Skip to main content

The Biology of the Myofibroblast Relationship to Wound Contraction and Fibrocontractive Diseases

  • Chapter
The Molecular and Cellular Biology of Wound Repair

Abstract

The process of wound repair is of vital importance for animals as well as for plants (Shigo, 1985), since a wound perturbs body homeostasis and may result in infection by microorganisms. A wound may occur without or with tissue loss (Robbins et al, 1984). In both cases, but more clearly in the second case, wound healing consists schematically of acute inflammation followed by formation of granulation tissue, a transitional tissue able to retract the wound space, and finally scar formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M., Flint, M. H., and James, D. W., 1956, Wound contraction in relation to collagen formation in scorbutic guinea pigs, J. Embryol. Exp. Morphol. 4:167–175.

    Google Scholar 

  • Adler, K. B., Craighead, J. E., Vallyathan, N. V., and Evans, J. N., 1981, Actin-containing cells in human pulmonary fibrosis, Am. J. Pathol. 102:427–437.

    PubMed  CAS  Google Scholar 

  • Allgöwer, M., 1956, The Cellular Basis of Wound Repair, Charles C Thomas, Springfield, Illinois.

    Google Scholar 

  • Arey, L. B., 1936, Wound healing, Physiol. Rev. 16:327–406.

    Google Scholar 

  • Ariyan, S., Enriquez, R., and Krizek, T. J., 1978, Wound contraction and fibrocontractive disorders, Arch. Surg. 113:1034–1046.

    PubMed  CAS  Google Scholar 

  • Azzarone, B., Failly-Crepin, C., Daya-Grosjean, L., Chaponnier, C., and Gabbiani, G., 1983, Abnormal behavior of cultured fibroblasts from nodule and nonaffected aponeurosis of Dupuytren’s disease, J. Cell Physiol. 117:353–361.

    PubMed  CAS  Google Scholar 

  • Balazs, M., and Kovacs, A., 1982, The “transitional” mucosa adjacent to large bowel carcinoma Electron microscopic features and myofibroblast reaction, Histopathology 6:617–629.

    PubMed  CAS  Google Scholar 

  • Baur, P. S., Larson, D. L., and Stacey, T. R., 1975, The observation of myofibroblasts in hypertrophic scars, Surg. Gynecol. Ohstet. 141:22–26.

    CAS  Google Scholar 

  • Baur, P. S., Parks, D. H., and Hudson, J. D., 1984, Epithelial mediated wound contraction in experimental wounds The purse-string effect, J. Trauma 24:713–720.

    PubMed  Google Scholar 

  • Beertsen, W., 1975, Migration of fibroblasts in the periodontal ligament of the mouse incisor as revealed by autoradiography, Arch. Orai Biol. 20:659–666.

    CAS  Google Scholar 

  • Beertsen, W., Events, V., and van den Hoof, A., 1974, Fine structure of fibroblasts in the periodontal ligament of the rat incisor and their possible role in tooth eruption, Arch. Oral Biol. 19:1087–1098.

    PubMed  CAS  Google Scholar 

  • Bell, E., Ivarsson, B., and Merrill, C., 1979, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. USA 76:1274–1278.

    PubMed  CAS  Google Scholar 

  • Bell, E., Ehrlich, H. P., Buttle, D. J., and Nakatsuji, T., 1981, Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness, Science 211:1052–1054.

    PubMed  CAS  Google Scholar 

  • Bellows, C. G., Melcher, A. H., and Aubin, J. E., 1981, Contraction and organization of collagen gels by cells cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types, J. Cell Sci. 50:299–314.

    PubMed  CAS  Google Scholar 

  • Bellows, C. G., Melcher, A. H., Bhargava, U., and Aubin, J. E., 1982, Fibroblasts contracting three dimensional collagen gels exhibit ultrastructure consistent with either contraction or protein secretion, J. Ultrastruct. Res. 78:178–192.

    PubMed  CAS  Google Scholar 

  • Benjamin, S. P., Mercer, R. D., and Hawk, W. A., 1977, Myofibroblastic contraction in spontaneous regression of multiple congenital mesenchymal hamartomas, Cancer 40:2343–2352.

    PubMed  CAS  Google Scholar 

  • Bhatal, P. S., 1972, Presence of modified fibroblasts in cirrhotic livers in man, Pathology 4:139–144.

    Google Scholar 

  • Bhawan, J., Bacchetta, C., Joris, I., and Magno, G., 1979, A myofibroblastic tumor. Infantile digital fibroma (recurrent digital fibrous tumor of childhood), Am. J. Pathol. 94:19–36.

    PubMed  CAS  Google Scholar 

  • Billingham, R. E., and Russel, P. S., 1956, Studies on wound healing, with special reference to the phenomenon of contracture in experimental wounds in rabbits’ skin, Ann. Surg. 144:961–981.

    PubMed  CAS  Google Scholar 

  • Blewitt, R. W., Aparicio, S. G. R., and Bird, C. C., 1983, Epithelioid sarcoma: A tumor of myo-fibroblasts, Histopathology 7:573–584.

    PubMed  CAS  Google Scholar 

  • Block, M., 1960, Wound healing in the new-born opossum (DideJphis virginianum), Nature (Lond.) 187:340–341.

    CAS  Google Scholar 

  • Bloom, S., and Cancilla, P. A., 1969, Conformational changes in myocardial nuclei of rats, Circ. Res. 24:189–196.

    PubMed  CAS  Google Scholar 

  • Bressler, R. S., 1973, Myoid cells in the capsule of the adrenal gland and in monolayers derived from cultured adrenal capsules, Anat. Rec. 177:525–531.

    PubMed  CAS  Google Scholar 

  • Buckley, I. K., and Porter, K. R., 1967, Cytoplasmic fibrils in living cultured cells. A light and electron microscope study, Protoplasma 64:349–380.

    PubMed  CAS  Google Scholar 

  • Burridge, K., 1981, Are stress fibers contractile?, Nature (Lond.) 294:691–692.

    CAS  Google Scholar 

  • Burrington, J. D., 1971, Wound healing in the fetal lamb, J. Pediatr. Surg. 6:523–528.

    PubMed  CAS  Google Scholar 

  • Buttle, D. J., and Ehrlich, H. P., 1983, Comparative studies of collagen lattice contraction utilizing a normal and a transformed cell line, J. Cell Physiol. 116:159–166.

    PubMed  CAS  Google Scholar 

  • Callea, F., Mebis, J., and Desmet, V. J.. 1982, Myofibroblasts in focal nodular hyperplasia of the liver, Virchows Arch. [A] 396:155–166.

    CAS  Google Scholar 

  • Caplan, A. I., Fiszman, M. Y., and Eppenberger, H. M., 1983, Molecular and cell isoforms during development, Science 221:921–927.

    PubMed  CAS  Google Scholar 

  • Carrel, A., and Hartmann, A., 1916, Cicatrization of wounds. I. The relation between the size of a wound and the rate of its cicatrization, J. Exp. Med. 24:429–450.

    PubMed  CAS  Google Scholar 

  • Chamley-Campbell, J., Campbell, G. R., and Ross, R., 1979, The smooth muscle cell in culture, Physiol. Rev. 59:1–61.

    PubMed  CAS  Google Scholar 

  • Chiu, H. F., and McFarlane, R. M., 1978, Pathogenesis of Dupuytren’s contracture: A correlative clinical-pathological study, J. Hand Surg. 3:1–10.

    CAS  Google Scholar 

  • Churg, A. M., and Kahn, L. B., 1977, Myofibroblasts and related cells in malignant fibrous and fibrohistiocytic tumors, Hum. Pathol. 8:205–218.

    PubMed  CAS  Google Scholar 

  • Cohnheim, J., 1867, Ueber entz und Eiterung, Virchows Arch. [A] 40:1–79.

    Google Scholar 

  • Crocker, D. J., Murad, T. M., and Geer, J. C., 1970, Role of the pericyte in wound healing. An ultrastructural study, Exp. Mol. Pathol. 13:51–65.

    PubMed  CAS  Google Scholar 

  • D’Andiran, G., and Gabbiani, G., 1980, A metastasizing sarcoma of the pleura composed of myofibroblasts, in: Progress in Surgical Pathology, Vol. II (C. M. Fenoglio and M. Wolff, eds.), pp. 31–40, Masson, New York.

    Google Scholar 

  • Dixon, J. B., 1960, Inflammation in the fetal and neonatal rat: the local reactions to skin burns, J. Pathol. Bact. 80:73–82.

    CAS  Google Scholar 

  • Donati, M. B., Balconi, G., Remuzzi, G., Borgia, R., Morasca, L., and de Gaetano, G., 1977, Skin fibroblasts from a patient with Glanzmann’s thrombasthenia do not induce fibrin clot retraction, Thromb. Res. 10:173–174.

    PubMed  CAS  Google Scholar 

  • Donoff, R. B., and Grillo, H. C., 1975, The effects of skin grafting on healing open wound in rabbits, J. Surg. Res. 19:163–167.

    PubMed  CAS  Google Scholar 

  • Du Noüy, P. L., 1916a, Cicatrization of wounds. II. Mathematical expression of the curve representing cicatrization, J. Exp. Med. 24:451–460.

    PubMed  Google Scholar 

  • Du Noüy, P. L., 1916b, Cicatrization of wounds. III. The relation between the age of the patient, the area of the wound and the index of cicatrization, J. Exp. Med. 24:461–470.

    PubMed  Google Scholar 

  • Du No L., 1919, Cicatrization of wounds. X. A general equation for the law of cicatrization of surface wounds, J. Exp. Med. 29:329–350.

    Google Scholar 

  • Dunphy, J. E., Udapa, K. N., and Edwards, L. C., 1956, Wound healing: A new perspective with particular reference to ascorbic acid deficiency, Ann. Surg. 144:304–317.

    PubMed  CAS  Google Scholar 

  • Dustin, P., 1978, Microtubules, Springer-Verlag, Berlin.

    Google Scholar 

  • Ehrlich, H. P., and Hembry, R. M., 1984, A comparative study of fibroblasts in healing freeze and burn injuries in rats, Am. J. Pathol. 117:218–224.

    PubMed  CAS  Google Scholar 

  • Ehrlich, H. P., and White, M. E., 1983, Effects of increased concentrations of prostaglandin E levels with epidermolysis bullosa dystrophica recessive fibroblasts within a populated collagen lattice, J. Invest. Dermatol. 81:572–573.

    PubMed  CAS  Google Scholar 

  • Ehrlich, H. P., and Wyler, D. J., 1983, Fibroblast contraction of collagen lattices in vitro: Inhibition by chronic inflammatory cell mediators, J. Cell Physiol. 116:345–351.

    PubMed  CAS  Google Scholar 

  • Ehrlich, H. P., Grislis, G., and Hunt, T. K., 1977, Evidence for the involvement of microtubules in wound contraction, Am. J. Surg. 133:706–709.

    PubMed  CAS  Google Scholar 

  • El-Labban, N., and Lee, K. W., 1983, Myofibroblasts in central giant cell granuloma of the jaws: An ultrastructural study, Histopathology 7:907–918.

    PubMed  CAS  Google Scholar 

  • Evans, J. N., Kelley, J., Low, R. B., and Adler, K. B., 1982, Increased contractility of isolated lung parenchyma in an animal model of pulmonary fibrosis induced by bleomycin, Am. Rev. Respir. Dis. 125:89–94.

    PubMed  CAS  Google Scholar 

  • Feiner, H., and Kaye, G. L, 1976, Ultrastructural evidence of myofibroblasts in circumscribed fibromatosis, Arch. Pathol. Lab. Med. 100:265–268.

    PubMed  CAS  Google Scholar 

  • Fisher, E. R., Paulson, J. D., and Gregorio, R. M., 1978, The myofibroblastic nature of the uterine plexiform tumor, Arch. Pathol. Lab. Med. 102:477–480.

    PubMed  CAS  Google Scholar 

  • Franke, W. W., and Schinko, W., 1969, Nuclear shape in muscle cells, J. Cell Biol. 42:326–331.

    PubMed  CAS  Google Scholar 

  • Fujiwara, K., and Pollard, T. D., 1976, Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells, J. Cell Biol. 71:848–875.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., and Kocher, O., 1983, Cytocontractile and cytoskeletal elements in pathological processes. Pathogenetic role and diagnostic value, Arch. Pathol. Lab. Med. 107:622–625.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., and Majno, G., 1972, Dupuytren’s contracture: Fibroblast contraction? An ultrastructural study, Am. J. Pathol. 66:131–146.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., and Rungger-Brändle, E., 1981, The fibroblast, in: Handbook of Inflammation: Tissue Repair and Regeneration, Vol. 3 (L. E. Glynn, ed.), pp. 1–50, Elsevier/North-Holland Bio-medical Press, Amsterdam.

    Google Scholar 

  • Gabbiani, G., Ryan, G. B., and Majno, G., 1971a, Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction, Experientia 27:549–550.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Kaye, G. L, Lattes, R., and Majno, G., 1971b, Synovial sarcoma. Electron microscopic study of a typical case, Cancer 28:1031–1039.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972a, Granulation tissue as a contractile organ. A study of structure and function, J. Exp. Med. 135:719–734.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Fu, Y. S., Kaye, G. L, Lattes, R., and Majno, G., 1972b, Epithelioid sarcoma. A light and electron microscopic study suggesting a synovial origin, Cancer 30:486–499.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Majno, G., and Ryan, G. B., 1973, The fibroblast as a contractile cell: The myo-fibroblast, in: Biology of the Fibroblast (J. Pikkarainen and K. Kulonen, eds.), pp. 139–154, Academic, New York.

    Google Scholar 

  • Gabbiani, G., Chaponnier, C., and Ho, I., 1978, Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., de Chastonay, C., Vanderkerckhove, J., Weber, K., and Franke, W. W., 1981, Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific α-type actin, Proc. Natl. Acad. Sci. USA 78:298–302.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Gabbiani, F., Lombardi, D., and Schwartz, S. M., 1983, Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells, Proc. Natl. Acad. Sci. USA 80:2361–2364.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Kocher, O., Bloom, W. S., Vanderkerckhove, J., and Weber, K., 1984, Actin expression in smooth muscle cells of rat aortic intimai thickening, human atheromatous plaque and cultured rat aortic media, J. Clin. Invest. 73:148–152.

    PubMed  CAS  Google Scholar 

  • Garrels, J. I., and Gibson, W., 1976, Identification and characterization of multiple forms of actin, Cell 9:793–805.

    PubMed  CAS  Google Scholar 

  • Gelberman, R. H., Amiel, D., Rudolph, R. M., and Vance, R. M., 1980, Dupuytren’s contracture. An electron microscopic, biochemical, and clinical correlative study, J. Bone Joint Surg. 62A:425–432.

    Google Scholar 

  • Ghadially, F. N., and Mehta, P. N., 1971, Multifunctional mesenchymal cells resembling smooth muscle cells in ganglia of the wrist, Ann. Rheum. Dis. 30:31–42.

    PubMed  CAS  Google Scholar 

  • Ghadially, F. N., McNaughton, J. D., and Lalonde, J. M. A., 1983, Myofibroblastoma: A tumour of myofibroblasts, J. Submicrosc. Cytol. 15:1055–1063.

    PubMed  CAS  Google Scholar 

  • Gokel, J. M., and Hübner, G., 1977, Occurrence of myofibroblasts in the different phases of morbus Dupuytren (Dupuytren’s contracture), Beitr. Pathol. 161:166–175.

    PubMed  CAS  Google Scholar 

  • Goldman, R. D., 1975, The use of heavy meromyosin binding as an ultrastructural cytochemical method for localizing and determining the possible functions of actin like microfilaments in nonmuscle cells, J. Histochem. Cytochem. 23:529–542.

    PubMed  CAS  Google Scholar 

  • Goldman, R. D., Lazarides, E., Pollack, R., and Weber, K., 1975, The distribution of actin in non muscle cells. The use of actin antibody in the localization of actin within the microfilament bundles of mouse 3T3 cells, Exp. Cell Res. 90:333–344.

    PubMed  CAS  Google Scholar 

  • Gorgas, K., and Böck, P., 1974, Myofibroblasts in the rat testicular capsule, Cell Tissue Res. 154:533–541.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., 1975, Purification of fibroblast growth factor from bovine pituitary, J. Biol. Chem. 250:2515–2520.

    PubMed  CAS  Google Scholar 

  • Goss, A. N., 1977, Intra-uterine healing of fetal rat oral mucosal, skin and cartilage wounds, J. Oral Pathol. 6:35–43.

    PubMed  CAS  Google Scholar 

  • Gown, A. M., and Gabbiani, G., 1984, Intermediate sized (10-nm) filaments in human tumors, in: Advances in Immunohistochemistry (R. A. De Lillis, ed.), pp. 89–109, Masson, New York.

    Google Scholar 

  • Greenlee, T. K., Jr., and Ross, R., 1967, The development of the rat flexor digital tendon, a fine structure study, J. Ultrastruct. Res. 18:354–376.

    PubMed  Google Scholar 

  • Grillo, H. C., 1963, Origin of fibroblasts in wound healing: An autoradiographic study of inhibition of cellular proliferation by local X-irradiation, Ann. Surg. 157:453–467.

    PubMed  CAS  Google Scholar 

  • Grillo, H. C., 1964, Derivation of fibroblasts in the healing wound, Arch. Surg. 88:218–224.

    PubMed  CAS  Google Scholar 

  • Grimaud, J. A., and Borojevic, R., 1977, Myofibroblasts in hepatic schistosomal fibrosis, Experientia 33:890–892.

    PubMed  CAS  Google Scholar 

  • Guber, S., and Rudolph, R., 1978, The myofibroblast, Surg. Gynecol. Obstret. 146:641–649.

    CAS  Google Scholar 

  • Güldner, F. H., Wolff, J. R., and Keyserlingk, D., 1972, Fibroblasts as part of the contractile system in duodenal villi of rat, Z. Zellforsch. 135:349–360.

    PubMed  Google Scholar 

  • Harris, A. K., Stopack, D., and Wild, P., 1981, Fibroblast traction as a mechanism for collagen morphogenesis, Nature (Lond.) 290:249–251.

    CAS  Google Scholar 

  • Harris, M., and Ahmed, A., 1977, The ultrastructure of tubular carcinoma of the breast, J. Pathol. 123:79–83.

    PubMed  CAS  Google Scholar 

  • Hassan, M. O., and Olaizola, M. Y., 1979, Ultrastructural observations on gynecomastia, Arch. Pathol. Lab. Med. 103:624–630.

    PubMed  CAS  Google Scholar 

  • Heggeness, M. H., Ash, J. F., and Singer, S. J., 1978, Transmembrane linkage of fibronectin in intracellular actin-containing filaments in cultured human fibroblasts, Ann. NY Acad. Sci. 312:414–417.

    PubMed  CAS  Google Scholar 

  • Herman, I. M., Crisona, N. J., and Pollard, T. D., 1981, Relation between cell activity and the distribution of cytoplasmic actin and myosin, J. Cell Biol. 90:84–91.

    PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H., 1954, Adenosintriphosphat als Betriebsstoff von Zellbewegungen, Biochem. Biophys. Acta 14:182–194.

    PubMed  CAS  Google Scholar 

  • Holund, B., Junker, P., Garbarsch, C., Cristofensen, P., and Lorenzen, I., 1979, Formation of granulation tissue in subcutaneously implanted sponges in rat, Acta Pathol. Microbiol. Scand. Sect. A 87:367–374.

    Google Scholar 

  • Hueston, J. T., Hurley, J. V., and Whittingham, S., 1976, The contracting fibroblast as a clue to Dupuytren’s contracture, Hand 8:10–12.

    PubMed  CAS  Google Scholar 

  • Hutson, J. M., Niall, M., Evans, D., and Fowler, R., 1979, Effect of salivary glands on wound contraction in mice, Nature (Lond.) 279:793–795.

    CAS  Google Scholar 

  • Ho, I., Walker, C., and Gabbiani, G., 1985, The aortic endothelial cell during regeneration: Remodeling of cell junctions, stress fibers, and stress fiber-membrane attachment domains, Lab. Invest. 53:287–302.

    Google Scholar 

  • Hynes, R. O., Destree, A. T., and Wagner, D. D., 1982, Relationships between microfilaments, cell-substratum adhesion, and fibronectin, Cold Spring Hahor Symp. Quant. Biol. 46:659–670.

    Google Scholar 

  • Irle, C., Kocher, O., and Gabbiani, G., 1980, Contractility of myofibroblasts during experimental liver cirrhosis, J. Submicrosc. Cytol. 12:209–217.

    Google Scholar 

  • Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. W., and Wohlfahrt-Bottermann, K. E., 1976, Cytoplasmic actomyosin fibrils in tissue cultured cells. Direct proof of contractility by visu-alization of ATP-induced contraction in fibrils isolated by laser microbeam dissection, Cell Tissue Res. 166:427–433.

    PubMed  CAS  Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43:312–328

    PubMed  CAS  Google Scholar 

  • Ivaska, K., 1973, Isolation of viable cells from experimental granulation tissue, Virchows Arch [B] 14:19–30.

    CAS  Google Scholar 

  • Iwasaki, H., Kikuchi, M., Mori, R., Miyazono, J., Enjoji, M., Shinohara, N., and Matsuzaki, A., 1980, Infantile digital fibromatosis. Ultrastructural, histochemical, and tissue culture observations, Cancer 46:2238–2247.

    PubMed  CAS  Google Scholar 

  • James, D. W., and Taylor, J. F., 1969, The stress developed by sheets of chick fibroblasts in vitro, Exp. Cell Res. 54:107–110.

    PubMed  CAS  Google Scholar 

  • James, W. D., and Odom, R. B., 1980, The role of the myofibroblast in Dupuytren’s contracture, Arch. Dermatol. 116:807–811.

    PubMed  CAS  Google Scholar 

  • Judd, P. A., Finnegan, P., and Curran, R. C., 1975, Pulmonary sarcoidosis: A clinicopathological study, J. Pathol. 115:191–198.

    PubMed  CAS  Google Scholar 

  • Kapanci, Y., Assimacopoulos, A., Irle, C., Zwahlen, A., and Gabbiani, G., 1974, “Contractile interstitial cells” in pulmonary septa, J. Cell Biol. 60:375–392.

    PubMed  CAS  Google Scholar 

  • Kocher, O., Skalli, O., Bloom, W. S., and Gabbiani, G., 1984, Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimai thickening, Lab. Invest. 50:645–652.

    PubMed  CAS  Google Scholar 

  • Kocher, O., Skalli, O., Cerutti, D., Gabbiani, F., and Gabbiani, G., 1985, Cytoskeletal features of rat aortic cells during development: An electron microscopic, immunohistochemical and biochemical study, Circ. Res. 56:829–836.

    PubMed  CAS  Google Scholar 

  • Korn, E. D., 1982, Actin polymerization and its regulation by proteins from nonmuscle cells, Physiol. Rev. 62:672–736.

    PubMed  CAS  Google Scholar 

  • Kreis, T. E., and Birchmeier, W., 1980, Stress fiber sarcomeres of fibroblasts are contractile, Cell 22:555–561.

    PubMed  CAS  Google Scholar 

  • Laguens, R., and Lagrutta, J., 1964, Fine structure of human uterine muscle in pregnancy, Am. J. Obstet, Gynecol. 89:1040–1048.

    CAS  Google Scholar 

  • Lane, B. P., 1965, Alterations in the cytologic detail of intestinal smooth muscle in various stages of contraction, J. Cell Biol. 27:199–213.

    PubMed  CAS  Google Scholar 

  • Larson, D. L., Abston, S., Willis, B., Linares, H., Dobrkovsky, M., Evans, E. B., and Lewis, S. R., 1974, Contracture and scar formation in the burn patient, Clin. Plast. Surg. 1:653–666.

    PubMed  CAS  Google Scholar 

  • Larson, D. M., Fujiwara, K., Alexander, R. W., and Gimbrone, M. A., Jr., 1984a, Heterogeneity of myosin antigenic expression in vascular smooth muscle in vivo, Lab. Invest. 50:401–407.

    PubMed  CAS  Google Scholar 

  • Larson, D. M., Fujiwara, K., Alexander, R. W., and Gimbrone, M. A., Jr., 1984b, Myosin in cultured vascular smooth muscle cells: Immunofluorescence and immunochemical studies of alterations in antigenic expression, J. Cell Biol. 99:1582–1589.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1975, Tropomyosin antibody: The specific localization of tropomyosin in nonmuscle cells, J. Cell Biol. 65:549–561.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., and Burrdige, K., 1975, α-actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells, Cell 6:289–298.

    PubMed  CAS  Google Scholar 

  • Le Beux, Y. J., and Willemot, J., 1978, Actin and myosin-like filaments in rat brain pericytes, Anat. Rec. 190:811–826.

    PubMed  Google Scholar 

  • Leitzel, K., Cano, C., Marks, J., and Lipton, A., 1982, Failure of nerve growth factor to enhance wound healing in the hamster, J. Neurosci. Res. 8:413–417.

    PubMed  CAS  Google Scholar 

  • Levine, G. D., and Dorfman, R. F., 1975, Nodular lymphoma: An ultrastructural study of its relationship to germinal centers and a correlation of light and electron microscopic findings, Cancer 35:148–164.

    PubMed  CAS  Google Scholar 

  • Li, A. K. C., Ehrlich, H. P., Trelstad, R. L., Koroly, M. J., Schattenkerk, M. E., and Malt, R. A., 1980a, Differences in healing of skin wounds caused by burn and freeze injuries, Ann. Surg. 191:244–248.

    PubMed  CAS  Google Scholar 

  • Li, A. K. C., Koroly, M. J., Schattenkerk, M. E., Malt, R. A., and Young, M., 1980b, Nerve growth factor: Acceleration of the rate of wound healing in mice, Proc. Natl. Acad. Sci. USA 77:4379–4381.

    PubMed  CAS  Google Scholar 

  • MacDonald, R. A., 1959, Origin of fibroblasts in experimental healing wounds: Autoradiographic studies using tritiated thymidine, Surgery 46:376–382.

    PubMed  CAS  Google Scholar 

  • Madden, J. W., 1973, On “the contractile fibroblast,” Plat. Reconstr. Surg. 52:291–292.

    CAS  Google Scholar 

  • Madden, J. W., Morton, D., and Peacock, E. E., 1974, Contraction of experimental wounds. I. Inhibiting wound contraction by using a topical smooth muscle antagonist, Surgery 76:8–15.

    PubMed  CAS  Google Scholar 

  • Madden, J. W., Carlson, E. C., and Hines, J., 1975, Presence of modified fibroblasts in ischemic contracture of the intrinsic musculature of the hand, Surg. Gynecol. Obstret. 140:509–516.

    CAS  Google Scholar 

  • Majno, G., Shea, S. M., and Leventhal, M., 1969, Endothelial contraction induced by histamine-like mediators. An electron microscopic study, J. Cell Biol. 42:647–672.

    PubMed  CAS  Google Scholar 

  • Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B., and Statkov, P. R., 1971, Contraction of granulation tissue in vitro: Similarity to smooth muscle, Science 173:548–550.

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez, A., Francis, D. J., and Silverberg, S. G., 1977, Elastosis and other stromal reactions in benign and malignant breast tissue, Cancer 40:700–706.

    Google Scholar 

  • Meister, P., Gokel, J. M., and Remberger, K., 1979, Palmar fibromatosis—“Dupuytren’s contracture.” A comparison of light electron and immunofluorescence microscopic findings, Pathol. Res. Pract. 164:402–412.

    PubMed  CAS  Google Scholar 

  • Merkow, L. P., Frich, J. C., Slifkin, M., Kyreages, C. G., and Pardo, M., 1971, Ultrastructure of a fibroxanthosarcoma (malignant fibroxanthoma), Cancer 28:372–383.

    PubMed  CAS  Google Scholar 

  • Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31:11–24.

    PubMed  CAS  Google Scholar 

  • Montandon, D., Gabbiani, G., Ryan, G. B., and Majno, G., 1973, The contractile fibroblast. Its relevance in plastic surgery, Plast. Reconstr. Surg. 52:286–290.

    PubMed  CAS  Google Scholar 

  • Moss, N. S., and Benditt, E. P., 1970, Spontaneous and experimentally induced arterial lesions. I. An ultrastructural survey of the normal chicken aorta, Lab. Invest. 22:166–183.

    PubMed  CAS  Google Scholar 

  • Nagle, R. B., Kneiser, M. R., Bulger, R. E., and Benditt, E. P., 1973, Induction of smooth muscle characteristics in renal interstitial fibroblasts during obstructive nephropathy, Lab. Invest. 29:422–427.

    PubMed  CAS  Google Scholar 

  • Nagle, R. B., Evans, L. W., and Reynolds, D. G., 1975, Contractility of renal cortex following complete ureteral obstruction, Proc. Soc. Exp. Biol. Med. 148:611–614.

    PubMed  CAS  Google Scholar 

  • Navas-Palacios, J. J., 1983, The fibromatoses. An ultrastructural study of 31 cases, Pathol. Res. Pract. 176:158–175.

    PubMed  CAS  Google Scholar 

  • Niewiarowski, S., and Goldstein, S., 1973, Interaction of cultured human fibroblasts with fibrin: modification by drugs and aging in vitro, J. Lab. Clin. Med. 82:605–610.

    PubMed  CAS  Google Scholar 

  • Niewiarowski, S., Regoeczi, E., and Fraser Mustard, J., 1972, Adhesion of fibroblasts to polymerizing fibrin and retraction of fibrin induced by fibroblasts, Proc. Soc. Exp. Biol. Med. 140:199–204.

    PubMed  CAS  Google Scholar 

  • Novotny, G. E. K., and Pau, H., 1984, Myofibroblast-like cells in human anterior capsular cataract, Virchows Arch. [A] 404:393–401.

    CAS  Google Scholar 

  • Ohtani, H., and Sasano, N., 1980, Myofibroblasts and myoepithelial cells in human breast carcinoma. An ultrastructural study, Virchows Arch. [A] 385:247–261.

    CAS  Google Scholar 

  • Olivetti, G., Anversa, P., Melissari, M., and Loud, A. V., 1980, Morphometric study of early postnatal development of the thoracic aorta in the rat, Circ. Res. 47:417–424.

    PubMed  CAS  Google Scholar 

  • Osborn, M., and Weber, K., 1982, Intermediate filaments: Cell-type-specific markers in differentiation and pathology, Cell 31:303–306.

    PubMed  CAS  Google Scholar 

  • Osborn, M., and Weber, K., 1983, Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology, Lab. Invest. 48:372–394.

    PubMed  CAS  Google Scholar 

  • O’Shea, J. D., 1970, An ultrastructural study of smooth muscle-like cells in the theca externa of the ovarian follicle of the rat, Anat. Rec. 167:127–131.

    PubMed  Google Scholar 

  • Owellen, R. J., Owens, A. H., and Donigian, D. W., 1972, The binding of vincristine, vinblastine and colchicine to tubulin, Biochem. Biophys. Res. Commun. 47:685–691.

    PubMed  CAS  Google Scholar 

  • Peacock, E. E., and Van Winkle, W., 1970, Surgery and Biology of Wound Repair, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Pinto da Silva, P., and Gilula, N. B., 1972, Gap junctions in normal and transformed fibroblasts in culture, Exp. Cell Res. 71:393–401.

    PubMed  CAS  Google Scholar 

  • Pollack, R., Osborn, M., and Weber, K., 1975, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA 72:994–998.

    PubMed  CAS  Google Scholar 

  • Poole, J. C. F., Cromwell, S. B., and Benditt, E. P., 1971, Behavior of smooth muscle cells and formation of extracellular structures in the reaction of arterial wall to injury, Am. J. Pathol. 62:391–414.

    PubMed  CAS  Google Scholar 

  • Postacchini, F., Natali, P. G., Accinni, L., Ippolito, E., and De Martino, C., 1977, Contractile filaments in cells of regenerating tendon, Experientia 33:957–959.

    PubMed  CAS  Google Scholar 

  • Povysil, C., and Matejovsky, Z., 1979, Ultrastructural evidence of myofibroblasts in pseudomalig-nant myositis ossificans, Virchows Arch. [A] 381:189–203.

    CAS  Google Scholar 

  • Ramos, C. V., Gillepsie, W., and Narconis, R. J., 1978, Elastofibroma. A pseudotumor of myofibroblasts, Arch. Pathol. Lab. Med. 102:538–540.

    PubMed  CAS  Google Scholar 

  • Remuzzi, G., Marchesi, E., de Gaetano, E., and Donati, M., 1977, Abnormal tissue repair in Glanzmann’s thrombasthenia, Lancet 2:374–375.

    Google Scholar 

  • Robbins, S. L., Angell, M., and Kumar, V., 1984, Basic Pathology, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Roberts, P. J., and Häyry, P., 1976, Effector mechanisms in allograft rejection. I. Assembly of “sponge matrix” allografts, Cell. Immunol. 26:160–167.

    PubMed  CAS  Google Scholar 

  • Roland, J., 1976, Fibroblaste et myofibroblaste dans le processus granulomateux, Ann. Anat. Pathol. 21:37–44.

    CAS  Google Scholar 

  • Ross, M. H., and Reith, E. J., 1969, Perineurium: Evidence for contractile elements, Science 165:604–606.

    PubMed  CAS  Google Scholar 

  • Ross, R., and Greenlee, T. K., Jr., 1966, Electron microscopy: Attachment sites between connective tissue cells, Science 153:997–999.

    PubMed  CAS  Google Scholar 

  • Ross, R., and Klebanoff, S. J., 1967, Fine structural changes in uterine smooth muscle and fibro-blasts in response to estrogens, J. Cell Biol. 32:155–167.

    PubMed  CAS  Google Scholar 

  • Ross, R., Everett, N. B., and Tyler, R., 1970, Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis, J. Cell Biol. 44:645–654.

    PubMed  CAS  Google Scholar 

  • Rowlatt, U., 1979, Intrauterine wound healing in a 20 week human fetus, Virchows Arch. [A] 381:353–361.

    CAS  Google Scholar 

  • Rudolph, R., 1976, The effect of skin graft preparation on wound contraction, Surg. Gynecol. Obstet. 142:49–56.

    PubMed  CAS  Google Scholar 

  • Rudolph, R., and Klein, L., 1973, Healing processes in skin grafts, Surg. Gynecol. Ohstet. 136:641–654.

    CAS  Google Scholar 

  • Rudolph, R., and Woodward, M., 1978, Spatial orientation of microtubules in contractile fibro-blasts in vivo, Anat. Rec. 191:169–182.

    PubMed  CAS  Google Scholar 

  • Rudolph, R., Guber, S., Suzuki, M., and Woodward, M., 1977, The life cycle of the myofibroblast, Surg. Gynecol. Obstet. 145:389–394.

    PubMed  CAS  Google Scholar 

  • Rudolph, R., Abraham, J., Vecchione, T., Guber, S., and Woodward, M., 1978, Myofibroblasts and free silicon around breast implants, Plast. Reconst. Surg. 62:185–196.

    PubMed  CAS  Google Scholar 

  • Rudolph, R., McLure, W. J., and Woodward, M., 1979, Contractile fibroblasts in chronic alcoholic cirrhosis, Gastroenterology 76:704–709.

    PubMed  CAS  Google Scholar 

  • Rudolph, R., Kum, I., and Woodward, M., 1981, Use of colchicine to inhibit wound contraction, Am. J. Surg. 141:712–717.

    PubMed  CAS  Google Scholar 

  • Rungger-Brändle, E., and Gabbiani, G., 1983, The role of cytoskeletal and cytocontractile elements in pathologic processes, Am. J. Pathol. 110:359–392.

    Google Scholar 

  • Ryan, G. B., Cliff, W. J., Gabbiani, G., Irle, C., Statkov, P. R., and Majno, G., 1973, Myofibroblasts in an avascular fibrous tissue, Lab. Invest. 29:197–206.

    PubMed  CAS  Google Scholar 

  • Ryan, G. B., Cliff, W. J., Gabbiani, G., Irle, C., Montandon, D., Statkov, P. R., and Majno, G., 1974, Myofibroblasts in human granulation tissue, Hum. Pathol. 5:55–67.

    PubMed  CAS  Google Scholar 

  • Schürch, W., Seemayer, T. A., and Lagacé, R., 1981, Stromal myofibroblasts in primary invasive and metastatic carcinomas: A combined immunological, light and electron microscopy study, Virchows Arch. [A] 391:125–139.

    Google Scholar 

  • Schürch, V., Lagacé, R., and Seemayer, T. A., 1982, Myofibroblastic stromal reaction in retracted scirrhous carcinomas of the breast, Surg. Gynecol. Obstet. 154:351–358.

    PubMed  Google Scholar 

  • Schürch, W., Seemayer, T. A., Lagacé, R., and Gabbiani, G., 1984, The intermediate filament cytoskeleton of myofibroblasts: An immunofluorescence and ultrastructural study, Virchows Arch. [A] 403:323–336.

    Google Scholar 

  • Seemayer, T. A., Lagacé, R., Schürch, W., and Tremblay, G., 1979, Myofibroblasts in the stroma of invasive and metastatic carcinoma. A possible host response to neoplasia, Am. J. Surg. Pathol. 3:525–533.

    PubMed  CAS  Google Scholar 

  • Seemayer, T. A., Lagacé, R., Schürch, W., and Thelmo, W. L., 1980a, The myofibroblast: Biologic, pathologic and theoretical considerations, Pathol. Annual 15(Part I):443–470.

    CAS  Google Scholar 

  • Seemayer, T. A., Lagacé, R., and Schürch, W., 1980b, On the pathogenesis of sclerosis and nod-ularity in nodular sclerosing Hodgkin’s disease, Virchows Arch. [A] 385:283–291.

    CAS  Google Scholar 

  • Seemayer, T. A., Sch W., and Lagacé, R., 1981, Myofibroblasts in human pathology, Hum. Pathol. 12:491–492.

    PubMed  CAS  Google Scholar 

  • Selye, H., 1953, On the mechanism through which hydrocortisone affects the resistance of tissue to injury. An experimental study with the granuloma pouch technique, JAMA 152:1207–1213.

    CAS  Google Scholar 

  • Shepherd, J. P., and Dawber, R. P. R., 1984, Wound healing and scarring after cryosurgery, Cryobiol. 21:157–169.

    CAS  Google Scholar 

  • Shigo, A., 1985, Compartmentalization of decay in trees, Sci. Am. 252:76–83.

    Google Scholar 

  • Singer, I. I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts, Cell 16:675–685.

    PubMed  CAS  Google Scholar 

  • Singer, I. I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. F., 1984, In vivo co-distribution of fibronectin and actin fibers in granulation tissue: Immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091–2106.

    PubMed  CAS  Google Scholar 

  • Skalli, O., Ropraz, R., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G., 1986a, A monoclonal antibody against a-smooth muscle actin: A new probe for smooth muscle differentiation, J. Cell Biol. 103:2787–2796.

    PubMed  CAS  Google Scholar 

  • Skalli, O., Bloom, W. S., Ropraz, P., Azzarone, B., and Gabbiani, G., 1986b, Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: Relationships to culture conditions and analogies to in vivo situations, J. Submicrosc. Cytol. 18:481–493.

    PubMed  CAS  Google Scholar 

  • Skalli, O., Vanderkerckhove, J., and Gabbiani, G., 1987, Actin isoform pattern as marker of normal or pathological smooth muscle and fibroblastic tissues, Differentiation 33:232–238.

    PubMed  CAS  Google Scholar 

  • Somasundaram, K., and Prathap, K., 1970, Intra uterine healing of skin wounds in rabbit fetuses, J. Pathol. 100:81–86.

    PubMed  CAS  Google Scholar 

  • Somasundaram, K., and Prathap, K., 1972, The effect of exclusion of amniotic fluid on intra uterine healing of skin wounds in rabbit foetuses, J. Pathol. 107:127–130.

    PubMed  CAS  Google Scholar 

  • Somers, K. D., Dawson, D. M., Wright, G. L., Leffell, M. S., Rowe, M. J., Bluemink, G. G., Vande Berg, J. S., Gleischman, S. H., Devine, C. J., and Horton, C. E., 1982, Cell culture of Peyronie’s disease plaque and normal penile tissue, J. Urol. 127:585–588.

    PubMed  CAS  Google Scholar 

  • Sporn, M. B., Roberts, A. B., Shull, J. H., Smith, J. M., Ward, J. M., and Sodek, J., 1983, Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo, Science 219:1329–1330.

    PubMed  CAS  Google Scholar 

  • Steinberg, B. M., Smith, K., Colozzo, M., and Pollack, R., 1980, Establishment and transformation diminish the ability of fibroblasts to contract a native collagen gel, J. Cell Biol. 87:304–308.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Jones, J. C. R., and Goldman, R. D., 1984, Intermediate filaments, J. Cell Biol. 99:22s–27s.

    PubMed  CAS  Google Scholar 

  • Stiller, D., and Katenkamp, D., 1975, Cellular features in desmoid fibromatosis and well-differentiated fibrosarcomas. An electron microscopic study, Virchows Arch. [Al 369:155–164.

    CAS  Google Scholar 

  • Stopak, D., and Harris, A. K., 1982, Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations, Dev. Biol. 90:383–398.

    PubMed  CAS  Google Scholar 

  • Tabone, E., Andujar, M. B., De Barros, S. S., Dos Santos, M. N., Barros, C. L., and Graca, D. L., 1983, Myofibroblast-like cells in non-pathological bovine endometrial caruncle, Cell Biol. Int. Rep. 7:395–400.

    PubMed  CAS  Google Scholar 

  • Taylor, J. F., 1971, Changes in nuclear dimensions and orientation during contraction of a cultured fibroblast sheet, J. Anat. 108:509–517.

    PubMed  CAS  Google Scholar 

  • Toyama, Y., 1976, Actin like filaments in the Sertoli cell junctional specializations in the swine and mouse testis, Anat. Rec. 186:477–492.

    PubMed  CAS  Google Scholar 

  • Toyama, Y., Obinata, T., and Holtzer, H., 1979, Cristalloids of actin like filaments in the Sertoli cell of the swine testis, Anat. Rec. 195:47–62.

    PubMed  CAS  Google Scholar 

  • Travo, P., Weber, K., and Osborn, M., 1982, Co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture, Exp. Cell Res. 139:87–94.

    PubMed  CAS  Google Scholar 

  • Tremblay, G., 1979, Stromal aspects of breast carcinoma, Exp. Mol. Pathol. 31:248–260.

    PubMed  CAS  Google Scholar 

  • Turi, G. K., Albala, A., and Fenoglio, J. J., 1980, Cardiac fibromatosis: An ultrastructural study, Hum. Pathol. 11(Suppl):577–580.

    PubMed  CAS  Google Scholar 

  • Vande Berg, J. S., Rudolph, R., and Woodward, M., 1984, Comparative growth dynamics and morphology between cultured myofibroblasts from granulating wounds and dermal fibro-blasts, Am. J. Pathol. 114:187–200.

    Google Scholar 

  • Vandekerckhove, J., and Weber, K., 1978, At least six different actins are expressed in higher mammals: An analysis based on the amino acid sequence of the amino terminal tryptic pep-tide, J. Mol. Biol. 126:783–802.

    PubMed  CAS  Google Scholar 

  • Vandekerckhove, J., and Weber, K., 1979, The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle, Differentiation 14:123–133.

    PubMed  CAS  Google Scholar 

  • Vandekerckhove, J., and Weber, K., 1981, Actin typing on total cellular extracts. A highly sensitive protein chemical procedure able to distinguish different actins, Eur. J. Biochem. 113:595–603.

    PubMed  CAS  Google Scholar 

  • Vandekerckhove, J., and Weber, K., 1984, Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins, J. Mol. Biol. 179:391–413.

    PubMed  CAS  Google Scholar 

  • Vasudev, K. S., and Harris, M., 1978, A sarcoma of myofibroblasts. An ultrastructural study, Arch. Pathol. Lab. Med. 102:185–188.

    PubMed  CAS  Google Scholar 

  • Vogel, A., Ross, R., and Raines, E., 1980, Role of serum components in density dependent inhibition of growth of cells in culture. Platelet derived growth factor is the major serum determinant of saturation density, J. Cell Biol. 85:377–385.

    PubMed  CAS  Google Scholar 

  • Wang, K., 1977, Filamin, a new high-molecular-weight protein found in smooth muscle and non muscle cells. Purification and properties of chicken gizzard filamin, Biochemistry 16:1857–1865.

    PubMed  CAS  Google Scholar 

  • Weathers, D. R., and Campbell, W. G., 1974, Ultrastructure of the giant-cell fibroma of the oral mucosa, Oral Surg. 38:550–561.

    PubMed  CAS  Google Scholar 

  • Weber, K., and Groeschel-Stewart, U., 1974, Antibody to myosin: The specific visualization of myosin-containing filaments in nonmuscle cells. Proc. Natl. Acad. Sci. USA 71:4561–4564.

    PubMed  CAS  Google Scholar 

  • Wessels, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171:135–143.

    Google Scholar 

  • Whalen, R. G., Butler-Browne, G. S., and Gros, F., 1976, Protein synthesis and actin heterogeneity in calf muscle cells in culture, Proc. Natl. Acad. Sci. USA 73:2018–2022.

    PubMed  CAS  Google Scholar 

  • White, G. E., Gimbrone, M. A., and Fujiwara, K., 1983, Factors influencing the expression of stress fibers in vascular endothelial cells in situ, J. Cell Biol. 97:416–424.

    PubMed  CAS  Google Scholar 

  • Willingham, M. C., Yamada, S. S., Davies, P. J. A., Rutherford, A. V., Gallo, M. G., and Pastan, I., 1981, Intracellular localization of actin in cultured fibroblasts by electron microscopic immu-nochemistry, J. Histochem. Cytochem. 29:17–37.

    PubMed  CAS  Google Scholar 

  • Wirman, J. A., 1976, Nodular fasciitis, a lesion of myofibroblasts. An ultrastructural study, Cancer 38:2378–2389.

    PubMed  CAS  Google Scholar 

  • Wong, A., Pollard, T. D., and Herman, I. M., 1983, Actin filament stress fibers in vascular endothelial cells in vivo, Science 219:867–869.

    PubMed  CAS  Google Scholar 

  • Woodcock-Mitchell, J., Adler, K. B., and Low, R. B., 1984, Immunohistochemical identification of cell types in normal and in bleomycin-induced fibrotic rat lung, Am. Rev. Respir. Dis. 130:910–916.

    PubMed  CAS  Google Scholar 

  • Yamamoto, M., Tsukada, S., and Inoue, M., 1982, Possible age associated change at cellular level in cultured fibroblasts derived from scar tissue, Chir. Plast. 7:51–58.

    Google Scholar 

  • Zimman, O. A., Robles, J. M., and Lee, J. C., 1978, The fibrous capsule around mammary implants: An investigation, Aesth. Plast. Surg. 2:217–234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skalli, O., Gabbiani, G. (1988). The Biology of the Myofibroblast Relationship to Wound Contraction and Fibrocontractive Diseases. In: Clark, R.A.F., Henson, P.M. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1795-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1795-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5725-4

  • Online ISBN: 978-1-4615-1795-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics