Advertisement

Acetogenesis pp 539-556 | Cite as

CO Dehydrogenase of Methanogens

  • James G. Ferry
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

CO dehydrogenase has a central role in the anaerobic component of the global carbon cycle. The anaerobic decomposition of complex organic matter involves microbial food chains (consortia) in which acetate is the most abundant intermediate. The acetate is primarily metabolized by acetotrophs, terminal organisms of the food chain, utilizing a pathway in which activated acetate (acetyl-CoA) is cleaved by CO dehydrogenase. The enzyme also catalyzes the synthesis of acetyl-CoA in the acetyl-CoA Ljungdahl-Wood pathway of homoacetogens (see Chapters 1 and 3). Although the physiology of these anaerobes are highly variable, the unity of biochemistry predicts that the underlying chemistry of their metabolism is basically the same. This principal of biochemistry is vividly evident in the CO dehydrogenase (acetyl-CoA cleaving) of acetotrohic methanogens from the Archaea domain; the enzyme has properties that are surprisingly similar to the CO dehydrogenase (acetyl-CoA synthesizing) of homoacetogens from the Bacteria domain. CO dehydrogenases also function in autotrophic methanogens to synthesize acetyl-CoA from CO2 in a process fundamentally similar to the Ljungdahl-Wood pathway. The extreme phylogenetic diversity between the two domains offer a unique opportunity for studies aimed at understanding the mechanism and evolution of CO dehydrogenases in anaerobes.

Keywords

Midpoint Potential Methanosarcina Barkeri Complex Organic Matter Carbon Monoxide Dehydrogenase Aceticlastic Methanogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbanat, D. R., and J. G. Ferry. 1990. Synthesis of acetyl-CoA by the carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:7145–7150.PubMedGoogle Scholar
  2. Abbanat, D. R., and J. G. Ferry. 1991. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc. Natl. Acad. Sci. USA 88:3272–3276.PubMedCrossRefGoogle Scholar
  3. Alber, B. E., and J. G. Ferry. 1994. A novel carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  4. Bhatnagar, L., J. A. Krzycki, and J. G. Zeikus. 1987. Analysis of hydrogen metabolism in Methanosarcina barkeri: regulation of hydrogenase and role of CO-dehydrogenase in H2 production. FEMS Microbiol. Lett. 41:337–343.CrossRefGoogle Scholar
  5. Bott, M., B. Eikmanns, and R. K. Thauer. 1986. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159:393–398.PubMedCrossRefGoogle Scholar
  6. Bott, M., and R. K. Thauer. 1987. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur. J. Biochem. 168:407–412.PubMedCrossRefGoogle Scholar
  7. Bott, M., and R. K. Thauer. 1989. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Biochem. 179:469–472.PubMedCrossRefGoogle Scholar
  8. Clements, A. P., and J. G. Ferry. 1992. Cloning, nucleotide sequence, and transcriptional analyses of the gene encoding a ferredoxin from Methanosarcina thermophila. J. Bacteriol. 174:5244–5250.PubMedGoogle Scholar
  9. Conrad, R., and R. K. Thauer. 1983. Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 20:229–232.CrossRefGoogle Scholar
  10. Daniels, L., G. Fuchs, R. K. Thauer, and J. G. Zeikus. 1977. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–126.PubMedGoogle Scholar
  11. DeMoll, E., D. A. Grahame, J. M. Harnly, L. Tsai, and T. C. Stadtman. 1987. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J. Bacteriol. 169:3916–3920.PubMedGoogle Scholar
  12. DiMarco, A. A., T. A. Bobik, and R. S. Wolfe. 1990. Unusualcoenzymesof methanogenesis. Annu. Rev. Biochem. 59:355–394.PubMedCrossRefGoogle Scholar
  13. Eggen, R. I. L., A. C. M. Geerling, M. S. M. Jetten, and W. M. Devos. 1991. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J. Biol. Chem. 266:6883–6887.PubMedGoogle Scholar
  14. Eikmanns, B., and R. K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch. Microbiol. 138:365–370.CrossRefGoogle Scholar
  15. Eikmanns, B., and R. K. Thauer. 1985. Evidence for the involvement and role of a corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri. Arch. Microbiol. 142:175–179.CrossRefGoogle Scholar
  16. Eikmanns, B., G. Fuchs, and R. K. Thauer. 1985. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum. Eur. J. Biochem. 146:149–154.PubMedCrossRefGoogle Scholar
  17. Ferry, J. G. 1992a. Biochemistry of methanogenesis. Crit. Rev. Biochem. Mol. Biol. 27:473–503.PubMedCrossRefGoogle Scholar
  18. Ferry, J. G. 1992b. Methane from acetate. J. Bacteriol. 174:5489–5495.PubMedGoogle Scholar
  19. Fischer, R., and R. K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:459–465.CrossRefGoogle Scholar
  20. Fischer, R., and R. K. Thauer. 1990a. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2. Arch. Microbiol. 153:156–162.CrossRefGoogle Scholar
  21. Fischer, R., and R. K. Thauer. 1990b. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368–372.PubMedCrossRefGoogle Scholar
  22. Fischer, R., P. Gartner, A. Yeliseev, and R. K. Thauer. 1992. N-5-methyltetrahydromethanopterinxoenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch. Microbiol. 158:208–217.PubMedCrossRefGoogle Scholar
  23. Gokhale, J. U., H. C. Aldrich, L. Bhatnagar, and J. G. Zeikus. 1993. Localization of carbon monoxide dehydrogenase in acetate-adapted Methanosarcina barkeri. Can. J. Microbiol. 39:223–226.CrossRefGoogle Scholar
  24. Grahame, D. A. 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266:22227–22233.PubMedGoogle Scholar
  25. Grahame, D. A., and T. C. Stadtman. 1987. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme. J. Biol. Chem. 262:3706–3712.PubMedGoogle Scholar
  26. Hammel, K. E., K. L. Cornwell, G. B. Diekert, and R. K. Thauer. 1984. Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus. J. Bacteriol. 157:975–978.PubMedGoogle Scholar
  27. Harder, S. R., W. P. Lu, B. A. Feinberg, and S. W. Ragsdale. 1989. Spectroelectrochemical studies of the corrinoid iron-sulfur protein involved in acetyl coenzyme-A synthesis by Clostridium thermoaceticum. Biochemistry 28:9080–9087.PubMedCrossRefGoogle Scholar
  28. Hegeman, G. 1980. Oxidation of carbon monoxide by bacteria. Trends Biochem. Sci. 5:1–3.CrossRefGoogle Scholar
  29. Heiden, S., R. Hedderich, E. Setzke, and R. K. Thauer. 1993. Purification of a cytochrome-b containing H2: heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Eur. J. Biochem. 213:529–535.PubMedCrossRefGoogle Scholar
  30. Jablonski, P. E., W. P. Lu, S. W. Ragsdale, and J. G. Ferry. 1993. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol. Chem. 268:325–329.PubMedGoogle Scholar
  31. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1989. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. FEBS Lett. 181:437–441.Google Scholar
  32. Jetten, M. S. M., W. R. Hagen, A. J. Pierik, A. J. M. Stams, and A. J. B. Zehnder. 1991a. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 195:385–391.PubMedCrossRefGoogle Scholar
  33. Jetten, M. S. M., A. J. Pierik, and W. R. Hagen. 1991b. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 202:1291–1297.PubMedCrossRefGoogle Scholar
  34. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1992. Methanogenesis from acetate. A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. F EMS Microbiol. Rev. 88:181–198.CrossRefGoogle Scholar
  35. Kluyver, A. J., and C. G. T. P. Schnellen. 1947. On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch. Biochem. 14:57–70.PubMedGoogle Scholar
  36. Köhler, H. P. E. 1988. Isolation of cobamides from Methanothrix soehngenii: 5-methylbenzimidazole as the x-ligand of the predominant cobamide. Arch. Microbiol. 150:219–223.CrossRefGoogle Scholar
  37. Krone, U. E., R. K. Thauer, H. P. C. Hogenkamp, and K. Steinbach. 1991. Reductive formation of carbon monoxide from CC14 and FREON-11, FREON-12, and FREON-13 catalyzed by corrinoids. Biochemistry 30:2713–2719.PubMedCrossRefGoogle Scholar
  38. Krzycki, J. A., and J. G. Zeikus. 1984. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J. Bacteriol. 158:231–237.PubMedGoogle Scholar
  39. Krzycki, J. A., L. J. Lehman, and J. G. Zeikus. 1985. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J. Bacteriol. 163:1000–1006.PubMedGoogle Scholar
  40. Krzycki, J. A., L. E. Mortenson, and R. C. Prince. 1989. Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J. Biol. Chem. 264:7217–7221.PubMedGoogle Scholar
  41. Krzycki, J. A., and R. C. Prince. 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochim. Biophys. Acta 1015:53–60.CrossRefGoogle Scholar
  42. Kumar, M., and S. W. Ragsdale. 1992. Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy. J. Am. Chem. Soc. 114:8713–8715.CrossRefGoogle Scholar
  43. Laufer, K., B. Eikmanns, U. Frimmer, and R. K. Thauer. 1987. Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation from methyliodide, CO2, and H2 by the enzyme system involved. Z. Naturforsch. 42c:360–372.Google Scholar
  44. Lu, W. P., S. R. Harder, and S. W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265:3124–3133.PubMedGoogle Scholar
  45. Lu, W. P., I. Schiau, J. R. Cunningham, and S. W. Ragsdale. 1993. Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity. J. Biol. Chem. 268:5605–5614.PubMedGoogle Scholar
  46. Lu, W. P., P. E. Jablonski, M. E. Rasche, J. G. Ferry, and S. W. Ragsdale. 1994. Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila. J. Biol. Chem. 269:9736–9742.PubMedGoogle Scholar
  47. Maupin, J. A., and J. G. Ferry. 1993. Corrinoid-containing cobalt/iron-sulfur component of the CO dehydrogenase complex from Methanosarcina thermophila strain TM-1: cloning, sequencing, and overexpression in Escherichia coli. Abstr. 113, p. 242. 93rd General Meet. Am. Soc. Microbiol. 1993.Google Scholar
  48. Min, H., and S. H. Zinder. 1989. Kinetics of acetate utilization by 2 thermophilic acetotrophic methanogens: Methanosarcina sp strain CALS-1 and Methanothrix sp strain CALS-1. Appl. Environ. Microbiol. 55:488–491.PubMedGoogle Scholar
  49. Mukhopadhyay, B., E. Purwantini, E. C. Demacario, and L. Daniels. 1991. Characterization of a Methanosarcina strain isolated from goat feces, and that grows on H2-CO2 only after adaptation. Curr. Microbiol. 23:165–173.CrossRefGoogle Scholar
  50. Nelson, M. J. K., K. C. Terlesky, and J. G. Ferry. 1987. Recent developments on the biochemistry of methanogenesis from acetate. In: Microbial Growth on C-1 Compounds, H. W. van Verseveld and J. A. Duine (eds.), pp. 70–76. Martinus Nijhoff, Dordrecht.CrossRefGoogle Scholar
  51. O’Brien, J. M., R. H. Wolkin, T. T. Moench, J. B. Morgan, and J. G. Zeikus. 1984. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158:373–375.PubMedGoogle Scholar
  52. Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii Appl. Environ. Microbiol. 58:703–705.Google Scholar
  53. Patel, G. B., and G. D. Sprott. 1990. Methanosaeta concilii Gen-Nov, Sp-Nov (Methanothrix concilii) and Methanosaeta thermoacetophila Nom-Rev, Comb-Nov. Int. J. Syst. Bacteriol. 40:79–82.CrossRefGoogle Scholar
  54. Petersen, S. P., and B. K. Ahring. 1991. Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor. The importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86:149–157.CrossRefGoogle Scholar
  55. Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26:261–300.PubMedCrossRefGoogle Scholar
  56. Raybuck, S. A., S. E. Ramer, D. R. Abbanat, J. W. Peters, W. H. Orme-Johnson, J. G. Ferry, and C. T. Walsh. 1991. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:929–932.PubMedGoogle Scholar
  57. Silveira, R. G., N. Nishio, and S. Nagai. 1991. Growth characteristics and corrinoid production of Methanosarcina barkeri on methanol-acetate medium. J. Ferment. Bioengineer. 71:28–34.CrossRefGoogle Scholar
  58. Sowers, K. R., S. F. Baron, and J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.PubMedGoogle Scholar
  59. Stadtman, T. C. 1967. Methane fermentation. Annu. Rev. Microbiol. 21:121–142.PubMedCrossRefGoogle Scholar
  60. Stupperich, E., and B. Krautler. 1988. Pseudo vitamine B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Arch. Microbiol. 149:268–271.CrossRefGoogle Scholar
  61. Terlesky, K. C., M. J. K. Nelson, and J. G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing a corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:1053–1058.PubMedGoogle Scholar
  62. Terlesky, K. C., M. J. Barber, D. J. Aceti, and J. G. Ferry. 1987. EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J. Biol. Chem. 262:15392–15395.PubMedGoogle Scholar
  63. Terlesky, K. C., and J. G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.PubMedGoogle Scholar
  64. Terlesky, K. C., and J. G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.PubMedGoogle Scholar
  65. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemothrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  66. Thauer, R. K., D. Moller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.PubMedCrossRefGoogle Scholar
  67. Thebrath, B., H. P. Mayer, and R. Conrad. 1992. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol. Ecol. 86:295–302.CrossRefGoogle Scholar
  68. van de Wijingaard, W. M. H., C. van der Drift, and G. D. Vogels. 1988. Involvement of a corrinoid enzyme in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol. Lett. 52:165–172.CrossRefGoogle Scholar
  69. Vogels, G. D., J. T. Keltjens, and C. van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (eds.), pp. 707–770. Wiley, New York.Google Scholar
  70. Westermann, P., B. K. Ahring, and R. A. Mah. 1989a. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol. 55:1262–1266.PubMedGoogle Scholar
  71. Westermann, P., B. K. Ahring, and R. A. Mah. 1989b. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514–515.PubMedGoogle Scholar
  72. Woese, C. R., O. Kandier, and M. L. Wheelis. 1990. Towards a natural system of organisms. Proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579.PubMedCrossRefGoogle Scholar
  73. Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.PubMedGoogle Scholar
  74. Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.CrossRefGoogle Scholar
  75. Zinder, S. H., K. R. Sowers, and J. G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int. J. Syst. Bacteriol. 35:522–523.CrossRefGoogle Scholar
  76. Zinder, S. H., and T. Anguish. 1992. Carbon monoxide, hydrogen, and formate metabolism during methanogenesis from acetate by thermophilic cultures of Methanosarcina and Methanothrix strains. Appl. Environ. Microbiol. 58:3323–3329.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • James G. Ferry

There are no affiliations available

Personalised recommendations