Skip to main content

Acetogenesis from CO2 in the Human Colonic Ecosystem

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Figure 13.1 shows the general features of the colonic fermentation. The human diet contains high concentrations of plant polysaccharides (cellulose, hemicellulose, pectin, and starch). Except for starch, they are not digested by host enzymes and pass to the colon where they are fermented by the cooperative metabolism of a large number of different bacterial species (Cummings, 1985; Wolin and Miller, 1983). Significant amounts of starch escape host digestion and are fermented in the colon (Stephen et al., 1983; Thornton et al., 1987). The fermentation of plant polysaccharides produces acetate, propionate, and butyrate and the gases H2 and CO2 (Cummings, 1985; McNeil, 1984). CH4 is a major product of the colonie fermentation of some humans (Bond et al., 1971; Levitt, 1980). They harbor large concentrations of methane-forming Archae that use H2 to reduce CO2 to CH4 (Miller and Wolin, 1982; Weaver et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, H. A., M. D. Kamen, and B. Haas. 1945. Carbon dioxide utilization in the synthesis of acetic and butyric acids by Butyribacterium rettgeri. Proc. Natl. Acad. Sci. USA. 31:355–360.

    Article  PubMed  CAS  Google Scholar 

  • Bond, J. H., Jr., R. R. Engel, and M. D. Levitt. 1971. Factors influencing pulmonary methane excretion in man. J. Exp. Med. 133:572–578.

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. S. Blum. 1991. Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch. Microbiol. 156:105–110.

    Article  CAS  Google Scholar 

  • Cummings, J. H. 1985. Fermentation in the human large intestine: evidence and implications for health. Lancet 1:1206–1028.

    Google Scholar 

  • Cummings, J. H., E. W. Pomare, W. J. Branch, C. P. Naylor, and G. T. MacFarlane. 1987. Short chain fatty acids in human large intestine, portal hepatic and venous blood. Gut 28:1221–1227.

    Article  PubMed  CAS  Google Scholar 

  • Finegold, S. M., V. L. Sutter, and G. E. Mathisen. 1983. Normal indigenous intestinal flora. In: Human Intestinal Microflora in Health and Disease. D. J. Hentges, (ed.). p. 3. Academic Press, New York.

    Google Scholar 

  • Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987. Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch. Microbiol. 48:305–313.

    Article  Google Scholar 

  • Genther, B. R. S., C. L. Davis, and M. P. Bryant. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19.

    Google Scholar 

  • Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Holdeman, L. V., E. P. Cato, and W. E. C. Moore. 1977. Anaerobic Laboratory Manual. 4th ed. VPI Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virgin

    Google Scholar 

  • Kruh, J. 1982. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42:65–82.

    PubMed  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1986. Syntrophococcus sucromutans sp. nov., uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methano-brevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.

    Article  CAS  Google Scholar 

  • Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.

    PubMed  CAS  Google Scholar 

  • Levitt, M. 1980. Intestinal gas production—recent advances in flatology. N. Eng. J. Med. 302:1474–1475.

    Article  CAS  Google Scholar 

  • Liu, S., and J. M. Suflita. 1993. H2-CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl. Environ. Microbiol. 59:1325–1331.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 56:415–450.

    Article  Google Scholar 

  • Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964.

    PubMed  CAS  Google Scholar 

  • McNeil, N. I. 1984. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39:338–342.

    PubMed  CAS  Google Scholar 

  • Miller, T. L. and M. J. Wolin. 1982. Enumeration of Methanobrevibacter smithii in human feces. Arch. Microbiol. 131:14–18.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1986. Methanogens in human and animal intestinal tracts. System. Appl. Microbiol. 7:223–229.

    Article  CAS  Google Scholar 

  • Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Lett. 1:255–258.

    Article  CAS  Google Scholar 

  • Roediger, W. E. W. 1982. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 83:424–429.

    PubMed  CAS  Google Scholar 

  • Royall, D., T. M. S. Wolever, K. N. Jeejeebhoy. 1990. Clinical significance of colonic fermentation. Am. J. Gastroenterol. 85:1307–1312.

    PubMed  CAS  Google Scholar 

  • Stephen, A. M., A. C. Haddad, and S. F. Phillips. 1983. Passage of carbohydrate into the colon. Direct measurements in humans. Gastroenterology 85:589–595.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., K. Bush, T. Eguchi, N. Ikekawa, T. Takaguchi, Y. Kobayashi, and P. J. Higgins. 1990. Effects of 1,25-dihydroxyvitamin D3 and its analogs on butyrate-induced differentiation of HT-29 human colonie carcinoma cells and on the reversal of the differentiated phenotype. Arch. Biochem. Biophys. 276:415–423.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, J. R., A. Dryden, J. Kelleher, and M. S. Losowsky. 1987. Super-efficient starch absorption. A risk factor for colonie neoplasia. Dig. Dis. Sci. 1987. 32:1088–1091.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, G. A., J. A. Krause, T. L. Miller, and M. J. Wolin. 1986. Incidence of methanogenic bacteria in a sigmoidoscopy population: An association of methanogenic bacteria and diverticulosis. Gut 27:698–704.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, G. A., J. A. Krause, T. L. Miller, and M. J. Wolin. 1989. Constancy of glucose and starch fermentation by two different human faecal microbial communities. Gut 30:19–25.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, G. A., J. A. Krause, T. L. Miller, and M. J. Wolin. 1992. Cornstarch fermentation by the colonie microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively with methanogenesis. Am. J. Clin. Nutr. 55:70–77.

    PubMed  CAS  Google Scholar 

  • Wolever, T. M. S., P. Spadafora, and H. Eshuis. 1991. Interaction between colonie acetate and propionate in humans. Am. J. Clin. Nutr. 53:681–687.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J. 1982. Hydrogen transfer in microbial communities. In: Microbial Interactions and Communities. A. T. Bull and J. H. Slater (eds.), pp. 323–356. Academic Press, New York.

    Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1983. Carbohydrate fermentation. In: Human Intestinal Flora in Health and Disease, D. A. Hentges (ed.). pp. 147–165. Academic Press. New York.

    Google Scholar 

  • Wolin, M. J. and T. L. Miller. 1993. Bacterial strains from human feces that reduce CO2 to acetic acid. Appl. Environ. Microbiol. 59:3551–3556.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Wolin, M.J., Miller, T.L. (1994). Acetogenesis from CO2 in the Human Colonic Ecosystem. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics