Skip to main content

Abstract

Seed formation begins with the combination of a male and female gamete: a process known as fertilization. Fertilization, or syngamy, can occur when both male and female gametophytes are fully mature. This usually occurs in a dual fusion process known as double fertilization (Figure 2.1). When the pollen grain lands on the stigma, it germinates by sending out a pollen tube, which grows down the style, through the micropyle and into the embryo sac, with the tube nucleus closely following the tube apex downward. The tube nucleus soon degenerates, but the two pollen sperm cells enter the embryo sac, one fusing with the diploid (2N) polar nucleus to form a triploid (3N) endosperm nucleus and the other fusing with the egg cell to form a diploid (2N) zygote, or fertilized egg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Andrews, P., W. J. Collins, and W. R. Stern. 1977. The effect of withholding water during flowering on seed production in Trifolium subterraneum L. Australian Journal Agriculture Research 28:301–307.

    Article  Google Scholar 

  • Bean, E. W. 1980. Factors affecting the quality of herbage seeds. In: Seed Production, ed. P. D. Hebblethwaite, pp. 593–604, London: Butterworth.

    Google Scholar 

  • Bhatnager, S. B., and B. M. Hohri. 1972. Development of angiosperm seeds. In: Seed Biology, Vol. I, pp. 77–149. New York: Academic Press.

    Google Scholar 

  • Boswell, F. C., and D. E. Anderson. 1976. Long-term residual fertility and current N-P-K application effects on soybeans. Agronomy Journal 68:315–318.

    Article  CAS  Google Scholar 

  • Bradbury, D., I. M. Cull, and M. M. MacMasters. 1956a. Structure of the mature wheat kernel. I. Gross anatomy and relationship of parts. Cereal Chemistry 33(6): 329–342.

    Google Scholar 

  • Bradbury, D., I. M. Cull, and M. M. MacMasters. 1956b. Structure of the mature wheat kernel. II. Microscopic structure of the pericarp, seed coat, and other coverings of the endosperm and germ of hard red winter wheat. Cereal Chemistry 33(6): 342–360.

    Google Scholar 

  • Bradbury, D., M. M. MacMasters, and I. M. Cull. 1956a. Structure of the mature wheat kernel. III. Microscopic structure of the endosperm of hard red winter wheat. Cereal Chemistry 33(6): 361–373.

    Google Scholar 

  • Bradbury, D., M. M. MacMasters, and I. M. Cull. 1956b. Structure of the mature wheat kernel. IV. Microscopic structure of the germ of hard red winter wheat. Cereal Chemistry 33(6): 373–391.

    Google Scholar 

  • Briggs, D. E. 1978. Barley. London: Chapman and Hall.

    Book  Google Scholar 

  • Brink, R. A., and D. C. Cooper. 1947. The endosperm in seed development. Botanical Review 13:423–541.

    Article  Google Scholar 

  • Brown, W. V. 1960. The morphology of the grass embryo. Phytomorphology 10:215–223.

    Google Scholar 

  • Buttrose, M. S. 1963. Ultrastructure of the developing aleurone cells of wheat grain. Australian Journal of Biological Sciences 16:768–774.

    Google Scholar 

  • Chute, H. M. 1932. The morphology and anatomy of the achene. American Journal of Botany 17:703–723.

    Article  Google Scholar 

  • Clarke, J. M. 1979. Intra plant variation in number of seeds per pod and seed weight in Brassica napus ‘Tower.’ Canadian Journal of Plant Science 59:959–962.

    Article  Google Scholar 

  • Clifford, P. E., C. E. Offler, and J. W. Patrick. 1987. Injection of growth regulators into seeds growing in situ on plants of Phaseolus vulgaris with a double fruit stack system. Canadian Journal of Botany 65:612–615.

    Article  CAS  Google Scholar 

  • Collins, W. J., R. C. Rossiter, and A. R. Monreal. 1978. The influence of shading on seed yield and hard-seededness in swards of subterranean clover. Australian Journal of Agricultural Research 32:783–792.

    Article  Google Scholar 

  • Corner, E. J. H. 1951. The leguminous seed. Phytomorphology 1:117–150.

    Google Scholar 

  • Dewdney, S. J., and J. A. McWha. 1979. Abscisic acid and the movement of photosynthetic assimilates towards developing wheat (Triticum aestivum L.) grains. Z. Pflanzenphysiol. 92:183–186.

    CAS  Google Scholar 

  • Downes, R. W., and J. S. Gladstones. 1984. Physiology of growth and seed production in Lupinus augustifolius L. II. Effect of temperature before and after flowering. Australian Journal of Agricultural Research 34:501–509.

    Article  Google Scholar 

  • Eck, H. V. 1984. Irrigated corn yield responses to nitrogen and water. Agronomy Journal 76:421–428.

    Article  Google Scholar 

  • Eck, H. V. 1986. Effects of water deficits on yield, yield components, and water use efficiency of irrigated corn. Agronomy Journal 78:1035–1040.

    Article  Google Scholar 

  • Egli, D. B., R. A. Wiralaga, and E. L. Ramseur. 1987. Variation in seed size in soybean. Agronomy Journal 79:697–700.

    Article  Google Scholar 

  • Elmore, R. W., and J. A. Jackobs. 1984. Yield and yield components of sorghum and soybeans of varying plant heights when intercropped. Agronomy Journal 76:561–564.

    Article  Google Scholar 

  • Ene, B. N., and E. W. Bean. 1975. Variations in seed quality between certified seed lots of perennial rye grass and their relationships to nitrogen supply and moisture status during seed development. Journal of British Grassland Society 30:195–199.

    Article  Google Scholar 

  • Forsyth, C., and N. A. C. Brown. 1982. Germination of the dimorphic fruits of Bidens pilosa L. New Phytology 90:151–164.

    Article  Google Scholar 

  • Foulds, F. E. 1929. A study of the comparative morphology of the seeds of Agropyron. Scientific Agriculture (Ottawa) 10:200–219.

    Google Scholar 

  • Frederick, J. R., and H. G. Marshall. 1985. Grain yield and yield components of soft red winter wheat as affected by management practices. Agronomy Journal 77:495–499.

    Article  Google Scholar 

  • George, R. A. T., R. J. Stephens, and S. Varis. 1980. The effect of mineral nutrients on the yield and quality of seeds of tomato. In: Seed Production, ed. P. D. Hebblethwaite, pp. 561–567, London: Butterworth.

    Google Scholar 

  • Gray, D., J. R. A. Steckel, and J. A. Ward. 1986. The effect of cultivar and cultural factors on embryo-sac volume and seed weight in carrot (Daucus carota L.). Annals of Botany 58:737–744.

    Google Scholar 

  • Green, A. G. 1986. Effect of temperature during seed maturation on the oil composition of low-linolenic genotypes of flax. Crop Science 26:961–965.

    Article  CAS  Google Scholar 

  • Gubbels, G. H. 1981. Quality, yield and seed weight of green field peas under conditions of applied shade. Canada Journal of Plant Science 61:213–217.

    Article  Google Scholar 

  • Ham, G. E., I. E. Liener, S. D. Evans, R. D. Frazier, and W. W. Nelson. 1975. Yield and composition of soybean seed as affected by nitrogen and sulfur fertilization. Agronomy Journal 67:293–297.

    Article  CAS  Google Scholar 

  • Hanft, J. M., R. J. Jones, and A. B. Stumme. 1986. Dry matter accumulation and carbohydrate concentration patterns of field-grown and in vitro cultured maize kernels from the tip and middle ear positions. Crop Science 26:568–572.

    Article  Google Scholar 

  • Harlan, J. R. 1946. The development of buffalo grass seed. Journal of the American Society of Agronomy 38:135–141.

    Article  Google Scholar 

  • Haupt, A. W. 1934. Ovule and embryo sac of Plumbago capensis. Botanical Gazette 95:649–659.

    Article  Google Scholar 

  • Humphreys, E., W. A. Muirhead, F. M. Melhuish, and R. J. G. White. 1987. Effects of time of urea application on combine-sown calrose rice in south-east Australia. 1. Crop response and nitrogen uptake. Australian Journal of Agricultural Research 38:101–112.

    Article  Google Scholar 

  • Jenner, C. F. 1979. Grain-filling in wheat plants shaded for brief periods after anthesis. Australian Journal of Plant Physiology 6:629–641.

    Article  CAS  Google Scholar 

  • Johnsen, D. A. 1945. A critical survey of the present status of plant embryology. Botanical Review 11:87–107.

    Article  Google Scholar 

  • Kiniry, J. R., and R. L. Musser. 1988. Response of kernel weight of sorghum to environment early and late in grain filling. Agronomy Journal 80:606–610.

    Article  Google Scholar 

  • Kiniry, J. R., and J. T. Richie. 1985. Shade-sensitive interval of kernel number of maize. Agronomy Journal 77:711–715.

    Article  Google Scholar 

  • Kiniry, J. R., C. A. Wood, D. A. Spanel, and A. J. Bockholt. 1990. Seed weight response to decreased seed number in maize. Agronomy Journal 54:98–102.

    Article  Google Scholar 

  • Langer, R. H. M., and F. K. Y. Liew. 1973. Effects of varying nitrogen supply at different stages of the reproductive phase on spikelet and grain production and on grain nitrogen in wheat. Australian Journal of Agricultural Research 24:647–656.

    Article  Google Scholar 

  • Leffler, H. R., C. D. Elmore, and J. D. Hesketh. 1977. Seasonal and fertility-related changes in cottonseed protein quantity and quality. Crop Science 17:953–956.

    Article  CAS  Google Scholar 

  • Leininger, L. N., and A. L. Urie. 1964. Development of safflower seed from flowering to maturity Crop Science 4:83–87.

    Article  Google Scholar 

  • Loewenberg, J. R. 1955. The development of bean seeds (Phaseolus vulgaris L.). Plant Physiology 30:244–250.

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari, P. 1950. An Introduction to the Embryology of the Angiosperms. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Malik, K. B., and S. A. Shakara. 1977. Effect of growth regulators on seed development and indeterminate type of growth in sugar beet. Agriculture Pakistan 28:65–75.

    CAS  Google Scholar 

  • Martin, J. N. 1937. The strophiole in sweet clover and alfalfa seeds. Proceedings of the Iowa Academy of Sciences 44:104.

    Google Scholar 

  • McGinley, M. A. 1989. Within and among plant variation in seed mass and pappus size in Tragopogon dubious. Canadian Journal of Botaony 67:1298–1304.

    Article  Google Scholar 

  • McGraw, R. L., P. R. Beuselinck, and R. R. Smith. 1986. Effect of latitude on genotype x environment interactions for seed yield in birdsfoot trefoil. Crop Science 26:603–605.

    Article  Google Scholar 

  • Meckel, L., D. B. Egli, R. E. Phillips, D. Radcliffe, and J. E. Leggett. 1984. Effect of moisture stress on seed growth in soybeans. Agronomy Journal 76:647–650.

    Article  Google Scholar 

  • Muchow, R. C. 1990. Effect of high temperature on the rate and duration of grain growth in field-grown Sorghum bicolor (L.) Moench. Australian Journal of Agricultural Research 41:329–337.

    Article  Google Scholar 

  • Peet, M. M., and P. J. Kramer. 1980. Effects of decreasing source/sink ratio in soybeans on photosynthesis, photorespiration, transpiration and yield. Plant Cell and Environment 3:201–206.

    Google Scholar 

  • Povilaitis, B., and J. W. Boyles. 1960. Ovule development in diploid red clover. Canadian Journal of Botany 38:507–532.

    Article  Google Scholar 

  • Radley, M. 1978. Factors affecting grain enlargement in wheat. Journal of Experimental Botany 29:919–934.

    Article  CAS  Google Scholar 

  • Randolph, L. F., 1936. Developmental morphology of the caryopsis in maize. Journal of Agricultural Research 53:881–916.

    Google Scholar 

  • Rao, V. S. 1959. Nuclear endosperm or noncellular endosperm? Annals of Botany (London) 23:364.

    Google Scholar 

  • Reed, E. L. 1924. Anatomy, embryology, and ecology of Arachis hypogea. Botanial Gazette 78:289–310.

    Article  Google Scholar 

  • Reeves, R. G. 1932. Development of the ovule and embryo sac of alfalfa. American Journal of Botany 17:239–246.

    Article  Google Scholar 

  • Reeves, R. G. 1936. Comparative anatomy of the seeds of cotton and other malvaceous plants, I. Malveae and Ureneae. American Journal of Botany 23:291–296.

    Article  Google Scholar 

  • Reid, J. B. 1979. Flowering in Pisum: Effect of the parental environment. Annals of Botany 44:461–467.

    Google Scholar 

  • Rincker, C. M., J. G. Dean, C. S. Garrison, and R. G. May. 1977. Influence of environment and clipping on the seed-yield potential of three red clover cultivars. Crop Science 17:58–60.

    Article  Google Scholar 

  • Roach, D. A. 1986. Timing of seed production and dispersal in Geranium carolinianum: Effects on fitness. Ecology 67:572–576.

    Article  Google Scholar 

  • Schussler, J. R., M. L. Brenner, and W. A. Brun. Abscisic acid and its relationship to seed filling in soybeans. Plant Physiology 76:301–306.

    Article  Google Scholar 

  • Shimzu, N., T. Komatsu, and F. Ikegaya. 1979. Studies on seed development and ripening in temperate grasses. II. Effects of temperature on seed development and ripening and germination behavior in orchard grass (Dactylis glomerata) and Italian rye grass (Lolium multiflorwn). Bulletin of National Grassland Institute 15:70–87.

    Google Scholar 

  • Siddique, M. A., and P. B. Goodwin. 1980. Seed vigor in bean (Phaseolus vulgaris L. cv. Apollo) as influenced by temperature and water regime during development and maturation. Journal of Experimental Botany 31:313–323.

    Article  Google Scholar 

  • Simmons, S. R., and R. K. Crookston. 1979. Rate and duration of growth of kernels formed at specific florets in spikelets of spring wheat. Crop Science 19:690–693.

    Article  Google Scholar 

  • Singh, B. 1953. Studies on the structure and development of seeds of Cucurbitaceae. Phytomorphology 3:224–239.

    Google Scholar 

  • Singh, D. 1961. Development of embryos in the Cucurbitaceae. Journal of the Indian Botanical Society 40:620–623.

    Google Scholar 

  • Singh, H., and B. M. Johri. 1972. Development of gymnosperm seeds. In: Seed Biology, Vol. I. ed. T. T. Kozlowski, pp. 21–75. New York: Academic Press.

    Google Scholar 

  • Singh, R. P. 1954. Structure and development of seeds in Euphorbiaceae: Ricinus communis L. Phytomorphology 4:118–123.

    Google Scholar 

  • Sionit, N., H. Hellmers, and B. R. Strain. 1980. Growth and yield of wheat under CO2 enrichment and water stress. Crop Science 20:687–690.

    Article  Google Scholar 

  • Sripleng, A., and F. H. Smith. 1960. Anatomy of the seed of Convolvulus arvensis. American Journal of Botany 47:386–392.

    Article  Google Scholar 

  • Teitz, A., and M. Dingkuhn. 1981. Regulation of assimilate transport in barley by the abscisic acid content of young caryopses. Z. Pflanzenphysiol. 104:475–479.

    Google Scholar 

  • Thompson, R. C. 1933. A morphological study of flower and seed development in cabbage. Journal of Agricultural Research 47:215–232.

    Google Scholar 

  • Varis, S., and R. A. T. George. 1985. The influence of mineral nutrition of fruit yield, seed yield and quality in tomato. Journal of Horticultural Science 60:373–376.

    Google Scholar 

  • Varner, J. E. 1965. Seed development and germination. In: Plant Biochemistry, ed. J. Bonner and J. E. Varner. pp. 763–792. New York: Academic Press.

    Google Scholar 

  • Venable, D. L., and D. A. Levin. 1985. Ecology of achene dimorphism in Heterotheca latifolia. I. Achene structure, germination and dispersal. Journal of Ecology 73:133–145.

    Article  Google Scholar 

  • Verkaar, H. J., and A. J. Schenkeveld. 1984. On the ecology of short-lived forbs in chalk grasslands: Semelparity and seed output of some species in relation to various levels of nutrient supply. New Phytology 98:673–682.

    Article  Google Scholar 

  • Wardlaw, I. F., I. A. Dawson, and P. Munibi. 1989. The tolerance of wheat to high temperatures during reproductive growth. II. Grain development. Australian Journal of Agricultural Research 40:15–24.

    Article  Google Scholar 

  • Westermann, D. T., and S. E. Crothers. 1977. Plant population effects on the seed yield components of beans. Crop Science 17:493–496.

    Article  Google Scholar 

  • Winter, D. M. 1960. The development of the seed of Abutilon theophrasti, I. Ovule and embryo. American Journal of Botany 47:8–14.

    Article  Google Scholar 

  • Wood, D. W., R. K. Scott, and P. C. Longden. 1980. The effects of mother-plant temperature on seed quality in Beta vulgaris L. (sugar beet). In: Seed Production, ed. P. D. Hebblethwaite, pp. 257–270, London: Butterworth.

    Google Scholar 

  • Wright, D. L., F. M. Shokes, and R. K. Sprenkel. 1984. Planting method and plant population influence on soybeans. Agronomy Journal 76:921–924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Copeland, L.O., McDonald, M.B. (1999). Seed Formation and Development. In: Principles of Seed Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1783-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1783-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5719-3

  • Online ISBN: 978-1-4615-1783-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics