Skip to main content

Re-formation of the Epidermal—Dermal Junction during Wound Healing

  • Chapter
The Molecular and Cellular Biology of Wound Repair

Abstract

The relationship between keratinocytes and the extracellular matrix upon which they rest is complex and only beginning to be understood. Keratinocytes are capable of synthesizing many of the extracellular matrix molecules that are most closely related to their cell surface, such as the bullous pemphigoid antigen (Woodley and Régnier, 1979; Stanley et al., 1980; Woodley et al., 1980a, 1982) laminin (Stanley et al., 1982c), the epidermolysis bullosa acquisita antigen (Woodley et al., 1985b), and fibronectin (O’Keefe et al., 1984; Kubo et al.., 1984). Thus, it is clear that keratinocytes directly influence their extracellular matrix composition. Furthermore, it is becoming apparent that cellular behavior can be modified by contact with a given extracellular matrix molecule. For example, mammary epithelial cells have a decreased requirement for epidermal growth factor when cultured on type IV (basement membrane) collagen as compared with type I (interstitial) collagen (Salomon et al., 1981). The influence on cellular behavior by contact with matrix molecules is often referred to as cell-matrix interactions. The cell-matrix interactions that apply to the ker-atinocyte may be viewed as a self-contained system, since the keratinocytes synthesize and extracellularly deposit their own matrix components, which in turn directly affects the behavior of cells in contact with the cell plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alitalo, K., Vaheri, A., Kreig, T., and Timpl, R., 1980, Biosynthesis of two subunits of type IV procollagen and of other basement membrane proteins by a human tumor cell line, Eur. J. Biochem. 109:247–255.

    PubMed  CAS  Google Scholar 

  • Alstadt, S. P., Hebda, P., Chung, A., and Eaglstein, W., 1985, The enhancement of epidermal cell attachment by basement membrane entactin, J. Invest. Dermatol. 84:353 (abst).

    Google Scholar 

  • Balazs, A., and Holmgren, H. J., 1950, The basic dye-uptake and the presence of growth inhibiting substance in the healing tissue of skin wounds, Exp. Cell Res. 1:206–216.

    Google Scholar 

  • Beerens, E., Slot, J., and Van der Leun, J., 1975, Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum: An electron microscopic study, J. Invest. Dermatol. 65:513–521.

    PubMed  CAS  Google Scholar 

  • Bender, B. L., Jaffe, R., Carlin, B., and Chung, A., 1981, Immunolocalization of entactin, a sulfated basement membrane component in rodent tissues and comparison with GP-2 (laminin), Am. J. Pathol. 103:419–426.

    PubMed  CAS  Google Scholar 

  • Bentley, J. P., 1967, Fate of chondroitin sulfate formation in wound healing, Ann. Surg. 165:186–191.

    PubMed  CAS  Google Scholar 

  • Bentz, H., Bachinger, H., Granville, R., and Kuhn, K., 1978, Physical evidence for the assembly of A and B chains of human placental collagen in a single triple helix, Eur. J. Biochem. 92:563–567.

    PubMed  CAS  Google Scholar 

  • Bentz, H., Morris, N., Murray, L., Sakai, L., Hollister, D., and Burgeson, R., 1983, Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain, Proc. Natl. Acad. Sci. USA 80:3168–3172.

    PubMed  CAS  Google Scholar 

  • Bemfield, M. R., and Banerjee, S. D., 1978, The basal lamina in epithelial-mesenchymal mor-phogenetic interactions, in: Biology and Chemistry of Basement Membranes (N. A. Kefalides, eds.), pp. 137–148, Academic, New York.

    Google Scholar 

  • Bemfield, M. R., Cohn, R. N., and Banerjee, S. D., 1973, Glycosaminoglycans and epithelial organ formation, Am. Zool. 13:1067–1083.

    Google Scholar 

  • Boselli, J., Macarale, E., Clark, C, Brownell, A., and Martinex-Hernandez, A., 1981, Fibronectin: Its relationship to basement membranes. I. Light microscopic studies, Collagen Relat. Res. 1:391–404.

    CAS  Google Scholar 

  • Breathnach, A. S., and Robins, J., 1969, Ultrastructural features of epidermis of a 14 MM. (6 weeks) human embryo, Br. J. Dermatol. 81:504–516.

    PubMed  CAS  Google Scholar 

  • Breathnach, S. M., Fox, P. A., Neises, G. R., Stanley, J. R., and Katz, S. I., 1983, A unique epithelial basement membrane antigen defined by a monoclonal antibody (KF-1), J. Invest. Dermatol. 80:392–395.

    PubMed  CAS  Google Scholar 

  • Brickman, F., Soltani, K., Medenica, M., and Taylor, M. E. M., 1977, Antigenic and morphologic regeneration of epidermal basement membrane in short term organ culture of human skin, Lab. Invest. 36:296–302.

    PubMed  CAS  Google Scholar 

  • Briggaman, R., 1983, Biochemical composition of the epidermal-dermal junction and other basement membrane, J. Invest. Dermatol. 81:74s–81s.

    Google Scholar 

  • Briggaman, R. A., and Wheeler, C. E., Jr., 1971, Formation and origin of basal lamina and anchoring fibrils in adult human skin, J. Cell Biol. 51:384–395.

    PubMed  CAS  Google Scholar 

  • Briggaman, R., and Wheeler, C. E., Jr., 1975, The epidermal-dermal junction, J. Invest. Dermatol. 65:71–84.

    PubMed  CAS  Google Scholar 

  • Briggaman, R. A., Schechter, N., Fraki, J., and Lazarus, G. S., 1984, Degradation of the epidermal-dermal junction by proteolytic enzymes from human skin and human polymorphonuclear leukocytes, J. Exp. Med. 160:1027–1042.

    PubMed  CAS  Google Scholar 

  • Brownell, A. G., Bessen, C. C, and Slavkin, H. C, 1981, Possible functions of mesenchyme cell-derived fibronectin on the formation of basal lamina, Proc. Natl. Acad. Sci. USA 178:3711–3725.

    Google Scholar 

  • Burgeson, R., 1982, Genetic heterogeneity of collagens, J. Invest. Dermatol. 79:25s–30s.

    PubMed  Google Scholar 

  • Burgeson, R., Adli, F., Kaitila, I., and Hollister, D., 1976, Fetal membrane collagens: Identification of two new collagen alpha chains, Proc. Natl. Acad. Sci. USA 73:2579–2583.

    PubMed  CAS  Google Scholar 

  • Carlin, B. R., Jaffe, R., Bender, B., and Chung, A., 1981, Entactin, a novel basal lamina associated sulfated glycoprotein, J. Biol. Chem. 256:5209–5214.

    PubMed  CAS  Google Scholar 

  • Chen, L. B., Murray, A., Segal, R. A., Bushnell, A., and Walsh, M., 1978, Studies on intracellular LETS glycoprotein matrices, Cell 14:377–391.

    PubMed  CAS  Google Scholar 

  • Chung, A. E., Rhodes, K., and Miller, E., 1976, Isolation of three collagenous components of probable basement membrane origin from several tissues, Biochem. Biophys. Res. Commun. 71:1167–1174.

    PubMed  CAS  Google Scholar 

  • Chung, A. E., Jaffe, R., Freeman, I. L., Vergnes, J.-P., Braguiski, J. E., and Carlin, B., 1979, Properties of a basement membrane related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived line, Cell 16:277–287.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., 1985, Cutaneous tissue repair: Basic biological considerations, J. Am. Acad. Dermatol. 13:701–725.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Dellapelle, P., Manseau, E., Lanigan, J., Dvorak, H., and Colvin, R., 1982a, Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing, J. Invest. Dermatol. 79:269–276.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Lanigan, J. M., Dellapelle, P., Manseau, E., Dvorak, H., and Colvin, R., 1982b, Fibronectin and fibrin provide a provisional matrix for epidermal-dermal cell migration during wound re-epithelialization, J. Invest. Dermatol. 79:264–269.

    PubMed  CAS  Google Scholar 

  • Clemmons, D. R., Van Wyk, J. J., and Pledger, W. J., 1980, Sequential addition of plotted factor and plasma to BALB/c 373 fibroblast cultures stimulates somatomedin-C binding in early cell cycle, Proc. Natl. Acad. Sci. USA 77:6644–6648.

    PubMed  CAS  Google Scholar 

  • Cotta-Pereira, G., Rodrigo, F., and Bittencourt-Sampaio, S., 1976, Oxytalan, elaunin and elastic fibers in the human skin, J. Invest. Dermatol. 66:143–148.

    PubMed  CAS  Google Scholar 

  • Cotta-Pereira, G., Kattenback, W., and Guerra-Rodrigo, F., 1979, Elastic-related fibers in basement membrane, Front. Matrix Biol. 7:90–100.

    Google Scholar 

  • Couchman, J., Gibson, W., Thorn, D., Weaver, A., Dees, D., and Parish, W., 1979, Fibronectin distribution in epithelial and associated tissues in the rat, Arch. Dermatol. Res. 266:295–310.

    PubMed  CAS  Google Scholar 

  • Croft, C. B., and Tarin, D., 1970, Ultrastructural studies of wound healing in mouse skin. I. Epithelial behavior, J. Anat. 106:63–77.

    PubMed  CAS  Google Scholar 

  • Crouch, E., Sage, H., and Bornstein, P., 1980, Structural basis for apparent heterogeneity of col-lagens in human basement membranes: Type IV procollagen contains two distinct chains, Proc. Natl. Acad. Sci. USA 77:745–749.

    PubMed  CAS  Google Scholar 

  • Culp, L. A., Murray, B. A., and Rollins, B. J., 1979, Fibronectin and proteoglycans as determinants of cell-substratum adhesion, J. Supramol. Struct. 11:401–427.

    PubMed  CAS  Google Scholar 

  • Daroczy, J., Feldman, J., and Kiraly, K., 1979, Human epidermal basal lamina: Its structure, connections and functions, Front. Matrix Biol. 7:208–234.

    Google Scholar 

  • Diaz, L. A., and Marcelo, C. L., 1978, Pemphigoid and pemphigus antigens in cultured epidermal cells, Br. J. Dermatol. 98:631–637.

    PubMed  CAS  Google Scholar 

  • Diaz, L., Calvanico, N., Tomasi, T., and Jordan, R., 1977, Bullous pemphigoid antigen: Isolation from normal human skin, J. Immunol. 118:455–460.

    PubMed  CAS  Google Scholar 

  • Dixit, S., Mainarda, D., Beachey, E., and Kang, A., 1983, 7S domains constitutes the amino terminal end of type IV collagen: An immunochemical study, Collagen Relat. Res. 3:263–269.

    CAS  Google Scholar 

  • Dodson, J. W., and Hay, E. D., 1971, Secretion of collagenous stroma by isolated epithelium grown, in vitro, Exp. Cell Res. 65:215–220.

    PubMed  CAS  Google Scholar 

  • Dodson, J. W., and Hay, E. D., 1974, Secretion of collagen by corneal epithelium. II. Effect of the underlying substratum on secretion and polymerizations of epithelial products, J. Exp. Zool. 189:51–72.

    PubMed  CAS  Google Scholar 

  • Engel, J., Odermatt, E., Engel, A., Madri, J., Furthmayr, H., Rohde, H., and Timpl, R., 1981, Shapes, domain organization and flexibility of lamini and fibronectin two multifunctional proteins of the extracellular matrix, J. Mol. Biol. 150:97–120.

    PubMed  CAS  Google Scholar 

  • Fessier, L. I., and Fessier, J. H., 1982, Identification of the carboxyl peptides of mouse procollagen IV and its implications for the assembly and structure of basement membrane procollagen, J. Biol. Chem. 257:9804–9810.

    Google Scholar 

  • Fine, J. D., Smith, L. T., Holbrook, K. A., and Katz, S. L, 1984, The appearance of four basement membrane zone antigens in developing human fetal skin, J. Invest. Dermatol. 83:66–69.

    PubMed  CAS  Google Scholar 

  • Fine, J. D., Redmer, D. A., and Goodman, A. L., 1985, Reappearance of seven basement membrane antigens in primate skin following split-thickness wound induction, J. Invest. Dermatol. 84:353 (abst).

    Google Scholar 

  • Fleischmajer, R., and Timpl, R., 1984, Ultrastructural localization of fibronectin to different anatomic structures of human skin, J. Histochem. Cytochem. 32:315–321.

    PubMed  CAS  Google Scholar 

  • Foidart, J., and Yaar, M., 1981, Type IV collagen, laminin and fibronectin at the dermoepidemal junction, Front. Matrix Biol. 9:175–188.

    CAS  Google Scholar 

  • Foidart, J. M., Bere, E. W., Yaar, M., Rennard, S. I., Qullino, M., Martin, G. R., and Katz, S. I., 1980, Distribution and immunoelectron microscopic localization of laminin, a non-collagenous basement membrane glycoprotein, Lab. Invest. 42:336–342.

    PubMed  CAS  Google Scholar 

  • Fuchs, E., and Green, H., 1981, Regulation of terminal differentiation of cultured human ker-atinocytes by vitamin A, Cell 25:617–625.

    PubMed  CAS  Google Scholar 

  • Fyrand, O., 1979, Studies on fibronectin in the skin, Br. J. Dermatol. 101:263–270.

    PubMed  CAS  Google Scholar 

  • Gay, S., Kresina, T., Gay, R., Miller, E., and Montes, L., 1979, Immunohistochemical demonstration of basement membrane collagen in normal skin and in psoriasis, J. Cutan. Pathol. 6:91–95.

    PubMed  CAS  Google Scholar 

  • Gay, S., Martinez-Hernandez, A., Rhodes, R. K., and Miller, E. J., 1981, The collagenous ex-ocytoskeleton of smooth muscle cells, Collagen Relat. Res. 1:377–384.

    CAS  Google Scholar 

  • Gilchrest, B. A., Nemore, R. E., and Maciag, T., 1980, Growth of human keratinocytes on fibronectin coated plates, Cell Biol. Int. Rep. 4:1009–1016.

    PubMed  CAS  Google Scholar 

  • Gilchrest, B. A., Alhoun, J. K., and Maciag, T., 1982, Attachment and growth of human ker-atinocytes in a serum-free environment, J. Cell Physiol. 112:197–206.

    PubMed  CAS  Google Scholar 

  • Gipson, I. K., Grill, S. M., Spun, S. J., and Brennan, S. J., 1983, Hemidesmosome formation in vitro, J. Cell Biol. 97:849–857.

    PubMed  CAS  Google Scholar 

  • Goldsmith, L. A., and Briggaman, R. A., 1982, Monoclonal antibodies to normal and abnormal epithelial antigens, in: Normal and Abnormal Epidermal Differentiation (M. Seiji and I. Bernstein, eds.), pp. 1–23, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Goldsmith, L. A., and Briggaman, R. A., 1983, Monoclonal antibodies to anchoring fibrils for the diagnosis of epidermolysis bullosa, J. Invest. Dermatol. 81:464–466.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., 1983, The control of mammalian cell proliferation by growth factors, basement lamina and lipoproteins, J. Invest. Dermatol. 81:40s–49s.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Greenburg, G., and Birdwell, G. R., 1978, Determination of cellular shape by extracellular matrix and its correlation with the control of cellular growth, Cancer Res. 38:4155–4171.

    PubMed  CAS  Google Scholar 

  • Grinnell, F., 1983, The role of fibronectin in the bioreactivity of material surfaces, in: Biocompati-ble Polymers, Metals and Composites, (M. Szycher, ed.), pp. 673–699, Technomic Publishing Co., Lancaster, Pennsylvania.

    Google Scholar 

  • Hassell, R. J., Gehron-Robey, P., Barrach, H. J., Wilczek, J., Rennard, S. I., and Martin, G. R., 1980, Isolation of a heparan sulfate containing proteoglycan from basement membrane, Proc. Natl. Acad. Sci. USA 77:4494–4498.

    PubMed  CAS  Google Scholar 

  • Hay, E. D., 1982, Collagen and embryonic development, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 379–409, Plenum, New York.

    Google Scholar 

  • Hay, E. D., and Dobson, J. W., 1973, Secretion of collagen by corneal epithelium. I. Morphology of the collagenous products produced by isolated epithelia grown on frozen-killed lens, J. Cell Biol. 57:190–213.

    PubMed  CAS  Google Scholar 

  • Hintner, H., Fritsch, P. O., Foidart, J. M., Stingl, G., Schuler, G., and Katz, S., 1980, Expression of basement membrane zone antigens at the dermo-epibolic junction in organ culture of human skin, J. Invest. Dermatol. 74:200–205.

    PubMed  CAS  Google Scholar 

  • Hirone, T., and Taniguchi, S., 1979, Basal lamina formation by epidermal cells in culture, in: Biochemistry of Normal and Abnormal Epidermal Differentiation (I. Bernstein and M. Seiji, eds.), pp. 159–169, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Holubar, K., Wolff, K., Konrad, K., and Beutner, E. H., 1975, Ultrastructure localization of immu-noglobulins in bullous pemphigoid skin, J. Invest. Dermatol. 64:220–227.

    PubMed  CAS  Google Scholar 

  • Hynes, R. O., 1982, Fibronectin and its relation to cellular structure and behavior, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 295–334, Plenum, New York.

    Google Scholar 

  • Hynes, R. O., and Yamada, K. M., 1982, Fibronectins: Multifunctional modular glycoproteins, J. Cell Biol. 95:369–377.

    PubMed  CAS  Google Scholar 

  • Kanwar, Y. S., and Farquhar, M. D., 1979, Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes, Proc. Natl. Acad. Sci. USA 76:4493–4497.

    PubMed  CAS  Google Scholar 

  • Kanwar, Y. S., Hascall, V. C, and Farquhar, M. G., 1981, Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane, J. Cell Biol. 90:527–533.

    PubMed  CAS  Google Scholar 

  • Katz, S. I., 1984, The epidermal basement membrane zone—Structure, ontogeny, and role in disease. J. Am. Acad. Dermatol. 11:1025–1037.

    PubMed  CAS  Google Scholar 

  • Kleinman, H. K., Klebe, R. J., and Martin, G. R., 1981, Role of collagenous matrices in the adhesion and growth of cells, J. Cell Biol. 88:473–485.

    PubMed  CAS  Google Scholar 

  • Kobayasi, T., 1977, Anchoring of basal lamina to elastic fibers by elastic fibrils, J. Invest. Dermatol. 68:389–390.

    PubMed  CAS  Google Scholar 

  • Krawczyk, W. S., and Wilgram, G., 1973, Hemidesmosome and desmosome morphogenesis during epidermal wound healing, J. Ultrastruct. Res. 45:93–101.

    PubMed  CAS  Google Scholar 

  • Kubo, M., Norris, D. A., Howell, S. E., Ryan, S. R., and Clark, R. A. F., 1984, Human keratinocytes synthesize, secrete and deposit fibronectin in the pericellular matrix, J. Invest. Dermatol. 82:580–586.

    PubMed  CAS  Google Scholar 

  • Kuhn, K., Weidemann, H., Timpl, R., Risteli, J., Dieringer, H., Voss, T., and Glanville, R. W., 1981, Macromolecular structure of basement membrane collagens identification of 7S collagen as a crosslinking domain of type V collagen, FEBS Lett. 125:123–238.

    PubMed  CAS  Google Scholar 

  • Kurkinen, M., Vaheri, A., Roberts, P. J., and Stenman, S., 1980, Sequential appearance of fibronec-tin and collagen in experimental granulation tissue, Lab. Invest. 43:47–51.

    PubMed  CAS  Google Scholar 

  • Laurie, G. W., LeBlond, C, and Martin, G., 1982, Localization of type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin to the basal lamina of basement membrane, J. Cell Biol. 95:340–344.

    PubMed  CAS  Google Scholar 

  • Lavker, R., and Sun, T.-T., 1982, Heterogeneity in epidermal basal keratinocytes: Morphological and functional correlations, Science 215:1239–1241.

    PubMed  CAS  Google Scholar 

  • Linsenmayer, T. F., Smith, G. N., and Hay, E. D., 1977, Synthesis of two collagen types by embryonic chick corneal epithelium in vitro, Proc. Natl. Acad. Sci. USA 74:39–43.

    PubMed  CAS  Google Scholar 

  • Maciag, T., Nemore, R. E., Weinstein, R., and Gilchrest, B. A., 1981, An endocrine approach to control of epidermal growth: Serum free cultivation of human keratinocytes, Sciene 211:1452–1454.

    CAS  Google Scholar 

  • Madri, J. A., and Furthmayr, H., 1979, Isolation and tissue localization of type B2 collagen from normal lung parenchyma, Am. J. Pathol. 94:323–330.

    PubMed  CAS  Google Scholar 

  • Madri, J. A., Roll, J., Furthmayr, H., and Foidart, J. M., 1980a, Ultrastructural localization of fibronectin and laminin in the basement membrane of the murine kidney, J. Cell Biol. 86:682–687.

    PubMed  CAS  Google Scholar 

  • Madri, J. A., Dreyer, B., Pitlick, F. A., and Furthmayr, H., 1980b, The collagenous components of the subendothelium, Lab Invest. 43:303–315.

    PubMed  CAS  Google Scholar 

  • Malinoff, H., and Wicha, M. S., 1983, Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells, J. Cell Biol. 96:1475–1479.

    PubMed  CAS  Google Scholar 

  • Manabe, M., and Ogawa, H., 1985, Ultrastructural demonstration of anionic sites in basement membrane zone by cationic probes, J. Invest. Dermatol. 84:19–21.

    PubMed  CAS  Google Scholar 

  • Mann, P., and Constable, H., 1977, Induction of basal lamina formation in epidermal cell cultures in vitro, Br. J. Dermatol. 96:421–426.

    PubMed  CAS  Google Scholar 

  • Marks, R., Abell, E., and Nishikawa, T., 1975, The junctional zone beneath migrating epidermis, Br. J. Dermatol. 92:311–319.

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez, A., Marsh, C, Clark, C, Macarak, E., and Brownell, A., 1981, Fibronectin: Its relationship to basement membranes. IL Ultrastructural studies in rat kidney, Collagen Relat. Res. 1:405–418.

    CAS  Google Scholar 

  • McDonald, J. A., Kelley, D. G., and Broekelmann, T. J., 1982, Role of fibronectin in collagen deposition: Fab1 antibodies to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix, J. Cell Biol. 92:485–492.

    PubMed  CAS  Google Scholar 

  • Meier, S., and Hay, E. D., 1973, Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium, Dev. Biol. 35:318–331.

    PubMed  CAS  Google Scholar 

  • Meier, S., and Hay, E. D., 1974, Stimulation of extracellular matrix synthesis in developing cornea by glycosaminoglycans, Proc. Natl. Acad. Sci. USA 71:2310–231.

    PubMed  CAS  Google Scholar 

  • Mosher, D. F., and Furcht, L., 1981, Fibronectin: Review of its structure and possible functions, J. Invest. Determatol. 77:175–180.

    CAS  Google Scholar 

  • Mueller, H., and Franke, W. W., 1983, Biochemical and immunological characterization of desmo-plakins I and II, the major polypeptides of the desmosomal plaque, J. Mol. Biol. 163:645–671.

    Google Scholar 

  • Muller, H. K., Kalnins, R., and Sutherland, R., 1973, Ontogeny of pemphigus and bullous pemphi-goid antigens in human skin, Br. J. Dermatol. 88:443–446.

    PubMed  CAS  Google Scholar 

  • Mutasim, D. F., Takahashi, Y., Labib, R. S., Anhalb, G. J., Patel, H. P., and Diaz, L. A., 1985, A pool of bullous pemphigoid antigen(s) is intracellular and associated with the basal cell cytoskele-ton-hemidesmosome complex, J. Invest. Dermatol. 84:47–53.

    PubMed  CAS  Google Scholar 

  • Nieboer, C, Boorsma, D. M., Woerdeman, M. J., and Kalsbeek, G. L., 1980, Epidermolysis bullosa acquisita: Immunofluorescence, electron microscopic and immunoelectron microscopic studies in four patients, Br. J. Dermatol. 102:383–392.

    PubMed  CAS  Google Scholar 

  • ödland, G., and Ross, R., 1968, Human wound repair. I. Epidermal regeneration, J. Cell Biol. 39:135–151.

    PubMed  Google Scholar 

  • O’Keefe, E. J., Woodley, D. T., Castillo, G., Russell, N., and Payne, R., 1984, Production of soluble and cell-associated fibronectin in cultured keratinocytes, J. Invest. Dermatol. 82:150–155.

    PubMed  Google Scholar 

  • O’Keefe, E. J., Payne, R. E., Russell, N., and Woodley, D. T., 1985, Spreading and enhanced motility of human keratinocytes on fibronectin, J. Invest. Dermatol. 85:125–130.

    PubMed  Google Scholar 

  • Oohira, A., Wight, T., McPherson, J., and Bornstein, P., 1982, Biochemical and ultrastructural studies of proteoheparan sulfates synthesized by PYS-Z, a basement membrane producing cell line, J. Cell Biol. 92:357–367.

    PubMed  CAS  Google Scholar 

  • Pearlstein, E., Gold, L., and Garcia-Pardo, A., 1980, Fibronectin: A review of its structure and biological activity, Mol. Cell Biochem. 29:103–128.

    PubMed  CAS  Google Scholar 

  • Prunieras, M., Régnier, M., and Schlotterer, M., 1979, Nouveau procédé de culture des cellules épidermiques humaine sur derme homologue ou hétérologue: Préparation de greflons recombinés, Ann. Chir. Plast. Esthet. 24:357–362.

    CAS  Google Scholar 

  • Prunieras, M., Régnier, M., Fougère, S., and Woodley, D., 1983a, Keratinocytes synthesize basal lamina proteins in culture, J. Invest. Dermatol. 81:74s–81s.

    PubMed  CAS  Google Scholar 

  • Prunieras, M., Régnier, M., and Woodley, D., 1983b, Methods for cultivation of keratinocytes with air-liquid interface, J. Invest. Dermatol. 81:28s–33s.

    PubMed  CAS  Google Scholar 

  • Rao, C. N., Margulies, I., Tralka, T., Terranova, V., Madri, J., and Liotta, L., 1982, Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257:9740–9744.

    PubMed  CAS  Google Scholar 

  • Régnier, M., Prunieras, M., and Woodley, D., 1981, Growth and differentiation of adult human epidermal cells on dermal substrates, Front. Matrix Biol. 9:4–35.

    Google Scholar 

  • Régnier, M., Voigot, P., Michel, S., Prunieras, M., 1985, Localization of bullous pemphigoid antigen in isolated human keratinocytes, J. Invest. Dermatol. 85:187–190.

    PubMed  Google Scholar 

  • Repesh, L. A., Fitzgerla, T. J., and Furcht, L. T., 1982, Fibronectin involvement in granulation tissue and wound healing in rabbits, J. Histochem. Cytochem. 30:351–358.

    PubMed  CAS  Google Scholar 

  • Rhodes, R., and Miller, E., 1978, Physiochemical characterization and molecular organization of collagen A and B chains, Biochemistry 17:3442–3448.

    PubMed  CAS  Google Scholar 

  • Risteli, J., Bachinger, H., Engel, J., Furthmayr, H., and Timpl, R., 1980, 7S collagen characterization of an unusual basement membrane structure, Eur. J. Biochem. 108:239–250.

    PubMed  CAS  Google Scholar 

  • Roll, J., Madri, J. A., Albert, J., and Furthmayr, H., 1980, Codistribution of collagen types IV and AB2 in basement membranes and mesangium of the kidney, J. Cell Biol. 85:597–616.

    PubMed  CAS  Google Scholar 

  • Ruoslahti, E., Engvall, E., and Hayman, E. G., 1981, Fibronectin: Current concepts of its structure and function, Collagen Relat. Res. 1:95–128.

    CAS  Google Scholar 

  • Sage, H., and Bornstein, P., 1979, Characterization of a novel collagen chain in human placenta and its relation to AB collagen, Biochemistry 18:3815–3822.

    PubMed  CAS  Google Scholar 

  • Salomon, D. S., Liotta, L. A., and Kidwell, W. R., 1981, Differential growth factor responsiveness of rat mammary epithelial plate on different collagen substrate in serum-free medium, Proc. Natl. Acad. Sci. USA 176:382–386.

    Google Scholar 

  • Sakai, L., Keene, D. R., Morris, N. P., and Burgeson, R. F., 1986, Type VII collagen is a major structural component of anchoring fibrils, J. Cell Biol. 103:1577–1586.

    PubMed  CAS  Google Scholar 

  • Sarkany, I., and Gaylarde, P., 1970, Ultrastructural changes in human skin maintained in organ culture, Br. J. Dermatol. 83:572–581.

    PubMed  CAS  Google Scholar 

  • Schaumburg-Lever, G., Rule, R. A., Schmidt-Ullrich, B., and Lever, W. F., 1975, Ultrastructural localization of in vivo bound immunoglobulins in bullous pemphigoid: A preliminary report, J. Invest. Dermatol. 64:47–49.

    PubMed  CAS  Google Scholar 

  • Schuppan, D., Timpl, R., and Granville, R., 1980, Discontinuities in the triple helical sequences Gly-X-Y of basement membrane (type IV) collagen, FEBS Lett. 115:297–300.

    PubMed  CAS  Google Scholar 

  • Stanley, J. R., Foidart, J. M., Murray, J. C, Martin, G. R., and Katz, S. I., 1980, The epidermal cell which selectively adheres to a collagen substrate is the basal cell, J. Invest. Dermatol. 74:54–58.

    PubMed  CAS  Google Scholar 

  • Stanley, J. R., Alvarez, O. M., Bere, E. W., Eaglstein, W., and Katz, S., 1981a, Detection of basement membrane antigens during epidermal wound healing, J. Invest. Dermatol. 77:240–243.

    PubMed  CAS  Google Scholar 

  • Stanley, J. R., Hawley-Nelson, P., Yuspa, S. H., Shevach, E., and Katz, S., 1981b, Characterization of bullous pemphigoid antigen: A unique basement membrane protein of stratified squamous epithelia, Cell 24:897–903.

    PubMed  CAS  Google Scholar 

  • Stanley, J., Woodley, D., Katz, S., and Martin, G., 1982a, Structure and function of basement membrane, J. Invest. Dermatol. (Suppl.) 79:69s–72s.

    PubMed  Google Scholar 

  • Stanley, J. R., Beckwith, J. B., Fuller, R. P., and Katz, S. L, 1982b, A specific antigenic defect of the basement membrane is found in basal cell carcinoma but not in other epidermal tumors, Cancer 50:1486–1490.

    PubMed  CAS  Google Scholar 

  • Stanley, J. R., Hawley-Nelson, P., Yaar, M., Martin, G. R., and Katz, S. L, 1982c, Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells, J. Invest. Dermatol. 78:456–459.

    PubMed  CAS  Google Scholar 

  • Stenman, S., and Vaheri, A., 1978, Distribution of a major connective tissue protein, fibronectin in normal tissue, J. Exp. Med. 147:1054–1064.

    PubMed  CAS  Google Scholar 

  • Stenn, K. S., Madri, J. A., and Roll, F. J., 1979, Migrating epidermis produces AB2 collagen and requires continued collagen synthesis for movement, Nature (Lond.) 277:229–232.

    CAS  Google Scholar 

  • Sugrue, S. P., and Hay, E. D., 1981, Response of basal epithelial cell surface and cytoskeleton to solubilize extracellular matrix molecules, J. Cell Biol. 91:45–54.

    PubMed  CAS  Google Scholar 

  • Taniguchi, S., and Hirone, T., 1982, Synthesis of basal lamina by epidermal cells in vitro, in: Normal and Abnormal Epidermal Differentiation (M. Seiji and I. Bernstein, eds.), pp. 127–133, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Terranova, V. P., Rohrbach, D. H., and Martin, G. R., 1980, Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen, Cell 22:719–729.

    PubMed  CAS  Google Scholar 

  • Terranova, V., Rao, C., Kalebic, T., Margulies, I., and Liotta, L., 1983, Laminin receptor on human breast carcinoma cells, Proc. Natl. Acad. Sci. USA 80:444–448.

    PubMed  CAS  Google Scholar 

  • Timpl, R., Rhode, H., Gehron Robey, P., Rennard, S. L, Foidart, J. M., and Martin, G. R., 1979a, Laminin—A glycoprotein from basement membranes, J. Biol. Chem. 254:9933–9937.

    PubMed  CAS  Google Scholar 

  • Timpl, R., Risteli, J., and Bachinger, H., 1979b, Identification of a new basement membrane collagen by the aid of a large fragment resistant to bacterial collagenase, FEBS Lett. 101:265–268.

    PubMed  CAS  Google Scholar 

  • Timpl, R., Granville, R., Wick, G., and Martin, G., 1979c, Immunochemical study on basement membrane (type IV) collagen, Immunology 38:109–116.

    PubMed  CAS  Google Scholar 

  • Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H., and Kuhn, K., 1981, A network model for the organization of type IV collagen molecules in basement membranes, Eur. J. Biochem. 120:203–211.

    PubMed  CAS  Google Scholar 

  • Timpl, R., Dziadek, M., Fujiwara, S., Nowack, H., and Wick, G., 1983a, Nidogen: A new self-aggregating basement membrane protein, Eur. J. Biochem. 139:401–410.

    Google Scholar 

  • Timpl, R., Engel, J., and Martin, G., 1983b, Laminin—A multifunctional protein of basement membranes, Trends Biol. Sci. 8:207–209.

    CAS  Google Scholar 

  • Toole, B. P., 1983, Glycosaminoglycans in morphogenesis, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 259–294, Plenum, New York.

    Google Scholar 

  • Toole, B. P., and Trelstad, R. L., 1971, Hyaluronate production and removal during corneal development in the chick, Dev. Biol. 26:28–35.

    PubMed  CAS  Google Scholar 

  • Trinkaus-Randall, V., and Gipson, I., 1984, Role of calcium and calmodulin in hemidesmosome formation in vitro, J. Cell Biol. 98:1565–1571.

    PubMed  CAS  Google Scholar 

  • Wessells, N. K., 1977a, Extracellular materials and tissue interactions, in: Tissue Interactions and Development (N. K. Wessells, ed.), pp. 213–229, Benjamin-Cummings, Menlo Park, California.

    Google Scholar 

  • Wessells, N. K., 1977b, Cell surface and development, in: Tissue Interactions and Development (N. K. Wessells, ed.), pp. 181–196, Benjamin-Cummings, Menlo Park, California.

    Google Scholar 

  • Westgate, G. E., Weaver, A. C, and Couchman, J. R., 1985, Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes, J. Invest. Dermatol. 84:218–224.

    PubMed  CAS  Google Scholar 

  • Wood, G. C, 1960, The formation of fibrils from collagen solutions. Effect of chondroitin sulfate and other naturally occurring polyanions on the rate of formation, Biochem. J. 75:605–612.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., and Régnier, M., 1979, Bullous pemphigoid antigen deposited on a millipore filter, Arch. Dermatol. Res. 266:319–322.

    PubMed  CAS  Google Scholar 

  • Woodley, D., Didierjean, L., Régnier, M., Saurat, J., and Prunieras, M., 1980a, Bullous pemphigoid antigen synthesized in vitro by human epidermal cells, J. Invest. Dermatol. 75:148–151.

    PubMed  CAS  Google Scholar 

  • Woodley, D., Régnier, M., and Prunieras, M., 1980b, In vitro basal lamina formation may require non-epidermal cell living substrate, Br. J. Dermatol. 103:397–404.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., Saurat, J. H., Prunieras, M., and Régnier, M., 1982, Pemphigoid, pemphigus and Prantigens in adult human keratinocytes grown on nonviable substrates, J. Invest. Dermatol. 79:23–29.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., Rao, D. N., Hassell, J. R., Liotta, L., Martin, G., and Kleinman, H., 1983, Interactions of basement membrane components, Biochim. Biophys. Acta 761:278–283.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., Briggaman, R., O’Keefe, E., Inman, A., Queen, L., and Gammon, W. R., 1984, Identifications of epidermolysis bullosa acquisita antigen—A normal component of human skin basement membrane, N. Engl. J. Med. 310:1007–1013.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., O’Keefe, E. J., and Prunieras, M., 1985a, Cutaneous wound healing: A model for cell-matrix interactions, J. Am. Acad. Dermatol. 12:420–433.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., Briggaman, R. A., Gammon, W. R., and O’Keefe, E. J., 1985b, Epidermolysis bullosa acquisita antigen is synthesized by human keratinocytes cultured in serum-free medium, Biochem. Biophys. Bes. Commun. 130:1267–1272.

    CAS  Google Scholar 

  • Yamada, K. M., 1982, Fibronectin and other structural proteins, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 95–115, Plenum, New York.

    Google Scholar 

  • Yamada, K., and Olden, K., 1978, Fibronectins—Adhesive glycoproteins of cell surface and blood, Nature (Lond.) 275:179–184.

    CAS  Google Scholar 

  • Yamasaki, Y., and Nishikawa, T., 1983, Ultrastructural localization of in vitro binding sites of circulating antibasement membrane zone antibodies in bullous pemphigoid, Acta Derm. Vene-reol. (Stockh.) 63:501–596.

    CAS  Google Scholar 

  • Yaoita, H., Foidart, J. M., and Katz, S. I., 1978, Localization of the collagenous component in skin basement membrane, J. Invest. Dermatol. 70:191–193.

    PubMed  CAS  Google Scholar 

  • Yaoita, H., Briggaman, R. A., Lawley, T. J., Provost, T. T., and Katz, S. I., 1981, Epidermolysis bullosa acquisita: Ultrastructural and immunological studies, J. Invest. Dermatol. 76:288–292.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woodley, D.T., Briggaman, R.A. (1988). Re-formation of the Epidermal—Dermal Junction during Wound Healing. In: Clark, R.A.F., Henson, P.M. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1795-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1795-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5725-4

  • Online ISBN: 978-1-4615-1795-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics