Skip to main content

Using Algebraic Geometry for Multivariate Polynomial Interpolation

  • Chapter

Part of the book series: Software Science and Engineering ((SSEN))

Abstract

Interpolation provides a direct way of fitting analytic functions to sampled data. Chapter 8 is motivated by computational efficiency and deals with polynomials rather than arbitrary analytic forms. We distinguish between multivariate polynomial functions

$$F:x_n = f_1 \left( {x_1 , \ldots ,x_{n - 1} } \right)$$

multivariate rational functions

$$\Re :x_n = \frac{{f_1 \left( {x_1 , \ldots ,X_{n - 1} } \right)}} {{f_2 \left( {x_1 , \ldots ,X_{n - 1} } \right)}}$$

and polynomial algebraic functions or implicitly defined hypersurfaces

$$H:f_1 \left( {x_1 , \ldots ,X_n } \right) = 0$$

where all f i are multivariate polynomials with coefficients in ℝ. While prior work on interpolation has dealt with multivariate polynomial functions F and rational functions ℬ, see for example References 1–5, little work has been reported on interpolation with implicitly defined hypersur-faces ℋ. See References 6 and 15 which summarizes prior work on implicit surface interpolation in three dimensions and provides several additional references.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfeld, P. “Scattered data interpolation in three or more variables,” In Mathematical Methods in Computer Aided Geometric Design, T. Lyche, and L. Schumaker, eds. 1–34. Academic Press, New York.

    Google Scholar 

  2. deBoor, C.; Hollig, K.; and Sabin, M. “High-accuracy geometric Hermite interpolation.” Computer Aided Geometric Design 4, 269–78 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  3. Chui, C. Multivariate Splines. Regional Conference Series in Applied Mathematics, 54 Philadelphia: SIAM (1988).

    Book  Google Scholar 

  4. Dahmen, W.; and Micchelli, C. “Recent progress in multivariate splines.” Approximation Theory IV, vol. 3, no. 2, ed. Chui, C., Schumaker, L., and Word, J., 27–121(1983).

    Google Scholar 

  5. Hollig, K. “Multivariate splines.” SIAM J. Numer. Anal. 19, 1013–31 (1982).

    Article  MathSciNet  Google Scholar 

  6. Bajaj, C. “Surface fitting using implicit algebraic surface patches.” In Topics in Surface Modeling, H. Hagen, ed. Philadelphia: SIAM Publications, 23–52 (1992).

    Google Scholar 

  7. Semple, J.; and Roth, L. Introduction to Algebraic Geometry. Oxford University Press, New York (1949).

    MATH  Google Scholar 

  8. Zariski, O.; and Samuel, P. Commutative Algebra, Vols 1, 2. Springer Verlag, New York (1958).

    MATH  Google Scholar 

  9. Bajaj, C. “Geometric modeling with algebraic surfaces.” In The Mathematics of Surfaces III, D. Handscomb, ed. Oxford University Press, Oxford, (1988). 3–48.

    Google Scholar 

  10. Bajaj, C.; and Ihm, I. “Algebraic surface design with hermite interpolation,” ACM Transactions on Graphics 11(1),61–91 (1992).

    Article  MATH  Google Scholar 

  11. Arnon, D.; Collins, G.; and McCallum, S. “Cylindrical algebraic decomposition 1: the basic algorithm,” Siam J. Comput. 13(4), 865–89 (1984).

    Article  MathSciNet  Google Scholar 

  12. Golub, G., and Van Loan, C. Matrix Computations. Baltimore: Johns Hopkins Univ. Press, (1983).

    MATH  Google Scholar 

  13. Bajaj, C.; and Ihm, I. “Smoothing polyhedra with implicit algebraic splines.” Comput. Graphics 26(2),79–88 (1992).

    Article  Google Scholar 

  14. Bajaj, C.; Ihm, I.; and Warren, J. “Exact and least squares approximate C k fitting of implicit algebraic surfaces.“ ACM Transactions on Graphics Vol 12, No. 4, (1993), 327–347.

    Article  MATH  Google Scholar 

  15. Bajaj, C. “The Emergence of Algebraic Curves and Surfaces in Geometric Design” Directions in Geometric Computing, R. Martin, ed., Information Geometers Press, U.K., (1993)1–29.

    Google Scholar 

  16. Bajaj, C. “Multi-dimensional Hermite Interpolation and Approximation for Modeling and Visualization”, Proc. of the IFIP TC5/WG5.2/WG5.10 CSI International Conference on Computer Graphics, ICCG93, (1993), IFIP Transactions B-9, North Holland, (1993) 335–348.

    Google Scholar 

  17. Schwartz, J. “Fast Probabilistic Algorithms for Verification of Polynomial Identities,” Journal of the ACM, 27, 4,701–717(1980).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bajaj, C.L. (1994). Using Algebraic Geometry for Multivariate Polynomial Interpolation. In: Rice, J., DeMillo, R.A. (eds) Studies in Computer Science. Software Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1791-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1791-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5723-0

  • Online ISBN: 978-1-4615-1791-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics