Skip to main content

Syntrophic Acetate Oxidation and “Reversible Acetogenesis”

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Acetate is an important CH4 precursor in nature, accounting for two-thirds of the CH4 produced in many natural habitats and in anaerobic bioreactors. Although microbial methanogenesis from acetate was first described in the early 1900s, the mechanism of methanogenesis from acetate was controversial until 1978, when it was demonstrated that a pure culture of Methanosarcina barkeri could grow on acetate (Mah et al., 1978; Smith and Mah, 1978; Weimer and Zeikus, 1978) and convert acetate to CH4 by a decarboxylation mechanism sometimes called the aceticlastic reaction. With the description of a similar mechanism for Methanothrix soehngenii in 1980 (Zehnder et al., 1980), it appeared that acetate decarboxylation was “the” mechanism for methanogenesis from acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahring, B. K., P. Westermann, and R. A. Man. 1991. Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1. Arch. Microbiol. 157:38–42.

    Article  CAS  Google Scholar 

  • Balch, W. E., G. E. Fox, M. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.

    PubMed  CAS  Google Scholar 

  • Barker, H. A. 1936a. On the biochemistry of the methane fermentation. Arch. Mikrobiol. 6:404–419.

    Article  Google Scholar 

  • Barker, H.A. 1936b. Studies on the methane-producing bacteria. Arch. Mikrobiol. 7:420–438.

    Article  CAS  Google Scholar 

  • Barker, H. A., S. Ruben, and M. D. Kamen. 1940. The reduction of radioactive carbon dioxide by methane-producing bacteria. Proc. Natl. Acad. Sci. USA 26:426–430.

    Article  PubMed  CAS  Google Scholar 

  • Barrow, G. M. 1974. Physical Chemistry for the Life Sciences. McGraw Hill Book Co., New York.

    Google Scholar 

  • Beaty, P. S., N. Q. Wofford, and M. J. Mclnerney. 1987. Separation of Syntrophomonas wolfei from Methanospirillum hungatei using Percoll gradients. Appl. Environ. Microbiol. 53:1183–1185.

    PubMed  CAS  Google Scholar 

  • Bhatnagar, L., J. A. Krzycki, and J. G. Zeikus. 1987. Analysis of hydrogen metabolism in Methanosarcina barkeri regulation of hydrogenase and role of CO-dehydrogenase in H2 production. FEMS Microbiol. Lett. 41:337–343.

    Article  CAS  Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40:626–632.

    PubMed  CAS  Google Scholar 

  • Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carries H2 and formate in methanogenic ecosystems and its implications in the measurement of K m for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20–31.

    Article  CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.

    PubMed  CAS  Google Scholar 

  • Buswell, A. M., and F. W. Sollo. 1948. The mechanism of the methane fermentation. J. Am. Chem. Soc. 70:1778–1780.

    Article  PubMed  CAS  Google Scholar 

  • Claypool, G. E., and I. R. Kaplan. 1974. The origin and distribution of methane in marine sediments. In: Natural Gases in Marine Sediments, I. R. Kaplan (ed.), pp. 99–140. Plenum Press, New York.

    Google Scholar 

  • Conrad, R., and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94–98.

    Article  CAS  Google Scholar 

  • Coolhaas, V. C. 1928. Zur kenntnis der dissimilation fettsaurer salze und kohlenhydrate durch thermophile bakerien. Zbl Bakteriol Parasitkenkd Infektionskr Hyg Abt 2 75:161–170.

    CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Steitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357.

    Article  CAS  Google Scholar 

  • DiMarco, A. A., T. A. Bobik, and R. S. Wolfe. 1990. Unusual coenzymes of methanogenesis. Ann. Rev. Biochem. 59:355–394.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, B., and B. Schink. 1985. Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes. Arch. Microbiol. 143:60–66.

    Article  CAS  Google Scholar 

  • Ferry, J. D. 1992. Methane from acetate. J. Bacteriol. 174:5489–5495.

    PubMed  CAS  Google Scholar 

  • Friedrich, M., U. Laderer, and B. Schink. 1991. Fermentative degradation of glycolic acid by defined syntrophic cultures. Arch. Microbiol. 156:398–404.

    Article  CAS  Google Scholar 

  • Grahame, D. A. 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266:22227–22233.

    PubMed  CAS  Google Scholar 

  • Hugenholtz, J., and L. G. Ljungdahl. 1990. Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol. Rev. 87:383–390.

    Article  CAS  Google Scholar 

  • King, G. M., M. J. Klug, and D. R. Lovley. 1983. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl. Environ. Microbiol. 45:1848–1853.

    PubMed  CAS  Google Scholar 

  • Krzycki, J. A., L. J. Lehman, and J. G. Zeikus. 1985. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M and methylreductase. J. Bacteriol. 163:1000–1006.

    PubMed  CAS  Google Scholar 

  • Länge, S., R. Scholtz, and G. Fuchs. 1989. Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 1. Characterization and metabolic function of the cellular tetrahydropterin. Arch. Microbiol. 151:77–83.

    Article  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988a. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetateoxidizing coculture. Arch. Microbiol. 150:513–518.

    Article  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988b. Hydrogen partial pressures in a thermophilic acetateoxidizing methanogenic coculture. Appl. Environ. Microbiol. 54:1457–1461.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988c. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54:124–129.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Anna. Rev. Microbiol. 40:415–450.

    Article  CAS  Google Scholar 

  • Ljungdahl, L. G., and H. G. Wood. 1969. Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu. Rev. Microbiol. 23:515–538.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49:1530–1531.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and J. G. Ferry. 1985. Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl. Environ. Microbiol. 49:247–249.

    PubMed  CAS  Google Scholar 

  • Man, R. A., M. R. Smith, and L. Baresi. 1978. Studies on an acetate fermenting strain of Methanosarcina. Appl. Environ. Microbiol. 35:1174–1184.

    Google Scholar 

  • Mclnerney, M. J., M. P. Bryant, and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in association with methanogens. Arch. Microbiol. 122:129–135.

    Article  Google Scholar 

  • Mclnerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41:1029–1039.

    Google Scholar 

  • Min, H., and S. H. Zinder. 1989. Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl. Environ. Microbiol. 55:448–491.

    Google Scholar 

  • Min, H., and S. H. Zinder. 1990. Isolation and characterization of a thermophilic sulfate reducing bacterium. Desulfotomaculum thermoacetoxidans sp. nov. Arch. Microbiol. 153:399–404.

    Article  CAS  Google Scholar 

  • Nölling, J., and W. M. De Vos. 1992. Characterization of the archael plasmid-encoded Type II restriction-modification system Mthti from Methanobacterium thermoformicicum. THF. Homology to the bacterial Ngopii system from Neisseria gonorrhoeae. J. Bacteriol. 174:5719–5726.

    PubMed  Google Scholar 

  • Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58:703–705.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S. 1988. Biogeochemistry of methanogenic bacteria. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 641–706. Wiley Interscience, New York.

    Google Scholar 

  • Petersen, S. P., and B. K. Anting. 1991. Acetate oxidation in a thermophilic anaerobic sewage sludge digestor: the importance of non-acetoclastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86:149–158.

    Article  CAS  Google Scholar 

  • Phelps, T. J., R. Conrad, and J. G. Zeikus. 1985. Sulfate dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol. Appl. Environ. Microbiol. 50:589–594.

    PubMed  CAS  Google Scholar 

  • Pine, M. J., and W. Vishniac. 1957. The methane fermentations of acetate and methanol. J. Bacteriol. 73:736–742.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26:261–300.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., J. R. Baur, C. M. Gorst, S. R. Harder, W.-P. Lu, D. L. Roberts, J. A. Runquist, and I. Schiau. 1990. The acetyl-CoA synthase from Clostridium thermoaceticum: from gene cluster to active-site metal clusters. FEMS Microbiol. Rev. 87:397–402.

    Article  CAS  Google Scholar 

  • Sansone, F. J., and C. S. Martens. 1981. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211:707–709.

    Article  PubMed  CAS  Google Scholar 

  • Schauder, R., B. Eikmanns, R. K. Thauer, F. Widdel, and G. Fuchs. 1986. Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145:162–172.

    Article  CAS  Google Scholar 

  • Schauder, R., A. Preuss, M. Jetten, and G. Fuchs. 1989. Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch. Microbiol. 151:84–89.

    Article  CAS  Google Scholar 

  • Schönheit, P., J. K. Kristjansson, and R. K. Thauer. 1982. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch. Microbiol. 132:285–288.

    Article  Google Scholar 

  • Smith, M. R., and R. A. Man. 1978. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36:870–879.

    PubMed  CAS  Google Scholar 

  • Sowers, K. R., S. F. Baron, and J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ. Microbiol. 47:971–978.

    PubMed  CAS  Google Scholar 

  • Sowers, K. R., and R. P. Gunsalus. 1988. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170:998–10

    PubMed  CAS  Google Scholar 

  • Spormann, A. M., and R. K. Thauer. 1988. Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Demonstration of the enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch. Microbiol. 150:374–380.

    Article  CAS  Google Scholar 

  • Stadtman, T. C., and H. A. Barker. 1949. Studies on the methane fermentation. VII. Tracer experiments on the mechanism of methane formation. Arch. Biochem. 21:256–264.

    PubMed  CAS  Google Scholar 

  • Stadtman, T. C., and H. A. Barker. 1951. Studies on the methane fermentation IX. The origin of methane in the acetate and methanol fermentation by Methanosarcina. J. Bacteriol. 61:81–86.

    PubMed  CAS  Google Scholar 

  • Stams, A. J. M., K. C. R. Grolle, C. T. J. J. Fritjers, and J. B. van Lier. 1992. Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl Environ. Microbiol. 58:346–352.

    PubMed  CAS  Google Scholar 

  • Stupperich, E., and G. Fuchs. 1984. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. II. Evidence for different origins of acetate carbon atoms. Arch. Microbiol. 139:14–20.

    Article  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic bacteria. Annu. Rev. Microbiol. 43:43–67.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, J. H., and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54:20–29.

    PubMed  CAS  Google Scholar 

  • Trouzel, J. P., E. C. de Macario, J. Nölling, W. M. de Vos, T. Zhilina, A. M. Lysenko. 1992. DNA relatedness among some thermophilic members of the genus Methanobacterium. Emendation of the species Methanobacterium thermoautotrophicum and rejection of Methanobacterium thermoformicicum as a synonym of Methanobacterium thermoautotrophicum. Int. J. Syst. Bacteriol. 42:408–411.

    Article  Google Scholar 

  • Warford, A. L., D. R. Kosiur, and P. R. Doose. 1979. Methane production in Santa Barbara Basin sediments. Geomicrobiol. J. 1:117–137.

    Article  CAS  Google Scholar 

  • Weber, H., K. D. Kulbe, H. Clumiel, and W. Trösch. 1984. Microbial acetate conversion to methane: kinetics, yields and pathways in a two-step digestion process. Appl. Microbiol. Biotechnol. 19:224–228.

    Article  CAS  Google Scholar 

  • Weimer, P. J., and J. G. Zeikus. 1978. Acetate metabolism in Methanosarcina barkeri. Arch. Microbiol. 119:175–182.

    Article  PubMed  CAS  Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Man. 1989. Threshold acetate concentrations for acetate catabolism by acetoclastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514–515.

    PubMed  CAS  Google Scholar 

  • Widdel, F. 1986. Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl. Environ. Microbiol. 51:1056–1062.

    PubMed  CAS  Google Scholar 

  • Widdel, F. 1988. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 469–586. Wiley Interscience, New York.

    Google Scholar 

  • Winfrey, M. R., and J. G. Zeikus. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater lake sediments. Appl. Environ. Microbiol. 33:275–281.

    PubMed  CAS  Google Scholar 

  • Winter, J. U., and R. S. Wolfe. 1980. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Witicar, M. J., E. Faber, and M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments. Carbon dioxide reduction vs. acetate fermentation: isotope evidence. Geochem. Cosmochem. Acta 50:693–709.

    Article  Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1982. Interspecies hydrogen transfer: 15 years later. ASM News 48:561–565.

    Google Scholar 

  • Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Zehnder, A. J., and W. Stumm. 1988. Geochemistry and biochemistry of anaerobic habitats. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 1–38, John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Zeikus, J. G., G. Fuchs, W. Kenealy, and R. K. Thauer. 1977. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132:604–613.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and R. A. Man. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol. 38:996–1008.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.

    Article  CAS  Google Scholar 

  • Zinder, S. H., and A. Elias. 1985. Growth substrate effects on acetate and methanol catabolism in Methanosarcina thermophila strain TM-1. J. Bacteriol. 163:317–323.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H., K. R. Sowers, and J. G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic acetotrophic methane producing bacterium. Int. J. Syst. Bacteriol. 35:522–523.

    Article  Google Scholar 

  • Zinder, S. H., T. Anguish, and T. Lobo. 1987. Isolation and characterization of a thermophilic acetotrophic strain of Methanothrix. Arch. Microbiol. 146:315–322.

    Article  Google Scholar 

  • Zindel, U., W. Freudenberg, M. Rieth, J. R. Andreesen, J. Schnell, and F. Widdel. 1988. Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch. Microbiol. 150:254–266.

    Article  CAS  Google Scholar 

  • Zinder, S. H. 1990. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75:125–138.

    Article  CAS  Google Scholar 

  • Zinder, S. H., and T. Anguish. 1992. Carbon monoxide, hydrogen, and formate metabolism during methanogenesis from acetate by thermophilic cultures of Methanosarcina and Methanothrix. Appl. Environ. Microbiol. 58:3323–3329.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Zinder, S.H. (1994). Syntrophic Acetate Oxidation and “Reversible Acetogenesis”. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics