Skip to main content

Acetate and the Potential of Homoacetogenic Bacteria for Industrial Applications

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

In this chapter, the practical uses of acetogens will be addressed. The discussion will focus mainly on homoacetogens or homoacetogenic capacities (see Chapter 1, Section 1.3, for definitions and applications of these terms). Thus, not all potentials of acetogenic bacteria, such as solvent production from mixed fermenters like Eubacterium limosum or Butyribacterium methylotrophicum, will be included in the present statement [see Lowe et al. (1993), Grethlein and Jain (1992), and Chapter 1 for further reviews of this topic]. It is clear from the preceding chapters that acetogenic and homoacetogenic bacteria can no longer be regarded as a small, insignificant group of physiological “odd balls.” They are important organisms in various anaerobic environments such as the intestinal tracts of insects, the human gut, sewage sludge, and sediments. This statement is based mainly on their recently discovered wide distribution and abundance in these environments, and also on the fact that 75% of the methane produced in sediments is formed from acetate (Braun et al., 1979; Wiegel et al., 1981; chapter 7; unpublished results). As further environments are evaluated for the presence of homoacetogenic and acetogenic bacteria, new homoacetogenic organisms will certainly be isolated. This liklihood is illustrated with the recent isolation of Clostridium ljungdahlii (Tanner et al., 1993) which belongs to a different phylogenetic branch (clostridial rRNA homology group I) than the other homoacetogens (which belong to neither homology group I nor II).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bache, R., and N. Pfenning, 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.

    Article  CAS  Google Scholar 

  • Baronofsky, J. J., W. J. A. Schreurs, and E. R. Kashket. 1984. Uncoupling by acetic acid limits growth of acetogenesis by Clostridium thermoaceticum. J. Bacteriol. 165:252–257.

    Google Scholar 

  • Braun, M., S. Schobert, and G. Gottschalk. 1979. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch. Microbiol. 120:201–204.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, J. E., and J. P. Nakas. 1991. Bioconversion of acid-hydrolyzed poplar hemicellulose to acetic acid by Clostridium thermoaceticum. J. Ind. Microbiol. 7:1–6.

    Article  CAS  Google Scholar 

  • Bream, P. 1988. Fermentation of single and mixed substances by the parent and an acid-tolerant, mutant strain of Clostridium thermoaceticum. Biotech. Bioeng. 32:444–450.

    Article  Google Scholar 

  • Bream, P., and R. Datta. 1985. Production of organic acids by an improved fermentation process. US Patent 4,814,273.

    Google Scholar 

  • Busche, R. M. 1983. Recovering chemical products from dilute fermentation broths. Biotech. Bioeng. Symp. 13:597.

    CAS  Google Scholar 

  • Busche, R. M. 1985. In: Biotechnology Applications and Research, P.N. Cheremisinoff and R. P. Oulette (eds.), pp. 88–102. Technicon, Lancaster, PA.

    Google Scholar 

  • Busche, R. M. 1991. Extractive fermentation of acetic acid. Appl. Biochem. Biotechnol. 28/29:605.

    Article  Google Scholar 

  • Chollar, B. H., (1984). Federal Highway Administration research on calcium magnesium acetate: An alternative deicer. Public Roads 47:113–118.

    Google Scholar 

  • Clark, J. E., S. W. Ragsdale, L. G. Ljungdahl, and J. Wiegel. 1982. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. J. Bacteriol. 151:507–509.

    PubMed  CAS  Google Scholar 

  • Clyde, R. 1983. Horizontal stainless steel fermentor. U.S. Patent No. 4 407954.

    Google Scholar 

  • Cunningham, D. P., and L. L. Lundie, Jr. 1993. Precipitation of cadmium by Clostridium thermoaceticum. Appl. Environ. Microbiol. 59:7–14.

    Google Scholar 

  • Eysmondt, von, J., Vasic-Racki, DJ., Wandrey, Ch. (1990) Acetic acid production by Acetogenium kivui in continuous culture-kinetic studies and computer simulations. Appl. Microbiol. Biotechnol. 34:344–349.

    Article  Google Scholar 

  • Freier, D. 1981. Wechselwirkungen von thermophilen anaeroben Bakterien in cellulolytischen Mischkulturen, M.D. thesis, University of Göttingen, Göttingen, Germany.

    Google Scholar 

  • Grethlein, A. J., and M. K. Jain. 1992. Bioprocessing of coal-derived synthesis gases by anaerobic bacteria. TIBTECH 10:418–423.

    Article  CAS  Google Scholar 

  • Horner, R., M. Brenner, R. Wagner, and R. Walker. 1991. Environmental evaluation of calcium magnesium acetate. In: Calcium Magnesium Acetate, D. L. Wise, Y. A. Lavendis, and M. Metghalchi (eds.), pp. 57–102. Elsevier Science Publisher, Amsterdam.

    Google Scholar 

  • Hsu, T., S. L. Daniel, M. F. Lux, and H. L. Drake. 1990a. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2-equivalents under CO2-limited conditions. J. Bacteriol. 172:212–217.

    PubMed  CAS  Google Scholar 

  • Hsu, T., M. F. Lux, and H. L. Drake. 1990b. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J. Bacteriol. 172:5901–5907.

    PubMed  CAS  Google Scholar 

  • Ibba, M., and G. H. Fynn. 1991. Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp. Biotechnol. Lett. 13:671–676.

    Article  CAS  Google Scholar 

  • Inoue, K., S. Kageyama, K. Miki, T. Morinaga, Y. Kamagata, K. Nakamura, and E. Mikami. 1992. Vitamin B12 production by Acetobacterium sp. and its tetrachloromethane-resistant mutants. J. Ferment. Bioeng. 73:76–78.

    Article  CAS  Google Scholar 

  • Klemps, R., S. M. Schobert, and H. Sahm. 1987. Production of acetic acid by Acetogenium kivuii. Appl. Microbiol. Biotechnol. 27:229–234.

    Article  CAS  Google Scholar 

  • Koesnandar, A., N. Nishio, A. Yamamoto, and S. Nagai. 1989. Production of extracellular 5-aminolevulinic acid by Clostridium thermoaceticum grown in minimal medium. Biotechnol. Lett. 11:567–572.

    Article  CAS  Google Scholar 

  • Koesnandar, A., N. Nishio, and S. Nagai. 1991a. Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum. J. Ferment. Bioeng. 72:11–14.

    Article  CAS  Google Scholar 

  • Koesnandar, A., N. Nishio, and S. Nagai. 1991b. Effects of trace metal ions on the growth, homoacetogenesis and corrinoid production by Clostridium thermoaceticum. J. Ferment. Bioeng. 71:181–185.

    Article  CAS  Google Scholar 

  • Kuhn, E. P., J. M. Suflita, M. D. Rivera and L. Y. Young. 1989. Influence of alternate electron acceptors on the metabolic fate of hydroxybenzoate isomers in anoxic aquifer slurries. Appl. Environ. Microbiol. 55:590–598.

    PubMed  CAS  Google Scholar 

  • Kuo, Y., and H. P. Gregor. 1983. Acetic acid extraction by solvent membranes. Separation Sci. Tech. 18:421–440.

    Article  CAS  Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40:415–450.

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G., H. Carreira, R. Garrison, N. Rabek, and J. Wiegel. 1985. Comparison of three thermophilic homoacetogenic bacteria from Ca-Mg acetate production. Biotechnol. Bioeng. Symp. 15:207–223.

    Google Scholar 

  • Ljungdahl, L. G., H. Carreira, R. Garrison, N. Rabek, L. F. Günther, and J. Wiegel. 1986. CMA manufacture (II): Improved bacterial strains for acetate production. RFD# DTFH-61-83-R-00124 U.S. Department of Transportation, Federal Highway Administration, Washington, D.C.

    Google Scholar 

  • Lowe, S. E., M. K. Jain, and J. G. Zeikus. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57:451–509.

    PubMed  CAS  Google Scholar 

  • Lundie, L. L., Jr., and H. L. Drake. 1984. Development of a minimal defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159:700–703.

    PubMed  CAS  Google Scholar 

  • Marynowski, C. W., J. L. Jones, R. L. Boughton, D. Tuse, J. H. Corlopassi, and J. E. Gwinn. 1983. Process development for production of calcium magnesium acetate (CMA), FHWA/RD-82/145. Federal Highway Administration, Washington, D.C.

    Google Scholar 

  • Marynowski, C. W., J. L. Jones, D. Tuse, and R. L. Boughton. 1985. Fermentation as an advantageous route for the production of acetate salt for roadway de-icing. I&EC Product Dev. 24:457–465.

    Article  CAS  Google Scholar 

  • Morton, T. A., C.-F. Chou, and L. G. Ljungdahl. 1992. Cloning, sequencing, and expressions of genes encoding enzymes of the autotrophic acetyl-CoA pathway in the acetogen Clostridium thermoaceticum. In: Genetics and Molecular Biology of Anaerobic Bacteria, M. Sebald (ed.), pp. 389–406. Springer-Verlag, New York.

    Google Scholar 

  • Parekh, S., and M. Cheryan, 1990a. Fed batch fermentation of glucose to acetate by an improved strain of Clostridium thermoaceticum. Biotechnol. Lett. 12:681–684.

    Article  Google Scholar 

  • Parekh, S. R., and M. Cheryan. 1990b. Acetate production from glucose by Clostridium thermoaceticum. Process Biochem. Int. August 1990:117–12

    Google Scholar 

  • Reed W. M., and M. E. Bogdan. 1985. Application of cell recycling to continuous fermentative acetic acic production. Biotech. Bioeng. Symp. 15:641–647.

    Google Scholar 

  • Reed, W. ML., F. A. Keller, F. E. Kite, M. E. Bogdan, and J. S. Ganoung. 1987. Development of increased acetic acid tolerance in anaerobic homoacetogens through induced mutagenesis and continuous selection. Enzyme Microb. Technol. 9:117–120.

    Article  CAS  Google Scholar 

  • Savage, M. D., and H. L. Drake. 1986. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol. 165:315–318.

    PubMed  CAS  Google Scholar 

  • Schwartz, R. D., and F. A. Jr. Keller. 1982a. Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5. Appl. Env. Microbiol. 43:117–123.

    CAS  Google Scholar 

  • Schwartz, R. D., and F. A. Jr. Keller. 1982b. Acetic acid production by Clostridium thermoaceticum in pH-controlled batch fermentation at acidic pH. Appl. Env. Microbiol. 43:1385–1392.

    CAS  Google Scholar 

  • Shimshick, E. J. 1981. Removal of organic acids from aqueous solutions of salts of organic acids by super critical fluids. U.S. Patent 4,250,331.

    Google Scholar 

  • Siman’kova, M. V., and A. N. Nozhevnikova. 1989. Thermophilic homoacetate fermentation of cellulose in a combined culture of Clostridium thermocellum with Clostridium thermoautotrophicum. Mikrobiologiya 58:897–902 (Engl. translation, pp. 723-728).

    CAS  Google Scholar 

  • Stupperich, E., H. J. Eisinger, and B. Krutler. 1988. Diversity of corrinoids in acetogenic Bacteria. Eur. J. Biochem. 172:459–464.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, R. S., L. M. Miller, and D. Yang. 1993. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:232–236.

    Article  PubMed  CAS  Google Scholar 

  • Terracciano, J., W. J. A. Schreur, and E. R. Kashket. 1987. Membrane H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for electronic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53:782–786.

    PubMed  CAS  Google Scholar 

  • Traunecker, J., A. Preuß, and G. Diekert. 1991. Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156:416–421.

    Article  CAS  Google Scholar 

  • Unitika Ltd.-Imabori Kazutomo. 1982. Immobilized thermophilic acetate kinase. Japanese Patent JP 80109055.

    Google Scholar 

  • Wang, G., and D. I. C. Wang. 1983. Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum. Appl. Biochem. Biotechnol. 8:491–503.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., and D. I. C. Wang. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47:294–298.

    PubMed  CAS  Google Scholar 

  • Wiegel, J. 1990. Temperature spans for growth: A hypothesis and discussion. FEMS Microbiol. Rev. 75:155–170.

    Google Scholar 

  • Wiegel, J., M. Braun, and G. Gottschalk. 1981. Clostridium thermoautotrophicum. specius novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260.

    Article  CAS  Google Scholar 

  • Wiegel, J., L. H. Carreira, Ch. P. Mothershed, L. G. Ljungdahl, and J. Puls. 1984. Formation of ethanol and acetate from biomass using thermophilic and extreme thermophilic anaerobic bacteria. In: Proceedings 7th Int. FPRS Industrial Wood Energy Forum 83, Nashville. Forest Product Research Society, Madison, WI.

    Google Scholar 

  • Wiegel, J., and R. Garrison. 1985. Utilization of methanol by Clostridium thermoaceticum, Abstr. I 115, Annu. Meet. Am. Soc. Microbiol., Las Vegas, NY 1985.

    Google Scholar 

  • Wiegel, J., L. H. Carreira, R. Garrison, N. E. Rabek, and L. G. Ljungdahl. 1991. Calcium magnesium acetate (CMA) manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria. In: Calcium Magnesium Acetate, D. L. Wise, Y. A. Lavendis, and M. Metghalchi (eds.), pp. 359–418. Elsevier Science Publisher, Amsterdam.

    Google Scholar 

  • Wise, D. L., Y. A. Levendis, and Metghalchi (eds). 1991. Calcium Magnesium Acetate. Else vier Science Publisher, Amsterdam.

    Google Scholar 

  • Wu, Z., S. L. Daniel, and H. L. Drake. 1988. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J. Bacteriol. 170:5705–5708.

    Google Scholar 

  • Yang, H., and H. L. Drake. 1990. Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56:81–86.

    PubMed  CAS  Google Scholar 

  • Yates, R. A. 1981. US Patent 4,282,323.

    Google Scholar 

  • Zhang, X., and J. Wiegel. 1994. Distribution of hydroxybenzoate decarboxylase in clostridia and some other obligately anaerobic bacteria, (in preparation).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Wiegel, J. (1994). Acetate and the Potential of Homoacetogenic Bacteria for Industrial Applications. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics