylvania School of Medicine and The Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Dermatology ServiceVeterans’ Administration Medical CenterDenverUSA

Personalised recommendations