Overview and General Considerations of Wound Repair

  • Richard A. F. Clark


During the past 20 years, an explosion of new knowledge has occurred in the fields of molecular and cellular biology. Application of this new knowledge to studies of tissue organization is having a major impact on our understanding of the molecular and cellular processes that interact to produce living tissue. Contributors have been selected to review topics of molecular and cellular biology that either provide new insights into or provoke important questions about the dynamic biologic processes of tissue repair. This introductory chapter attempts to outline the individual aspects of wound repair covered in the book and to arrange the extensive information into a continuum of events.


Hyaluronic Acid Granulation Tissue Wound Repair Hypertrophic Scar Fibrillar Collagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1971, The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella, Exp. Cell. Res. 67:359–367.PubMedCrossRefGoogle Scholar
  2. Adams, S. O., Nissley, S. P., Handwerger, S., Rechler, M. M., 1983, Developmental patterns of insulin-like growth Factor-I and-II synthesis and regulation in rat fibroblasts, Nature (Lond.) 302:150–153.CrossRefGoogle Scholar
  3. Anseth, A., 1961, Glycosaminoglycans in corneal regeneration, Exp. Eye Res. 1:122–127.PubMedCrossRefGoogle Scholar
  4. Armitage, P. M., and Chapman, J. A., 1971, New fibrous long spacing form of collagen, Nature (New Biol.) 229:151–152.CrossRefGoogle Scholar
  5. Assoian, R. K., Frolik, C. A., Roberts, A. B., Miller, D. M., and Sporn, M. B., 1984, Transforming growth factor-B controls receptor levels for epidermal growth factor in NRK fibroblasts, Cell 36:35–41.PubMedCrossRefGoogle Scholar
  6. Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.PubMedCrossRefGoogle Scholar
  7. Ausprunk, D. H., Falterman, K., and Folkman, J., 1978, The sequence of events in the regression of corneal capillaries, Lab. Invest. 38:284–294.PubMedGoogle Scholar
  8. Ausprunk, D. H., Boudreau, C. L., and Nelson, D. A., 1981, Proteoglycans in the microvasculature. II. Histochemical localization in proliferating capillaries of the rabbit cornea, Am. J. Pathol. 103:367–375.PubMedGoogle Scholar
  9. Azizkhan, R. G., Azizkhan, J. C., Zetter, B. R., and Folkman, J., 1980, Mast cell heparin stimulates mirgration of capillary endothelial cells in vitro, J. Exp. Med. 152:931–944.PubMedCrossRefGoogle Scholar
  10. Bailey, A. J., Bazin, S., Sims, T. J., LeLeus, M., Nicholetis, C., and Delaunay, A., 1975, Characterization of the collagen of human hypertrophic and normal scars, Biochim. Biophys. Acta 405:412–421.PubMedCrossRefGoogle Scholar
  11. Baker, J. B., Low, D. A., Simmer, R. L., and Cunningham, D. D., 1980, Protease-nexin: A cellular component that links thrombin and plasminogen activator and mediates their binding to cells, Cell 21:37–45.PubMedCrossRefGoogle Scholar
  12. Balazs, A., and Holmgren, H. J., 1950, The basic dye-uptake and the presence of growth inhibiting substance in the healing tissue of skin wounds, Exp. Cell. Res. 1:206–216.CrossRefGoogle Scholar
  13. Banda, M. J., Knighton, D. R., Hunt, T. K., and Werb, Z., 1982, Isolation of a nonmitogenic angiogenesis factor from wound fluid, Proc. Natl. Acad. Sci. USA 79:7773–7777.PubMedCrossRefGoogle Scholar
  14. Banerjee, S. D., Cohn, R. H., and Bernfield, M. R., 1977, Basal lamina of embryonic salivary epithelial. Production by the epithelium and role in maintaining lobular morphology, J. Cell Biol. 73:445–463.PubMedCrossRefGoogle Scholar
  15. Barnes, M. J., and MacIntyre, D. E., 1979, Collagen-induced platelet aggregation. The activity of basement membrane collagens relative to other collagen types, Front. Matrix. Biol. 7:246–257.Google Scholar
  16. Barnes, M. J., Morton, L. F., Bennett, R. C., and Bailey, A. J., 1975, Studies on collagen synthesis in the mature dermal scar in the guinea pig, Biochem. Soc. 3:917–920.Google Scholar
  17. Bar-Shavit, R., Kahn, A., Fenton, J. W., and Wilner, G. D., 1983, Chemotactic response of monocytes to thrombin, J. Cell Biol. 96:282–285.PubMedCrossRefGoogle Scholar
  18. Bazin, S., and Delaunay, A., 1964, Biochimie de l’inflammation. VI. Fluctuations du taux de collagéne et des proteines non fibrillaires dans differents types de foyers inflammatoires, Am. Inst. Pasteur 107:163–172.Google Scholar
  19. Bell, E., Ivarsson, B., and Merrill, C., 1979, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. USA 76:1274–1278.PubMedCrossRefGoogle Scholar
  20. Bell, E., Ehrlich, H. P., Buttle, D. J., and Nakatsuji, T., 1981, Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness, Science 211:1052–1054.PubMedCrossRefGoogle Scholar
  21. Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lepiere, C., Nusgens, B., and Neveux, Y., 1983, The reconstitution of living skin, J. Invest. Dermatol. 81(Suppl.):2S–10S.PubMedCrossRefGoogle Scholar
  22. Bellows, C. G., Melcher, A. H., Bargava, U., and Aubin, J. E., 1982, Fibroblasts contracting three-dimensional collagen gels exhibit ultrastructure consistent with either contraction or protein secretion, J. Ultmstruct. Res. 78:178–192.CrossRefGoogle Scholar
  23. Bently, J. P., 1967, Rate of chondroitin sulfate formation in wound healing, Ann. Surg. 165:186–191.CrossRefGoogle Scholar
  24. Benya, P. D., and Padilla, S. R., 1986, Isolation and characterization of type VIII collagen synthesized by cultured rabbit corneal endothelial cells. A conventional structure replaces the interrupted-helix model, J. Bioi. Chem. 261:4160–4169.Google Scholar
  25. Bernfield, M. R., and Banerjee, S. D., 1972, Acid mucopolysaccharide (glycosaminoglycan) at the epithelial-mesenchymal interface of mouse embryo salivary glands, J. Cell Biol. 52:664–673.PubMedCrossRefGoogle Scholar
  26. Bernfield, M. R., Banerjee, S. D., and Cohn, R. H., 1972, Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface, J. Cell Biol. 52:647–689.Google Scholar
  27. Bernstein, L. R., Antoniades, H., and Zetter, B. R., 1982, Migration of cultured vascular cells in response to plasma and platelet-derived factors, J. Cell. Sci. 56:71–82.PubMedGoogle Scholar
  28. Bertolami, C. N., and Donoff, R. B., 1982, Identification characterization, and partial purification of mammalian skin wound hyaluronidase, J. Invest. Dermatol. 79:417–421.PubMedCrossRefGoogle Scholar
  29. Binder, B. R., Spragg, J., and Austen, K. F., 1979, Purification and characterization of human vascular plasminogen activator derived from blood vessel perfusates, J. Biol. Chem. 254:1998–2003.PubMedGoogle Scholar
  30. Bode, A. P., Dombrose, F. A., Lentz, B. R., and Roberts, H. R., 1981, The platelet membrane as a catalytic surface in thrombin generation: Availability of platelet Factor I and platelet Factor 3, Ann. NY Acad. Sci. 370:348–358.PubMedCrossRefGoogle Scholar
  31. Bornstein, P., and Ash, T. F., 1977, Cell surface-associated structural proteins in connective tissue cells, Proc. Natl. Acad. Sci. USA 74:2480–2484.PubMedCrossRefGoogle Scholar
  32. Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42:2547–2551.PubMedGoogle Scholar
  33. Brown, R. A., Weiss, J. B., and Tomlinson, I. W., 1980, Angiogenic factor from synovial fluid resembling that from tumors, Lancet 1:682–685.PubMedGoogle Scholar
  34. Bruns, R. R., Press, W., Engvall, E., Timpl, R., and Gross, J., 1986, Type VI collagen in extracellular, 100 nm periodic filaments and fibrils: Identification by immunoelectron microscopy, J. Cell Biol. 103:393–404.PubMedCrossRefGoogle Scholar
  35. Carpenter, G., and Cohen, S., 1976, 125I-labeled human epidermal growth factor (hEGF): Binding, internalization, and degradation in human fibroblasts, J. Cell Biol. 71:159–171.PubMedCrossRefGoogle Scholar
  36. Castellot, J. J., Addonizio, M. L., Rosenberg, R., and Karnovosky, M. J., 1981, Vascular endothelial cells produce a heparin-like inhibitor of smooth muscle growth, J. Cell Biol. 90:372–379.PubMedCrossRefGoogle Scholar
  37. Chen, L. B., Murray, A., Segal, R. A., Bushnell, A., and Walsh, M. L., 1978, Studies on intracellular LETS glycoprotein matrices, Cell 14:377–391.PubMedCrossRefGoogle Scholar
  38. Chen, L. B., Gudor, R. C., Sun, T. T., Chen, A. B., and Mosesson, M., 1977, Control of a cell surface major glycoprotein by epidermal growth factor, Science 197:776–778.PubMedCrossRefGoogle Scholar
  39. Chung, E., and Miller, E. J., 1974, Collagen polymorphism. Characterization of molecules with the chain composition 1(111)3, Science 183:1200–1204.PubMedCrossRefGoogle Scholar
  40. Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982a, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization, J. Invest. Dermatol. 70:264–269.CrossRefGoogle Scholar
  41. Clark, R. A. F., DellaPelle, P., Manseau, E., Lanigan, J. M., Dvorak, H. F., and Colvin, R. B., 1982b, Blood vessel fibronectic increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing. J. Invest. Dermatol. 79:269–276.PubMedCrossRefGoogle Scholar
  42. Clark, R. A. F., Quinn, J. H., Winn, H. J., Lanigan, J. M., DellaPelle, P., and Colvin, R. B., 1982c, Fibronectin is produced by blood vessels in response to injury, J. Exp. Med. 156:646–651.PubMedCrossRefGoogle Scholar
  43. Clark, R. A. F., Folkvord, J. M., and Nielsen, L. D., 1986, Either exogenous or endogenous fibronectin can promote adherence of human endothelial cells, J. Cell Sci. 82:263–280.PubMedGoogle Scholar
  44. Clemmons, D. R., Van Wyk, J. J., and Pledger, W. J., 1980, Sequential addition of platelet factor and plasma to Balb/c 3T3 fibroblast cultures stimulates somatomedin-C binding early in cell cycle, Proc. Natl. Acad. Sci. USA 77:6644–6648.PubMedCrossRefGoogle Scholar
  45. Clemmons, D. R., Isley, W. L., and Brown, M. T., 1983, Dialyzable factor in human serum of platelet origin stimulates endothelial cell replication and growth, Proc. Natl. Acad. Sci. USA 80:1641–1645.PubMedCrossRefGoogle Scholar
  46. Cohen, I. K., Keiser, H. R., and Sjoerdsma, A., 1971, Collagen synthesis in human keloid and hypertrophie scar, Surg. Forum 22:488–489.PubMedGoogle Scholar
  47. Cohen, S., 1965, The stimulation of epidermal proliferation by a specific protein (EGF) Dev. Biol. 12:394–407.PubMedCrossRefGoogle Scholar
  48. Cohn, R. H., Cassiman, J. J., and Bernfield, M. R., 1976, Relationship of transformation, cell density and growth control to cellular distribution of newly synthesized glycosaminoglycan, J. Cell Biol. 71:280–294.PubMedCrossRefGoogle Scholar
  49. Cohn, R. H., Banerjee, S. D., and Bernfield, M. R., 1977, Basal laminia of embryonic salivary epithelia. Nature of glycosaminoglycan and organization of extracellular materials, J. Cell Biol. 73:464–478.PubMedCrossRefGoogle Scholar
  50. Craddock, P., Fehr, J., Dalmasso, A.P., Brigham, K. L., and Jacob, H. S., 1977, Hemodialysis leuko-penia: Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membrane, J. Clin. Invest. 59:879–888.PubMedCrossRefGoogle Scholar
  51. Culp, L. A., Murray, B. A., and Rollins, B. J., 1979, Fibronectin and proteoglycans as determinants of cell-substratum adhesion, J. Supramol. Struct. 11:401–427.PubMedCrossRefGoogle Scholar
  52. D’Amore, P., and Klagsbrun, M., 1984, Endothelial cell mitogens derived from the retina and hypothalamus: Biochemical and biological similarities, J. Cell Biol. 99:1545–1549.PubMedCrossRefGoogle Scholar
  53. Detwiler, T. C., and Feinman, R. D., 1973, Kinetics of the thrombin-induced release of calcium by platelets, Biochemistry 12:282–289.PubMedCrossRefGoogle Scholar
  54. Deuel, T. F., Senior, R. M., Chang, D., Griffin, G. L., Heinrikson, R. L., and Kaiser, E. T., 1981, Platelet factor 4 is chemotactic for neutrophils and monocytes, Proc. Natl. Acad. Sci. USA 78:4584–4587.PubMedCrossRefGoogle Scholar
  55. Deuel, T. F., Senior, R. M., Huang, J. S., and Griffin, G. L., 1982, Chemotaxis of monocytes and neutrophils to platelet-derived growth factor, J. Clin. Invest. 69:1046–1049.PubMedCrossRefGoogle Scholar
  56. Diegelmann, R. F., Rothkopf, L. C., and Cohen, I. K., 1975, Measurement of collagen biosynthesis during wound healing. J. Surg. Res. 19:239–243.PubMedCrossRefGoogle Scholar
  57. Donoff, R. B., McLennan, J. E., and Grillo, H. C., 1971, Preparation and properties of collagenases from epithelium and mesenchyme of healing mammalian wounds, Biochim. Biophys. Acta 227:639–653.PubMedCrossRefGoogle Scholar
  58. Dorner, R. W., 1967, Glycosaminoglycans of regenerating tendon, Arthritis Rheum. 10:275–276.Google Scholar
  59. Dvorak, H. F., Senger, D. R., Dvorak, A. M., Harvey, V. S., and McDonagh, J., 1985, Regulation of extravascular coagulation by microvascular permeability, Science 227:1059–1061.PubMedCrossRefGoogle Scholar
  60. Ehrlich, H. P., and White, B. S., 1981, The identification of A and B collagen chains in hypertrophie scars, Exp. Mol. Pathol. 34:1–8.PubMedCrossRefGoogle Scholar
  61. Epstein, E. H., 1974 [α1(III)]3 human skin collagen. Release by pepsin digestion and preponderance in fetal life, J. Biol. Chem. 249:3225–3231.PubMedGoogle Scholar
  62. Esmon, C. T., and Owen, W. G., 1981, Identification of an endothelial cell cofactor for thrombincatalyzed activation of Protein C, Proc. Natl. Acad. Sci. USA 78:2249–2252.PubMedCrossRefGoogle Scholar
  63. Fearon, D. T., 1978, Activation of the alternative complement pathway by E. coli: Resistance of bound C3b to inactivation by C3b INA and IH, J. Immunol. 120:1772.Google Scholar
  64. Fearon, D. T., and Austen, K. F., 1977, Activation of the alternative complement pathway due to resistance of zymosan-bound amplification convertase to endogenous regulatory mechanisms, Proc. Natl. Acad. Sci. USA 74:1683–1687.PubMedCrossRefGoogle Scholar
  65. Fernandez, H. N., Henson, P. M., Otani, A., and Hugli, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions, J. Immunol. 120:109–115.PubMedGoogle Scholar
  66. Folkman, J., 1982, Angiogenesis: initiation and control, Ann. NY Acad. Sci. 401:212–227.PubMedCrossRefGoogle Scholar
  67. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J., 1980, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature (Lond.) 286:264–265.CrossRefGoogle Scholar
  68. Frederick, J. L., Shimanuki, T., and DiZerega, G. S., 1984, Initiation of angiogenesis by human follicular fluid, Science 224:389–390.PubMedCrossRefGoogle Scholar
  69. Freer, R. J., Day, A. R., Radding, J. A., Schiffmann, E., Aswanikumar, S., Showell, H. J., and Becker, E. L., 1980, Further studies on the structural requirement for synthetic peptide chemoattractants, Biochemistry 19:2404–2410.PubMedCrossRefGoogle Scholar
  70. Fujikawa, L. S., Footer, C. S., Gipson, I. K, and Colvin, R. B., 1984, Basement membrane components in healing rabbit corneal epithelial wounds: Immunofluorescence and ultrastructural studies, J. Cell Biol. 98:128–138.PubMedCrossRefGoogle Scholar
  71. Furcht, L. T., Wendelschafer-Crabb, G., Mosher, D. F., and Foidart, J. M., 1980, An axial periodic fibrillar arrangement of antigenic determinants for fibronectin and procollagen on ascorbate treated human fibroblasts, J. Supramol. Struct. 13:15–33.PubMedCrossRefGoogle Scholar
  72. Furie, M. B., and Rifkin, D. B., 1980, Proteolytically derived fragments of human plasma fibronectin and their localization within intact molecule, J. Biol. Chem. 365:3134–3140.Google Scholar
  73. Gabbiani, G., Lelous, M., Bailey, A. J., and Delauney, A., 1976, Collagen and myofibroblasts of granulation tissue. A chemical, ultrastructural and immunologic study, Virchows Arch. [Cell Pathol] 21:133–145.Google Scholar
  74. Gabbiani, G., Chapponnier, C., and Huttner, I., 1978, Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.PubMedCrossRefGoogle Scholar
  75. Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972, Granulation tissue as a contractile organ. A study of structure and function, J. Exp. Med. 135:19–734.CrossRefGoogle Scholar
  76. Gallin, J. I., and Kaplan, A. P., 1974, Mononuclear cell chemotactic activity of kallikrein and plasminogen activator and its inhibition by C1 inhibitor and α2-macroglubulin, J. Immunol. 113:1928–1934.PubMedGoogle Scholar
  77. Gauss-Muller, V., Kleinman, H. K., Martin, G. R., and Schiffman, E., 1980, Role of attachment factors and attractants in fibroblast chemotaxis, J. Lab. Clin. Med. 96:1071–1080.PubMedGoogle Scholar
  78. Gay, S., Rhodes, R. K., Gay, R. E., and Miller, E. J., 1981, Collagen molecules comprised of 1 (V)-chains (B chains): an apparent localization in the exocytoskeleton, Cell. Res. 1:53–58.Google Scholar
  79. Ghebrehiwet, B., Silverberg, M., and Kaplan, A. P., 1981, Activation of classic pathway of complement by Hageman factor fragment, J. Exp. Med. 153:665–676.PubMedCrossRefGoogle Scholar
  80. Gipson, I. K., Grill, S. M., Spun, S. J., and Brennan, S. J., 1983, Hemidesmosome formation in vitro, J. Cell Biol. 97:849–857.PubMedCrossRefGoogle Scholar
  81. Glaser, B. M., D’Amore, P. A., Seppa, H., Seppa, S., and Schiffmann, E., 1980, Adult tissues contain chemoattractants for vascular endothelial cells, Nature (Lond.) 288:483–484.CrossRefGoogle Scholar
  82. Glenn, K. C., and Cunningham, D. D., 1979, Thrombin-stimulated cell division involves proteolysis of its cell surface receptor, Nature (Lond.) 278:711–714.CrossRefGoogle Scholar
  83. Gordon, J. R., and Bernfield, M. R., 1980, The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization, Dev. Biol. 74:118–135.PubMedCrossRefGoogle Scholar
  84. Gospodarowicz, D., 1975, Purification of fibroblast growth factor from bovine pituitary, J. Biol. Chem. 250:2515–2520.PubMedGoogle Scholar
  85. Gospodarowicz, D., Moran, J. S., and Braun, D. L., 1977, Control of proliferation of bovine vascular endothelial cells, J. Cell Physiol. 91:377–386.PubMedCrossRefGoogle Scholar
  86. Gospodarowicz, D., Brown, K. D., Birdwell, C. R., and Zetter, B. R., 1978, Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin, J. Cell Biol. 77:774–778.PubMedCrossRefGoogle Scholar
  87. Gospodarowicz, D., Cheng, J., and Lirette, M., 1983, Bovine brain and pituitary fibroblast growth factors: comparison of their abilities to support the proliferation of human and bovine vascular endothelial cells, J. Cell Biol. 97:1677–1685.PubMedCrossRefGoogle Scholar
  88. Grinnell, F., Billingham, R. E., and Burgess, L., 1981, Distribution of fibronectin during wound healing in vivo, J. Invest. Dermatol. 76:181–189.PubMedCrossRefGoogle Scholar
  89. Grobstein, C., 1967, Mechanisms of organogenetic tissue interaction, Natl. Cancer Inst. Monog. 26:279–299.Google Scholar
  90. Grotendorst, G. R., 1984, Alteration of the chemotactic response of NIH/3T3 cells to PDGF by growth factors, transformation and tumor promoters, Cell 36:279–285.PubMedCrossRefGoogle Scholar
  91. Grobstein, C., 1967, Mechanisms of organogenetic tissue interaction, Natl. Cancer Inst. Monog. 26:279–299.Google Scholar
  92. Habal, F. M., Burrows, C. E., and Movat, H. Z., 1976, Generation of kinin by plasma kallikrein and plasmin, in: Kinins, Pharmacodynamics and Biological Role (F. Sicuteri, N. Black, and G. L. Haberland, eds.), pp. 23–36, Plenum, New York.Google Scholar
  93. Hall, E., and Cruickshank, C. N. D., 1963, The effect of injury upon the uptake of 3H thymidine by guinea pig epidermis, Exp. Cell Res. 31:128–139.CrossRefGoogle Scholar
  94. Hascall, V. C., and Hascall, G. K., 1981, Proteoglycans, in: Cell Biology of Extracellular Matrix (E. G. Hay, ed.), pp. 39–63, Plenum, New York.CrossRefGoogle Scholar
  95. Hasty, K. A., Hibbs, M. S., Seyer, J. M., Mainardi, C. L., and Kang, A. H., 1986, Secreted forms of human neutrophil collagenase, J. Biol. Chem. 261:5645–5650.PubMedGoogle Scholar
  96. Haudenschild, C. C., Zahniser, D., Folkman, J., and Klagsbrun, D. M., 1969, Stimulation of neovascularization of the cornea by biogenic amines, Exp. Eye Res. 8:77–83.CrossRefGoogle Scholar
  97. Haudenschild, C. C., Zahniser, D., Folkman, J., and Klagsbrun, M., 1976, Human vascular endothelial cells in culture. Lack of response to serum growth factors, Exp. Cell Res. 98:175–183.PubMedCrossRefGoogle Scholar
  98. Hay, E. B., and Meier, S., 1974. Glycosaminoglycan synthesis by embryonic inductors: neural tube, notecord, and lens, J. Cell Biol. 62:889–898.PubMedCrossRefGoogle Scholar
  99. Hayman, E. G., Oldburg, A., Martin, G. E., and Rouslahti, E., 1982, Codistribution of heparan sulfate proteoglycan, laminin, and fibronectin in the extracellular matrix of normal rat kidney cells, J. Cell Biol. 94:28–35.PubMedCrossRefGoogle Scholar
  100. Hedman, K., Johansson, S., Vartio, T., Kjellen, L., Vaheri, A., and Hook, M., 1982, Structure of the pericellular matrix: Association of heparan and chondroitin sulfates with fibronectin-procollagen fibers, Cell 28:663–671.PubMedCrossRefGoogle Scholar
  101. Heimark, R. L., and Schwartz, S. M., 1985, The role of membrane-membrane interactions in the regulation of endothelial cell growth, J. Cell Biol. 100:1934–1940.PubMedCrossRefGoogle Scholar
  102. Heldin, C. H., Westermark, B., and Wasteson, A., 1979, Platelet-derived growth factor: Purification and partial characterization, Proc. Natl. Acad. Sci. USA 65:3722–3726.CrossRefGoogle Scholar
  103. Hennings, H., Michael, D., Cheng, D., Steinert, P., Holbrook, K., and Yuspa, S. H., 1980, Calcuim regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19:245–254.PubMedCrossRefGoogle Scholar
  104. Herinmark, R. L., and Schwartz, S. M., 1985, The role of membrane-membrane interactions in the regulation of endothelial cell growth J. Cell Biol. 100:1934–1940.CrossRefGoogle Scholar
  105. Hering, T. M., Marchant, R. E., Anderson, J. M., 1983, Type V collagen during granulation tissue development, Exp. Mol. Pathol. 39:219–229.PubMedCrossRefGoogle Scholar
  106. Hibbs, M. S., Hasty, K. A., Seyer, J. M., Kang, A. H., and Mainardi, C. L., 1985, Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase, J. Biol. Chem. 260:2493–2501.PubMedGoogle Scholar
  107. Holund, B., Clemmensen, I., Junker, P., and Lyon, H., 1982, Fibronectin in experimental granulation tissue, Acta Pathol. Microbiol. Immunol. Scand. 90:159–165.Google Scholar
  108. Hopwood, J. J., and Dorfman, A., 1977, Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40, J. Biol. Chem. 252:4777–4785.PubMedGoogle Scholar
  109. Hsieh, P., and Chen, L. B., 1983, Behavior of cells seeded on isolated fibronectin matrices, J. Cell Biol. 96:1208–1217.PubMedCrossRefGoogle Scholar
  110. Hugli, T. E., and Muller-Eberhard, H. J., 1978, Anaphylatoxins, C3a and C5a, Adv. Immunol. 26:1–53.PubMedCrossRefGoogle Scholar
  111. Humes, J. L., Bonney, R. J., Pelus, L., Dahlgren, M. E., Saelowski, S. J., Kuehl, F. A., Jr., and Davies, P., 1977, Macrophages synthesize and release prostaglandins in response to inflammatory stimuli, Nature (Lond.) 269:149–151.CrossRefGoogle Scholar
  112. Hunt, T. K., 1980, Wound HeaJing and Wound Infection: Theory and SurgicaJ Practice, Appleton-Century-Crofts, New York.Google Scholar
  113. Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48:549–554.PubMedCrossRefGoogle Scholar
  114. Ignotz, R. A., and Massague, J., 1986, Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into extracellular matrix, J. Biol. Chem. 261:4337–4340.PubMedGoogle Scholar
  115. Imre, G., 1964, Role of lactic acid, Br. J. Ophthalmol. 48:75–82.PubMedCrossRefGoogle Scholar
  116. Josso, F., and Prou-Wartelle, O., 1965, Interaction of tissue factor and Factor VII at the earliest phase of coagulation, Thromb. Diath. Haemorrh. (Suppl.) 17: 35–44.Google Scholar
  117. Kalebic, T., Garbisa, S., Glaser, B., and Liotta, L. A., 1983, Basement membrane collagen: degradation by migrating endothelial cells, Science 221:281–283.PubMedCrossRefGoogle Scholar
  118. Kaplan, A. P., 1983, Hageman factor-dependent pathways: Mechanism of initiation and bradykinin formation, Fed. Proc. 42:3123–3127.PubMedGoogle Scholar
  119. Kaplan, A. P., and Austen, K. F., 1971, A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikreim from active Hageman factor with plasmin, J. Exp. Med. 133:696–712.PubMedCrossRefGoogle Scholar
  120. Kaplan, A. P., Kay, A. B., and Austen, K. F., 1972, A prealbumin activator of prekallikrein. III. Appearance of chemotactic activity for human neutrophils by conversion of human prekallikreim to kallikrein, J. Exp. Med. 135:81–97.PubMedCrossRefGoogle Scholar
  121. Kay, A. B., Pepper, D. S., and McKenzie, R., 1974, The identification of fibrinopeptide B as the chemotactic agent derived from human fibrinogen, Br. J. Haematol. 27:669–677.PubMedCrossRefGoogle Scholar
  122. Keski-Oja, T., Todaro, G. J., and Vaheri, A., 1981, Thrombin affects fibronectin and procollagen in the pericellular matrix of cultured human fibroblasts, Biochim. Biophys. Acta 673:323–331.PubMedCrossRefGoogle Scholar
  123. King, G. L., and Buchwald, S., 1984, Characterization and partial purification of an endothelial cell growth factor from human platelets, J. Clin. Invest. 73:392–396.PubMedCrossRefGoogle Scholar
  124. Kinsella, M. G., and Wight, T. N., 1986, Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration, J. Cell Biol. 102:679–687.PubMedCrossRefGoogle Scholar
  125. Kischer, C. W., and Shetlar, M. R., 1974, Collagen and mucopolysaccharides in the hypertrophic scar, Connect. Tissue Res. 3:205–213.CrossRefGoogle Scholar
  126. Kisiel, W., Canfield, W. M., Ericsson, L. H., and Davie, E. W., 1977, Anticoagulant properties of bovine plasma protein C following activation by thrombin, Biochemistry 16:5824–5831.PubMedCrossRefGoogle Scholar
  127. Kraemer, P. M., and Tobey, R. A., 1972, Cell-cycle dependent desquamation of heparan sulfate from the cell surface, J. Cell Biol. 55:713–717.PubMedCrossRefGoogle Scholar
  128. Krawczyk, W. S., 1971, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49:247–263.PubMedCrossRefGoogle Scholar
  129. Krawczyk, W. S., and Wilgram, G. F., 1973, Hemidesmosome and desmosome morphogenesis during epidermal wound healing, J. Ultrastruct. Res. 45:93–101.PubMedCrossRefGoogle Scholar
  130. Kurkinen, M., Vaheri, A., Roberts, P. J., and Stenman, S., 1980, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest. 43:47–51.PubMedGoogle Scholar
  131. Lachman, L. B., 1983, Human interleukin I: Purification and properties, Fed. Proc. 42:2639–2645.PubMedGoogle Scholar
  132. Lark, M. W., Laterra, J., and Culp, L. A., 1985, Close and focal contact adhesions of fibroblasts to fibronectin-containing matrix, Fed. Proc. 44:394–403.PubMedGoogle Scholar
  133. Lawrence, W. T., Sporn, M. B., Gorschbath, C., North, J. A., and Grotendorst, G., 1986, The reversal of an adriamycin induced healing impairment with chemoattractants and growth factors, Ann. Surg. 203:142–147.PubMedCrossRefGoogle Scholar
  134. Lazarus, G. S., Brown, R. S., Daniels, J. R., and Fullmer, H. M., 1968, Degradation of collagen by a human granulocyte collagenolytic system, J. Clin. Invest. 47:2622–2629.PubMedCrossRefGoogle Scholar
  135. Legrand, Y. J., Fauvel, F., and Caen, J. P., 1979, Adhesion of platelet to collagen, Front. Matrix. Biol. 7:246–257.Google Scholar
  136. Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair: A study with hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71–100.PubMedGoogle Scholar
  137. Lembach, K. J., 1976, Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor, J. Cell. Physiol. 89:277–288.PubMedCrossRefGoogle Scholar
  138. Letourneau, P. C., Ray, P. N., and Bernfeld, M. R., 1980, The regulation of cell behavior by cell adhesion, in BiologicaJ Regulation and Development, Vol. 2 (R. Goldberger, ed.), pp. 339–376, Plenum, New York.Google Scholar
  139. Levenson, S. M., Geever, E. F., Crowley, L. V., Oates, J. F. III, Berard, C. W., and Rosen, H., 1965, The healing of rat skin wounds, Ann. Surg. 161:293–308.PubMedCrossRefGoogle Scholar
  140. Lollar, P., Hoak, J. C., and Owen, W. G., 1980, Binding of thrombin to cultured human endothelial cells. Nonequilibrium aspects, J. Biol. Chem. 255:10279–10283.PubMedGoogle Scholar
  141. Loskutoff, D. J., and Edgington, T. E., 1977, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells, Proc. Natl Acad. Sci. USA 74:3903–3907.PubMedCrossRefGoogle Scholar
  142. Maciag, T., Hoover, G. A., and Weinstein, R., 1982, High and low molecular weight forms of endothelial cell growth factor, J. Biol. Chem. 257:5333–5336.PubMedGoogle Scholar
  143. Maciag, T., Mehlman, T., Friesal, R., and Schreiber, A. B., 1984, Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain, Science 225:932–935.PubMedCrossRefGoogle Scholar
  144. Madri, J. A., Williams, S. K., Wyatt, T., and Mezzio, C., 1983, Capillary endothelial cell cultures: phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.PubMedCrossRefGoogle Scholar
  145. Madri, J. A., and Stenn, K. S., 1982, Aortic endothelial cell migration. I. Matrix requirements and composition, Am. J. Pathol. 106,180–186.PubMedGoogle Scholar
  146. Mainardi, C. L., Hasty, K. A., and Hibbs, M. S., 1986, Type specific collagen degradation, Adv. Inflam. Res. 11:135–144.Google Scholar
  147. Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B., and Statkov, P. R., 1971, Contraction of granulation tissue in vitro: Similarity to smooth muscle, Science 173:548–550.PubMedCrossRefGoogle Scholar
  148. Marlar, R., Kleiss, A., and Griffin, J. H., 1982, an alternative extrinsic pathway of human blood coagulation, Blood 60:1353–1358.PubMedGoogle Scholar
  149. Martin, B. M., Gimbrone, M. A., Jr., Unanue, E. R., and Cotran, R. S., 1981, Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage derived growth factor, J. Immunol. 126:1510–1515.PubMedGoogle Scholar
  150. Martinet, Y., Bitterman, P. B., Mornex, J., Grotendorst, G. R., Martin, G. R., and Crystal, R. G., 1986, Activated human monocytes express the c-sis proto-oncogene and release a mediator showing PDGF-like activity, Nature (Lond.) 319:158–160.CrossRefGoogle Scholar
  151. Maynard, J. R., Heckman, C. A., Pitlick, F. A., and Nemerson, Y., 1975, Association of tissue factor activity with the surface of cultured cells, J. Clin. Invest. 55:814–824.PubMedCrossRefGoogle Scholar
  152. McCarthy, K., and Henson, P. M., 1979, Induction of lysosomal enzyme secretion by macrophages in response to the purified complement fragments C5a and C5a des Arg, J. Immunol. 123:2511–2517.PubMedGoogle Scholar
  153. McDonald, J. A., and Kelley, D. G., 1980, Degradation of fibronectin by human leukocyte elastase, J. Biol. Chem. 255:8848–8858.PubMedGoogle Scholar
  154. McDonald, J. A., Kelley, D. G., and Broekelmann, T. J., 1982, Role of fibronectin in collagen deposition. Fab1 antibodies to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix, J. Cell Biol. 92:485–492.PubMedCrossRefGoogle Scholar
  155. McDonald, J. A., Quade, B. J., Broekelmann, T. J., LaChance, R., Forsman, K., Hasegawa, E., and Akiyama, S., 1987, Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix, J. Biol. Chem. 262:2957–2967.PubMedGoogle Scholar
  156. McKenzie, R., Pepper, D. S., and Kay, A. B., 1975, The generation of chemotactic activity for human leukocytes by the action of plasmin on human fibrinogen, Thromb. Res. 6:1–8.PubMedCrossRefGoogle Scholar
  157. McPherson, J. M., Sawamura, S., Condell, R. A., Rhee, W., and Wallace, D. G., 1987, The effects of heparin on the physicochemical properties of reconstituted collagen, Cell. Relat. Res., in press.Google Scholar
  158. Moncada, S., Gryglewski, R., Bunting, S., and Vance, J. R., 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxidoses to an unstable substance that inhibits platelet aggregation, Nature (Lond.) 263:663–665.CrossRefGoogle Scholar
  159. Moscatelli, D., and Rubin, H., 1975, Increased hyaluronic acid production on stimulation of DNA synthesis in chick embryo fibroblasts, Nature (Lond.) 254:65–66.CrossRefGoogle Scholar
  160. Mosher, D. F., and Vaheri, A., 1978, Thrombin stimulates the production and release of a major surface-associated glycoprotein (fibronectin) in cultures of human fibroblasts, Exp. Cell. Res. 112:323–334.PubMedCrossRefGoogle Scholar
  161. Newman, S. L., Henson, J. E., and Henson, P. M., 1982, Phagocytosis of senescent neutrophils by human monocyte derived macrophages and rabbit inflammatory macrophages, J. Exp. Med. 156:430–442.PubMedCrossRefGoogle Scholar
  162. Norris, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Weston, W. L., and Howell, S. E., 1982, Fibronectin fragments are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.PubMedGoogle Scholar
  163. Nusgens, B., Merrill, C., Lapiere, C., and Bell, E., 1984, Collagen biosynthesis by cells in a tissue equivalent matrix in vitro, Cell Relat. Res. 4:351–363.CrossRefGoogle Scholar
  164. Oppenheimer, C. L., Pessin, J. E., Massague, J., Gitomer, W., and Czech, M. P., 1983, Insulin action rapidly modulates the apparent affinity of the insulin-like growth factor II receptor, J. Biol. Chem. 258:4824–4830.PubMedGoogle Scholar
  165. Plow, E. F., Loftus, J. C., Levin, E. G., Fair, D. S., Dixon, D., Forsyth, and Ginsberg, M. H., 1986, Immunologic relationship between platelet membrane glycoprotein GPIIb/IIIa and cell molecules exposed by a variety of cells. Proc. Natl. Acad. Sci. USA 83:6002–6006.PubMedCrossRefGoogle Scholar
  166. Polverini, P. J., Cotran, R. S., Gimbrone, M. A., Jr., and Unanue, E. R., 1977, Activated macrophages induce vascular proliferation, Nature (Lond.) 269:804–806.CrossRefGoogle Scholar
  167. Postlethwaite, A. E., and Kang, A. H., 1976, Collagen and collagen peptide-induced chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307.PubMedCrossRefGoogle Scholar
  168. Postlethwaite, A. E., Snyderman, R., and Kang, A. H., 1976, Chemotactic attraction of human fibroblasts to a lymphocyte-derived factor, J. Exp. Med. 144:1188–1203.PubMedCrossRefGoogle Scholar
  169. Postlethwaite, A. E., Seyer, J. M., and Kang, A. H., 1978, Chemotactic attraction of human fibroblasts to type I, II and III collagens and collagen-derived peptides, Proc. Natl. Acad. Sci. USA 75:871–875.PubMedCrossRefGoogle Scholar
  170. Postlethwaite, A. E., Snyderman, R., and Kang, A. H., 1979, Generation of a fibroblast chemotactic factor in serum by activation of complement, J. Clin Invest. 64:1379–1385.PubMedCrossRefGoogle Scholar
  171. Postlethwaite, A. E., Keski-Oja, J., Balian, G., and Kang, A., 1981, Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000 molecular weight nongelatin binding fragment, J. Exp. Med. 153:494–499.PubMedCrossRefGoogle Scholar
  172. Postlethwaite, A. E., Keski-Oja, J., Moses, H. L., and Kang, A. H., 1987, Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor-β, J. Exp. Med. 165:251–256.PubMedCrossRefGoogle Scholar
  173. Quintner, M. I., Kollar, E. J., and Rossomando, E. F., 1982, Proteoglycan modifications by granulation tissue in culture, Exp. Cell. Biol. 50:222–228.PubMedGoogle Scholar
  174. Raju, K. S., Alessandri, G., and Gullino, P. M., 1984, Characterization of a chemoattract for endothelium induced by angiogenesis effectors, Cancer Res. 44:1579–1584.PubMedGoogle Scholar
  175. Raz, A., Isakson, P. C., Minkes, M. S., and Needleman, P., 1977, Characterization of a novel metabolic pathway of arachidonate in coronary arteries which generates a potent endogenous coronary vasodilator, J. Biol. Chem. 252:1123–1126.PubMedGoogle Scholar
  176. Remensnyder, J. P., and Majno, G., 1968, Oxygen gradients in healing wounds, Am. J. Pathol. 52:301–319.PubMedGoogle Scholar
  177. Repesh, L. A., Fitzgerald, T. J., and Furcht, L. T., 1982, Fibronectin involvement in granulation tissue and wound healing in rabbits, J. Histochem. Cytochem. 30:351–358.PubMedCrossRefGoogle Scholar
  178. Rifkin, D. B., Gross, J. L., Moscatelli, D., and Jaffe, E., 1982, Proteases and angiogenesis: Production of plasminogen activation and collagenase by endothelial cells, in: Pathobiology of the Endothelial Cell (H. L. Nossel and H. J. Vogel, eds.), pp. 191–197, Academic, New York.Google Scholar
  179. Rijken, D., Wijngaards, G., and Welbergen, J., 1980, Relationship between tissue plasminogen activator and the activators in blood and vascular wall, Thromb. Res. 18:815–830.PubMedCrossRefGoogle Scholar
  180. Risau, W., and Ekblom, P., 1986, Production of a heparin-binding angiogenesis factor by the embryonic kidney, J. Cell Biol. 103:1101–1107.PubMedCrossRefGoogle Scholar
  181. Roberts, A. B., Sporn, M. B., Assovan, R. K., Smith, J. M., Roche, M. S., Heine, U. F., Liottay, L., Falanga, V., Kehrl, J. H., and Fanci, A. S., 1986, Transforming growth factor beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation, Proc. Natl. Acad. Sci. USA 83:4167–4171.PubMedCrossRefGoogle Scholar
  182. Robertson, P. B., Ryel, R. B., Taylor, R. E., Shyu, K. W., and Fullmer, H. M., 1972, Collagenase: Localization in polymorphonuclear leukocyte granules in the rabbit, Science 177:64–65.PubMedCrossRefGoogle Scholar
  183. Rollins, B. J., and Culp, L. A., 1979, Glycosaminoglycans in the substrate adhesion sites of normal and virus-transformed murine cells, Biochemistry 18:141–148.PubMedCrossRefGoogle Scholar
  184. Ross, R., Raines, E. W., and Bowen-Pospe, D. F., 1986, The biology of platelet-derived growth factor, Cell 46:155–169.PubMedCrossRefGoogle Scholar
  185. Rouzer, C. A., Scott, W. A., Hamill, A. L., Liu, F. T., Katz, D. H., and Cohn, Z. A., 1982, Secretion of leukotriene C and other arachidonic acid metabolites by macrophages challenged with immunoglobulin E immune complexes, J. Exp. Med. 156:1077–1086.PubMedCrossRefGoogle Scholar
  186. Rozengurt, E., Collins, M., Brown, K. D., and Pettican, P., 1982, Inhibition of epidermal growth factor binding to mouse cultured cells by fibroblast-derived growth factor, J. Biol. Chem. 257:3680–3686.PubMedGoogle Scholar
  187. Ruoslahti, E., and Pierschbacher, M. D., 1986, Arg-Gly-Asp: A versatile cell recognition signal, Cell 44:517–518.PubMedCrossRefGoogle Scholar
  188. Ryan, G. B., Cliff, W. J., Gabbiani, G., Irle, C., Statkov, P. R., and Majno, G., 1974, Myofibroblasts in human granulation tissue, Hum. Pathol. 5:55–67.PubMedCrossRefGoogle Scholar
  189. Sage, H., Trueb, B., and Bornstein, P., 1983, Biosynthetic and structural properties of endothelial cell type VlII collagen, J. Biol. Chem. 258:13391–13401.PubMedGoogle Scholar
  190. Sage, H., Balian, G., Vogel, A. M., and Bornstein, P., 1984, Type VIII collagen. Synthesis by normal and malignant cells in culture, Lab Invest. 50:219–231.PubMedGoogle Scholar
  191. Sakai, L., Keene, D. R., Morris, N. P., and Burgeson, R. E., 1986, Type VII collagen is a major structural component of anchoring fibrils, J. Cell Biol. 103:1577–1586.PubMedCrossRefGoogle Scholar
  192. Schroff, G., Newman, C., and Song, C., 1981, Transglutaminase as a marker for subsets of murine macrophages, Eur. J. Immunol. 11:637–642.PubMedCrossRefGoogle Scholar
  193. Schwartz, S. M., Gajdusek, C. M., and Owens, G. K., 1982, Vessel wall growth control in: Pathobiology of the Endothelial Cell (H. L. Nossel and H. J. Vogel, eds.), pp. 63–78, Academic, New York.Google Scholar
  194. Senior, R. M., Griffin, G. L., and Mecham, R. P., 1980, Chemotactic activity of elastin-derived peptides, J. Clin. Invest. 66:859–862.PubMedCrossRefGoogle Scholar
  195. Senior, R. M., Skogen, W. F., and Griffin, G. L., 1986, Effects of fibrinogen derivatives upon the inflammatory response, J. Clin. Invest. 77:1014–1019.PubMedCrossRefGoogle Scholar
  196. Seppa, H. E. J., Grotendorst, G. R., Seppa, S. I., Schiffmann, E., and Martin, G. R., 1982, Plateletderived growth factor is chemotactic for fibroblasts, J. Cell Biol. 92:584–588.PubMedCrossRefGoogle Scholar
  197. Shetlar, M. R., Shetlar, C. L., Chien, S-F., Linares, H. A., Dobrokovsky, M., and Larson, D. L., 1972, The hypertrophic scar. Hexosamine containing components of burn scars, Proc. Soc. Exp. Biol. Med. 139:544–547.PubMedGoogle Scholar
  198. Shimokado, K., Raines, E. W., Madtes, D. K., Barrett, T. B., Benditt, E. P., and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of two forms of PDGF, Cell 43:277–286.PubMedCrossRefGoogle Scholar
  199. Sholley, M. M., Gimbrone, M. A., Jr., and Cotran, R. S., 1978, The effects of leukocyte depletion on corneal neovascularization, Lab. Invest. 38:32–40.PubMedCrossRefGoogle Scholar
  200. Sidky, Y. A., and Auerbach, R., 1975, Lymphocyte-induced angiogenesis: A quantitative and sensitive assay of the graft-vs-host reaction, J. Exp. Med. 141:1084–1100.PubMedCrossRefGoogle Scholar
  201. Singer, I.I., 1979, The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm filaments in hamster and human fibroblasts, Cell 16:675–685.PubMedCrossRefGoogle Scholar
  202. Singer, I. I., and Paradiso, P. R., 1981, A transmembrane relationship between fibronectin and vinculin (130 kd protein): Serum modulation in normal and transformed hamster fibroblasts, Cell 24:481–492.PubMedCrossRefGoogle Scholar
  203. Singer, I. I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. F., 1984, In vivo co-distribution of fibronectin and actin fibers in granulation tissue: Immunofluroescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091–2106.PubMedCrossRefGoogle Scholar
  204. Sixma, J. J., 1978, Platelet coagulant activities, Thromb. Haemost. 40:163–167.PubMedGoogle Scholar
  205. Smith, L. T., Holbrook, K. A., Sadai, L. Y., and Burgeson, R. E., 1987, The ontogeny of hemidesmosomes, anchoring fibrils and type VII collagen in human fetal skin, Clin. Res. 35:252A.Google Scholar
  206. Snyderman, R., Altman, L., Hausman, M. S., and Mergenhagen, S. E., 1972, Human mononuclear leukocyte chemotaxis: A quantitative assay for humoral and cellular chemotactic factors, J. Immunol. 108:857–860.PubMedGoogle Scholar
  207. Sporn, M. B., and Roberts, A. B., 1986, Peptide growth factors and inflammation, tissue repair, and cancer, J. Clin. Invest. 78:329–332.PubMedCrossRefGoogle Scholar
  208. Sporn, M. B., Roberts, A. B., Shull, J. H., Smith, J. M., Ward, J. M., and Sodek, J., 1983, Polypeptide transforming growth factor isolated from bovine sources and used for wound healing in vitro, Science 219:1329–1331.PubMedCrossRefGoogle Scholar
  209. Sporn, M. B., Roberts, A. B., Wakefield, L. M., and Assoian, R. K., 1986, Transforming growth factor-B: Biological function and chemical structure, Science 233:532–534.PubMedCrossRefGoogle Scholar
  210. Stanley, J. R., Alvarez, O. M., Bere, E. W., Jr., Eaglstein, W. H., and Katz, S. L, 1981, Detection of basement membrane zone antigens during epidermal wound healing in pigs, J. Invest. Dermatol. 77:240–243.PubMedCrossRefGoogle Scholar
  211. Stecher, V. J., and Sorkin, E., 1972, The chemotactic activity of fibrin lysis products, Int. Arch. Allergy Appl. Immunol. 43:879–886.PubMedCrossRefGoogle Scholar
  212. Stiles, C. D., Capone, G., Scher, C. D., Antoniades, H. N., Van Wyk, J. J., and Pledger, W. J., 1979, Dual control of cell growth by somatomedins and platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 76:1279–1283.PubMedCrossRefGoogle Scholar
  213. Stimler, N. P., Bach, M. K., Bloor, C. M., and Hugli, T. E., 1982, Release of leukotrienes from guinea pig lung stimulated by C5a des arg anaphylatoxin, J. Immunol. 128:2247–2257.PubMedGoogle Scholar
  214. Sugrue, S. P., and Hay, E. D., 1981, Response of basal epithelial cell surface and cytoskeleton to solubilized extracellular matrix molecules, J. Cell Biol. 91:45–54.PubMedCrossRefGoogle Scholar
  215. Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H., and Kuhn, K., 1981, A network model for the organization of type IV collagen molecules in basement membranes, Eur. J. Biochem. 120:203–211.PubMedCrossRefGoogle Scholar
  216. Tomasek, J. J., and Hay, E. D., 1984, Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of Rhoblasts in migrated collagen gels, J. Cell Biol. 99:536–549.PubMedCrossRefGoogle Scholar
  217. Tomida, M., Koyama, H., and Ono, T., 1974, Hyaluronic acid synthetase in cultured mammalian cells producing hyaluronic acid. Oscillatory change during the growth phase and suppression by 5-bromodeoxyuridine, Biochim. Biophys. Acta 338:352–363.CrossRefGoogle Scholar
  218. Tomida, M., Koyama, H., and Omo, T., 1975, Induction of hyaluronic acid synthetase activity in rat fibroblasts by medium change of confluent cultures, J. Cell. Physiol. 86:121–130.PubMedCrossRefGoogle Scholar
  219. Toole, B. P., and Gross, J., 1971, The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation, Dev. Biol. 25:57–77.PubMedCrossRefGoogle Scholar
  220. Toole, B. P., and Trelstad, R. L., 1971, Hyaluronate production and removal during corneal development in the chick, Dev. Biol. 26:28–35.PubMedCrossRefGoogle Scholar
  221. Toole, B. P., 1972, Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton, Dev. Biol. 29:321–329.PubMedCrossRefGoogle Scholar
  222. Toole, B. P., 1981, Glycosaminoglycans in morphogenesis, in: Cell Biology of Extracellular Matrix (E. B. Hay, ed.), pp. 259–294, Plenum, New York.CrossRefGoogle Scholar
  223. Trelstad, R. L., and Silver, F. H., 1981, Matrix assembly, in: Cell Biology of Extracellular Matrix (E. B. Hay, ed.), pp. 179–215, Plenum, New York.CrossRefGoogle Scholar
  224. Trelstad, R. L., Hayaski, K., and Toole, B. P., 1974, Epithelial collagen and glycosaminoglycans in the embryonic cornea. Macromolecular order and morphogenesis in the basement membranes, J. Cell Biol. 62:815–830.PubMedCrossRefGoogle Scholar
  225. Tsukamoto, Y., Helsel, W. E., and Wahl, S. M., 1981, Macrophage production of fibronectin, a chemoattractant for fibroblasts, J. Immunol. 127:673–678.PubMedGoogle Scholar
  226. Turk, J. L., Heather, C. J., and Diengdoh, J. V., 1976, A histochemical analysis of mononuclear cell infiltrates of the skin with particular reference to delayed hypersensitivity in the guinea pig, Int. Arch. Allergy Appl. Immunol. 29:278–289.CrossRefGoogle Scholar
  227. Underhill, C. B., and Keller, J. M., 1976, Density-dependent changes in the amount of sulfated glycosaminoglycans associated with mouse 3T3 cells, J. Cell. Physiol. 89:53–63.PubMedCrossRefGoogle Scholar
  228. Unemori, E. N., and Werb, Z., 1986, Reorganization of polymerized actin: A possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels, J. Cell Biol. 103:1021–1031.PubMedCrossRefGoogle Scholar
  229. Vaheri, A., Kurkinen, M., Lehto, V. P., Linder, E., and Timpl, R., 1978, Codistribution of pericellular matrix proteins in cultured fibroblasts and loss in transformation: fibronectin and procollagen, Proc. Natl. Acad. Sci. USA 75:4944–4948.PubMedCrossRefGoogle Scholar
  230. van Furth, R., 1985, Cellular biology of pulmonary macrophages, Int. Arch. Allergy Appl. Immunol. 76(Suppl. 1):21–27.PubMedCrossRefGoogle Scholar
  231. Vartio, T., Seppa, H., and Vaheri, A., 1981, Susceptibility of soluble and matrix fibronectins to degradation by tissue proteinases, mast cell chymase and cathepsin G, J. Biol. Chem. 256:471–477.PubMedGoogle Scholar
  232. Viljanto, J., Penttinen, R., and Raekallio, J., 1981, Fibronectin in early phases of wound healing in children, Acta Chir. Scand. 147:7–13.PubMedGoogle Scholar
  233. Wahl, L. M., Olsen, C. E., Sandberg, A. L., and Mergenhagen, S. E., 1977, Prostaglandin regulation of macrophage collagenase production, Proc. Natl. Acad. Sci. USA 74:4955–4958.PubMedCrossRefGoogle Scholar
  234. Wall, R. T., Harker, L. A., and Striker, G. E., 1978, Human endothelial cell migration. Stimulated by a released platelet factor, Lab. Invest. 39:523–529.PubMedGoogle Scholar
  235. Weksler, B. B., Marcus, A. J., and Jaffee, E. A., 1977, Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells, Proc. Natl. Acad. Sci. USA 74:3922–3926.PubMedCrossRefGoogle Scholar
  236. Werb, A., and Gordon, S., 1975a, Secretion of a specific collagenase by stimulated macrophages, J. Exp. Med. 142:346–360.PubMedCrossRefGoogle Scholar
  237. Werb, A., and Gordon, S., 1975b, Elastase secretion by stimulated macrophages, J. Exp. Med. 142:361–377.PubMedCrossRefGoogle Scholar
  238. Winter, G. D., 1962, Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig, Nature (Lond.) 193:293–294.CrossRefGoogle Scholar
  239. Winter, G. D., 1972, Epidermal regeneration studied in the domestic pig, in: Epidermal Wound Healing (H. I. Maibach and D. T. Rovee, eds.), pp. 71–112, Year Book Medical, Chicago.Google Scholar
  240. Wolf, J. E., and Harrison, R. G., 1973, Demonstration and characterization of an epidermal angiogenic factor, J. Invest. Dermatol. 61:130–141.PubMedCrossRefGoogle Scholar
  241. Wood, G. C., 1960, The formation of fibrils from collagen solutions. Effect of chondroitin sulfate and other naturally occurring polyanions on the rate of formation, Biochem. J. 75:605–612.PubMedGoogle Scholar
  242. Wrann, M., Fox, C., and Ross, R., 1980, Modulation of epidermal growth factor receptors on 3T3 cells by platelet-derived growth factor, Science 210:1363–1365.PubMedCrossRefGoogle Scholar
  243. Yamada, K., and Olden, K., 1978, Fibronectins—Adhesive glycoproteins of cell surface and blood, Nature (Lond.) 275:179–184.CrossRefGoogle Scholar
  244. Zauberman, H., Michaelson, I. C., Bergmann, F., and Maurice, D. M., 1969, Stimulation of neovascularization of the cornea by biogenic amines, Exp. Eye Res. 8:77–83.PubMedCrossRefGoogle Scholar
  245. Zetter, B. R., Chen, L. B., and Buchanan, J., 1976, Effects of protease treatment on growth, morphology, adhesion, and cell surface proteins of secondary chick embryo fibroblasts, Cell 7:407–412.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Richard A. F. Clark
    • 1
  1. 1.Department of MedicineNational Jewish Center for Immunology and Respiratory MedicineDenverUSA

Personalised recommendations