Skip to main content

Autotrophic Acetyl Coenzyme A Biosynthesis in Methanogens

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Demonstration of the Ljungdahl-Wood pathway of autotrophic acetyl-CoA biosynthesis in methanogens was a difficult task complicated by the unusual coenzymes of methanogenesis and the lack of detailed knowledge for the acetyl-CoA synthase at the time the work was initiated. Because methanogens provided the first evidence for the widespread distribution of the pathway outside the homoacetogenic clostridia, this work was of special importance. Its eventual success was dependent on the description of the C-1 carriers in the pathway of CO2 reduction to methane and the clostridial acetyl-CoA synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bott, M. H., B. Eikmanns, and R. K. Thauer. 1985. Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch. Microbiol. 143:266–269.

    Article  CAS  Google Scholar 

  • Conrad, R., and R. K. Thauer. 1983. Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 20:229–232.

    Article  CAS  Google Scholar 

  • Daniels, L., G. Fuchs, R. K. Thauer, and J. G. Zeikus. 1977. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–126.

    PubMed  CAS  Google Scholar 

  • Daniels, L., and J. G. Zeikus. 1978. One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J. Bacteriol. 136:75–84.

    PubMed  CAS  Google Scholar 

  • DeMoll, E., D. A. Grahame, J. M. Harnly, L. Tsai, and T. C. Stadtman. 1987. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J. Bacteriol. 169:3916–3920.

    PubMed  CAS  Google Scholar 

  • Diekert, G. B., and R. K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606.

    PubMed  CAS  Google Scholar 

  • DiMarco, A. A., T. A. Bobik, and R. S. Wolfe. 1990. Unusual coenzymesof methanogenesis. Annu. Rev. Biochem. 59:355–394.

    Article  PubMed  CAS  Google Scholar 

  • Drake, H. L., S. Hu, and H. G. Wood. 1981. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J. Biol. Chem. 256:11137–11144.

    PubMed  CAS  Google Scholar 

  • Eikmanns, B., G. Fuchs, and R. K. Thauer. 1985. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum. Eur. J. Biochem. 146:149–154.

    Article  PubMed  CAS  Google Scholar 

  • Escalante-Semerena, J. C., K. L. Rinehart, and R. S. Wolfe. 1984. Tetrahydromethanopterin, a carbon carrier in methanogenesis. J. Biol. Chem. 259:9447–9455.

    PubMed  CAS  Google Scholar 

  • Evans, J. N. S., C. J. Tolman, and M. F. Roberts. 1986. Indirect observation by 13C NMR spectroscopy of a novel CO2 fixation pathway in methanogens. Science 231:488–491.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, J. G., D. W. Sherod, H. D. Peck, Jr., and L. G. Ljungdahl. 1976. Levels of formyltetrahydrofolate synthetase and methylenetetrahydrofolate dehydrogenase in methanogenic bacteria. In: Proceedings of the Symposium “Microbial Production and Utilization of Gases (H2, CH4, CO),” H. G. Schlegel, G. Gottschalk, and N. Pfennig (eds.), pp. 151–155. Goltze, Göttingen.

    Google Scholar 

  • Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.

    Article  CAS  Google Scholar 

  • Fuchs, G., and E. Stupperich. 1978. Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch. Microbiol. 118:121–125.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, G., E. Stupperich, and R. K. Thauer. 1978a. Acetate assimilation and the synthesis of alanine, aspartate, and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, G., E. Stupperich, and R. K. Thauer. 1978b. Function of fumarate reductase in methanogenic bacteria (Methanobacterium). Arch. Microbiol. 119:215–218.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, G., and E. Stupperich. 1980. Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Arch. Microbiol. 127:267–272.

    Article  CAS  Google Scholar 

  • Fuchs, G., and E. Stupperich. 1986. Carbon assimilation pathways in archaebacteria. Syst. Appl. Microbiol. 7:364–369.

    Article  CAS  Google Scholar 

  • Gunsalus, R. P., and R. S. Wolfe. 1977. Stimulation of CO2 reduction to methane by methylcoenzyme in extracts of Methanobacterium. Biochem. Biophys. Res. Commun. 76:790–795.

    Article  PubMed  CAS  Google Scholar 

  • Holder, U., D. E. Schmidt, E. Stupperich, and G. Fuchs. 1985. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. III. Evidence for common one-carbon precursor pool and the role of corrinoid. Arch. Microbiol. 141:229–238.

    Article  CAS  Google Scholar 

  • Hoyt, J. C., A. Oren, J. C. Escalante-Semerena, and R. S. Wolfe. 1986. Tetrahydromethanopterin-dependent serine transhydroxymethylase from Methanobacterium thermoautotrophicum. Arch. Microbiol. 145:153–158.

    Article  CAS  Google Scholar 

  • Kenealy, W., and J. G. Zeikus. 1981. Influence of corrinoid antagonists on methanogen metabolism. J. Bacteriol. 146:133–140.

    PubMed  CAS  Google Scholar 

  • Kenealy, W. R., and J. G. Zeikus. 1982. One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J. Bacteriol. 151:932–941.

    PubMed  CAS  Google Scholar 

  • Kluyver, A. J., and C. G. Schnellen. 1947. On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch. Biochem. 14:57–70.

    PubMed  CAS  Google Scholar 

  • Ladapo, J., and W. B. Whitman. 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA 87:5598–5602.

    Article  PubMed  CAS  Google Scholar 

  • Länge, S., and G. Fuchs. 1985. Tetrahydromethanopterin, a coenzyme involved in autotrophic acetyl coenzyme A synthesis from 2 CO2 in Methanobacterium. FEBS Lett. 181:303–307.

    Article  Google Scholar 

  • Länge, S., and G. Fuchs. 1987. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterinbound C1 units and carbon monoxide. Eur. J. Biochem. 163:147–154.

    Article  PubMed  Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40:415–450.

    Article  PubMed  CAS  Google Scholar 

  • Lu, W., S. R. Harder, and S. W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265:3124–3133.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake. 1983. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258:2364–2369.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., and H. G. Wood. 1985. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps in the synthesis. J. Biol. Chem. 260:3970–3977.

    PubMed  CAS  Google Scholar 

  • Rouviere, P. E., and R. S. Wolfe. 1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:7913–7916.

    PubMed  CAS  Google Scholar 

  • Rühlemann, M., K. Ziegler, E. Stupperich, and G. Fuchs. 1985. Detection of acetyl coenzyme A as an early CO2 assimilation intermediate in Methanobacterium. Arch. Microbiol. 141:399–406.

    Article  Google Scholar 

  • Shanmugasundaram, T., S. W. Ragsdale, and H. G. Wood. 1988. Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium, Acetobacterium woodii. BioFactors 1:147–152.

    PubMed  CAS  Google Scholar 

  • Shieh, J., and W. B. Whitman. 1987. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J. Bacteriol. 169:5327–5329.

    PubMed  CAS  Google Scholar 

  • Shieh, J., and W. B. Whitman. 1988. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripuladis. J. Bacteriol. 170:3072–3079.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., J. L. Lequerica, and M. R. Hart. 1985. Inhibition of methanogenesis and carbon metabolism in Methanosarcina sp. by cyanide. J. Bacteriol. 162:67–71.

    PubMed  CAS  Google Scholar 

  • Stupperich, E., and G. Fuchs. 1981. Products of CO2 fixation and 14C labelling pattern of alanine in Methanobacterium thermoautotrophicum pulse-labelled with 14CO2. Arch. Microbiol. 130:294–300.

    Article  CAS  Google Scholar 

  • Stupperich, E., and G. Fuchs. 1983. Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 in Methanobacterium. FEBS Lett. 156:345–348.

    Article  CAS  Google Scholar 

  • Stupperich, E., K. E. Hammel, G. Fuchs, and R. K. Thauer. 1983. Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett. 152:21–23.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., and G. Fuchs. 1984a. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. I. Properties of in vitro system. Arch. Microbiol. 139:8–13.

    Article  CAS  Google Scholar 

  • Stupperich, E., and G. Fuchs. 1984b. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. II. Evidence for different origins of acetate carbon atoms. Arch. Microbiol. 139:14–20.

    Article  CAS  Google Scholar 

  • Taylor, G. T., D. P. Kelly, and S. J. Pirt. 1976. Intermediary metabolism in methanogenic bacteria Methanobacterium). In: Proceedings of the Symposium “Microbial Production and Utilization of Gases (H2, CH4, CO)” H. G. Schlegel, G. Gottschalk, and N. Pfenning, (eds.), pp. 173–180. Goltze, Göttingen.

    Google Scholar 

  • Weimer, P. J., and J. G. Zeikus. 1978. One carbon metabolism in methanogenic bacteria. Arch. Microbiol. 119:49–57.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, R. S. 1985. Unusual coenzymes of methanogenesis. Trends Biochem. Sci. 10:396–399.

    Article  CAS  Google Scholar 

  • Zeikus, J. G., G. Fuchs, W. Kenealy, and R. K. Thauer. 1977. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132:604–613.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Whitman, W.B. (1994). Autotrophic Acetyl Coenzyme A Biosynthesis in Methanogens. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics