Skip to main content
Book cover

Acetogenesis pp 539–556Cite as

CO Dehydrogenase of Methanogens

  • Chapter

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

CO dehydrogenase has a central role in the anaerobic component of the global carbon cycle. The anaerobic decomposition of complex organic matter involves microbial food chains (consortia) in which acetate is the most abundant intermediate. The acetate is primarily metabolized by acetotrophs, terminal organisms of the food chain, utilizing a pathway in which activated acetate (acetyl-CoA) is cleaved by CO dehydrogenase. The enzyme also catalyzes the synthesis of acetyl-CoA in the acetyl-CoA Ljungdahl-Wood pathway of homoacetogens (see Chapters 1 and 3). Although the physiology of these anaerobes are highly variable, the unity of biochemistry predicts that the underlying chemistry of their metabolism is basically the same. This principal of biochemistry is vividly evident in the CO dehydrogenase (acetyl-CoA cleaving) of acetotrohic methanogens from the Archaea domain; the enzyme has properties that are surprisingly similar to the CO dehydrogenase (acetyl-CoA synthesizing) of homoacetogens from the Bacteria domain. CO dehydrogenases also function in autotrophic methanogens to synthesize acetyl-CoA from CO2 in a process fundamentally similar to the Ljungdahl-Wood pathway. The extreme phylogenetic diversity between the two domains offer a unique opportunity for studies aimed at understanding the mechanism and evolution of CO dehydrogenases in anaerobes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbanat, D. R., and J. G. Ferry. 1990. Synthesis of acetyl-CoA by the carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:7145–7150.

    PubMed  CAS  Google Scholar 

  • Abbanat, D. R., and J. G. Ferry. 1991. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc. Natl. Acad. Sci. USA 88:3272–3276.

    Article  PubMed  CAS  Google Scholar 

  • Alber, B. E., and J. G. Ferry. 1994. A novel carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. USA (in press).

    Google Scholar 

  • Bhatnagar, L., J. A. Krzycki, and J. G. Zeikus. 1987. Analysis of hydrogen metabolism in Methanosarcina barkeri: regulation of hydrogenase and role of CO-dehydrogenase in H2 production. FEMS Microbiol. Lett. 41:337–343.

    Article  CAS  Google Scholar 

  • Bott, M., B. Eikmanns, and R. K. Thauer. 1986. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Bott, M., and R. K. Thauer. 1987. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur. J. Biochem. 168:407–412.

    Article  PubMed  CAS  Google Scholar 

  • Bott, M., and R. K. Thauer. 1989. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Biochem. 179:469–472.

    Article  PubMed  CAS  Google Scholar 

  • Clements, A. P., and J. G. Ferry. 1992. Cloning, nucleotide sequence, and transcriptional analyses of the gene encoding a ferredoxin from Methanosarcina thermophila. J. Bacteriol. 174:5244–5250.

    PubMed  CAS  Google Scholar 

  • Conrad, R., and R. K. Thauer. 1983. Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 20:229–232.

    Article  CAS  Google Scholar 

  • Daniels, L., G. Fuchs, R. K. Thauer, and J. G. Zeikus. 1977. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–126.

    PubMed  CAS  Google Scholar 

  • DeMoll, E., D. A. Grahame, J. M. Harnly, L. Tsai, and T. C. Stadtman. 1987. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J. Bacteriol. 169:3916–3920.

    PubMed  CAS  Google Scholar 

  • DiMarco, A. A., T. A. Bobik, and R. S. Wolfe. 1990. Unusualcoenzymesof methanogenesis. Annu. Rev. Biochem. 59:355–394.

    Article  PubMed  CAS  Google Scholar 

  • Eggen, R. I. L., A. C. M. Geerling, M. S. M. Jetten, and W. M. Devos. 1991. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J. Biol. Chem. 266:6883–6887.

    PubMed  CAS  Google Scholar 

  • Eikmanns, B., and R. K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch. Microbiol. 138:365–370.

    Article  CAS  Google Scholar 

  • Eikmanns, B., and R. K. Thauer. 1985. Evidence for the involvement and role of a corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri. Arch. Microbiol. 142:175–179.

    Article  CAS  Google Scholar 

  • Eikmanns, B., G. Fuchs, and R. K. Thauer. 1985. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum. Eur. J. Biochem. 146:149–154.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, J. G. 1992a. Biochemistry of methanogenesis. Crit. Rev. Biochem. Mol. Biol. 27:473–503.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, J. G. 1992b. Methane from acetate. J. Bacteriol. 174:5489–5495.

    PubMed  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:459–465.

    Article  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1990a. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2. Arch. Microbiol. 153:156–162.

    Article  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1990b. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368–372.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., P. Gartner, A. Yeliseev, and R. K. Thauer. 1992. N-5-methyltetrahydromethanopterinxoenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch. Microbiol. 158:208–217.

    Article  PubMed  CAS  Google Scholar 

  • Gokhale, J. U., H. C. Aldrich, L. Bhatnagar, and J. G. Zeikus. 1993. Localization of carbon monoxide dehydrogenase in acetate-adapted Methanosarcina barkeri. Can. J. Microbiol. 39:223–226.

    Article  CAS  Google Scholar 

  • Grahame, D. A. 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266:22227–22233.

    PubMed  CAS  Google Scholar 

  • Grahame, D. A., and T. C. Stadtman. 1987. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme. J. Biol. Chem. 262:3706–3712.

    PubMed  CAS  Google Scholar 

  • Hammel, K. E., K. L. Cornwell, G. B. Diekert, and R. K. Thauer. 1984. Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus. J. Bacteriol. 157:975–978.

    PubMed  CAS  Google Scholar 

  • Harder, S. R., W. P. Lu, B. A. Feinberg, and S. W. Ragsdale. 1989. Spectroelectrochemical studies of the corrinoid iron-sulfur protein involved in acetyl coenzyme-A synthesis by Clostridium thermoaceticum. Biochemistry 28:9080–9087.

    Article  PubMed  CAS  Google Scholar 

  • Hegeman, G. 1980. Oxidation of carbon monoxide by bacteria. Trends Biochem. Sci. 5:1–3.

    Article  Google Scholar 

  • Heiden, S., R. Hedderich, E. Setzke, and R. K. Thauer. 1993. Purification of a cytochrome-b containing H2: heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Eur. J. Biochem. 213:529–535.

    Article  PubMed  CAS  Google Scholar 

  • Jablonski, P. E., W. P. Lu, S. W. Ragsdale, and J. G. Ferry. 1993. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol. Chem. 268:325–329.

    PubMed  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1989. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. FEBS Lett. 181:437–441.

    CAS  Google Scholar 

  • Jetten, M. S. M., W. R. Hagen, A. J. Pierik, A. J. M. Stams, and A. J. B. Zehnder. 1991a. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 195:385–391.

    Article  PubMed  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. Pierik, and W. R. Hagen. 1991b. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 202:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1992. Methanogenesis from acetate. A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. F EMS Microbiol. Rev. 88:181–198.

    Article  CAS  Google Scholar 

  • Kluyver, A. J., and C. G. T. P. Schnellen. 1947. On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch. Biochem. 14:57–70.

    PubMed  CAS  Google Scholar 

  • Köhler, H. P. E. 1988. Isolation of cobamides from Methanothrix soehngenii: 5-methylbenzimidazole as the x-ligand of the predominant cobamide. Arch. Microbiol. 150:219–223.

    Article  Google Scholar 

  • Krone, U. E., R. K. Thauer, H. P. C. Hogenkamp, and K. Steinbach. 1991. Reductive formation of carbon monoxide from CC14 and FREON-11, FREON-12, and FREON-13 catalyzed by corrinoids. Biochemistry 30:2713–2719.

    Article  PubMed  CAS  Google Scholar 

  • Krzycki, J. A., and J. G. Zeikus. 1984. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J. Bacteriol. 158:231–237.

    PubMed  CAS  Google Scholar 

  • Krzycki, J. A., L. J. Lehman, and J. G. Zeikus. 1985. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J. Bacteriol. 163:1000–1006.

    PubMed  CAS  Google Scholar 

  • Krzycki, J. A., L. E. Mortenson, and R. C. Prince. 1989. Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J. Biol. Chem. 264:7217–7221.

    PubMed  CAS  Google Scholar 

  • Krzycki, J. A., and R. C. Prince. 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochim. Biophys. Acta 1015:53–60.

    Article  CAS  Google Scholar 

  • Kumar, M., and S. W. Ragsdale. 1992. Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy. J. Am. Chem. Soc. 114:8713–8715.

    Article  CAS  Google Scholar 

  • Laufer, K., B. Eikmanns, U. Frimmer, and R. K. Thauer. 1987. Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation from methyliodide, CO2, and H2 by the enzyme system involved. Z. Naturforsch. 42c:360–372.

    Google Scholar 

  • Lu, W. P., S. R. Harder, and S. W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265:3124–3133.

    PubMed  CAS  Google Scholar 

  • Lu, W. P., I. Schiau, J. R. Cunningham, and S. W. Ragsdale. 1993. Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity. J. Biol. Chem. 268:5605–5614.

    PubMed  CAS  Google Scholar 

  • Lu, W. P., P. E. Jablonski, M. E. Rasche, J. G. Ferry, and S. W. Ragsdale. 1994. Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila. J. Biol. Chem. 269:9736–9742.

    PubMed  CAS  Google Scholar 

  • Maupin, J. A., and J. G. Ferry. 1993. Corrinoid-containing cobalt/iron-sulfur component of the CO dehydrogenase complex from Methanosarcina thermophila strain TM-1: cloning, sequencing, and overexpression in Escherichia coli. Abstr. 113, p. 242. 93rd General Meet. Am. Soc. Microbiol. 1993.

    Google Scholar 

  • Min, H., and S. H. Zinder. 1989. Kinetics of acetate utilization by 2 thermophilic acetotrophic methanogens: Methanosarcina sp strain CALS-1 and Methanothrix sp strain CALS-1. Appl. Environ. Microbiol. 55:488–491.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, B., E. Purwantini, E. C. Demacario, and L. Daniels. 1991. Characterization of a Methanosarcina strain isolated from goat feces, and that grows on H2-CO2 only after adaptation. Curr. Microbiol. 23:165–173.

    Article  CAS  Google Scholar 

  • Nelson, M. J. K., K. C. Terlesky, and J. G. Ferry. 1987. Recent developments on the biochemistry of methanogenesis from acetate. In: Microbial Growth on C-1 Compounds, H. W. van Verseveld and J. A. Duine (eds.), pp. 70–76. Martinus Nijhoff, Dordrecht.

    Chapter  Google Scholar 

  • O’Brien, J. M., R. H. Wolkin, T. T. Moench, J. B. Morgan, and J. G. Zeikus. 1984. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158:373–375.

    PubMed  Google Scholar 

  • Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii Appl. Environ. Microbiol. 58:703–705.

    CAS  Google Scholar 

  • Patel, G. B., and G. D. Sprott. 1990. Methanosaeta concilii Gen-Nov, Sp-Nov (Methanothrix concilii) and Methanosaeta thermoacetophila Nom-Rev, Comb-Nov. Int. J. Syst. Bacteriol. 40:79–82.

    Article  Google Scholar 

  • Petersen, S. P., and B. K. Ahring. 1991. Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor. The importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86:149–157.

    Article  CAS  Google Scholar 

  • Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26:261–300.

    Article  PubMed  CAS  Google Scholar 

  • Raybuck, S. A., S. E. Ramer, D. R. Abbanat, J. W. Peters, W. H. Orme-Johnson, J. G. Ferry, and C. T. Walsh. 1991. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:929–932.

    PubMed  CAS  Google Scholar 

  • Silveira, R. G., N. Nishio, and S. Nagai. 1991. Growth characteristics and corrinoid production of Methanosarcina barkeri on methanol-acetate medium. J. Ferment. Bioengineer. 71:28–34.

    Article  CAS  Google Scholar 

  • Sowers, K. R., S. F. Baron, and J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.

    PubMed  CAS  Google Scholar 

  • Stadtman, T. C. 1967. Methane fermentation. Annu. Rev. Microbiol. 21:121–142.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., and B. Krautler. 1988. Pseudo vitamine B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Arch. Microbiol. 149:268–271.

    Article  CAS  Google Scholar 

  • Terlesky, K. C., M. J. K. Nelson, and J. G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing a corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:1053–1058.

    PubMed  CAS  Google Scholar 

  • Terlesky, K. C., M. J. Barber, D. J. Aceti, and J. G. Ferry. 1987. EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J. Biol. Chem. 262:15392–15395.

    PubMed  CAS  Google Scholar 

  • Terlesky, K. C., and J. G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.

    PubMed  CAS  Google Scholar 

  • Terlesky, K. C., and J. G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemothrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., D. Moller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.

    Article  PubMed  CAS  Google Scholar 

  • Thebrath, B., H. P. Mayer, and R. Conrad. 1992. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol. Ecol. 86:295–302.

    Article  CAS  Google Scholar 

  • van de Wijingaard, W. M. H., C. van der Drift, and G. D. Vogels. 1988. Involvement of a corrinoid enzyme in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol. Lett. 52:165–172.

    Article  Google Scholar 

  • Vogels, G. D., J. T. Keltjens, and C. van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (eds.), pp. 707–770. Wiley, New York.

    Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Mah. 1989a. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol. 55:1262–1266.

    PubMed  CAS  Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Mah. 1989b. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514–515.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., O. Kandier, and M. L. Wheelis. 1990. Towards a natural system of organisms. Proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579.

    Article  PubMed  CAS  Google Scholar 

  • Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.

    Article  CAS  Google Scholar 

  • Zinder, S. H., K. R. Sowers, and J. G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int. J. Syst. Bacteriol. 35:522–523.

    Article  Google Scholar 

  • Zinder, S. H., and T. Anguish. 1992. Carbon monoxide, hydrogen, and formate metabolism during methanogenesis from acetate by thermophilic cultures of Methanosarcina and Methanothrix strains. Appl. Environ. Microbiol. 58:3323–3329.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Ferry, J.G. (1994). CO Dehydrogenase of Methanogens. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics