Advertisement

Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives

  • Harold L. Drake
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

We will get to acetogens shortly. Before that, I must note that it was never my intent to deliver the introductory chapter for this book. That was Harland’s job, and as editor of this book, I was elated when he agreed to take on that project. I knew full well no one but he was up to that task. “Time passes,” he once noted to me as we were discussing a difficult problem that required an unacceptable amount of time to resolve. Unfortunately, time does pass, and Harland G. Wood passed away in September 1991 and was unable to complete his preparation of this chapter. He was 84.

Keywords

Acetogenic Bacterium Clostridium Pasteurianum Propionic Acid Bacterium Carbon Monoxide Dehydrogenase Calcium Magnesium Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamse, A. D. (1980). New isolation of Clostridium aceticum (Wieringa). Antonie van Leeuwenhoek 46:523–531.PubMedGoogle Scholar
  2. Adamse, A. D., and C. T. M. Velzeboer. 1982. Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol. Antonie van Leeuwenhoek 48:305–313.PubMedGoogle Scholar
  3. Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch. Microbiol. 72:154–174.Google Scholar
  4. Andressen, J. R., A. Schaupp, C. Neurauter, A. Brown, and L. G. Ljungdahl. 1973. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: Effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J. Bacteriol. 114:743–751.Google Scholar
  5. Bache, R., and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.Google Scholar
  6. Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Sys. Bacteriol. 27:355–361.Google Scholar
  7. Bak, F., K. Finster, and F. Rothfuß. 1992. Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch. Microbiol. 157:529–534.Google Scholar
  8. Barker, H. A. 1944. On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum. Proc. Nati. Acad. Sci. 30:88–90.Google Scholar
  9. Barker, H. A., and M. D. Kamen. 1945. Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. Nati. Acad. Sci. USA 31:219–225.Google Scholar
  10. Beaty, P. S., and L. G. Ljungdahl. 1991. Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsulfoxide, Abstr. K-131, p. 236, Abstr. Ann. Meet. Am. Soc. Microbiol. 1991.Google Scholar
  11. Bomar, M., H. Hippe, and B. Schink. 1991. Lithotrophic growth and hydrogen metabolism by Clostridium magnum. FEMS Microbiol. Lett. 83:347–350.Google Scholar
  12. Braun, K., S. Schoberth, and G. Gottschalk. 1979. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch. Microbiol. 120:201–204.PubMedGoogle Scholar
  13. Braun, K., and G. Gottschalk. 1981. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch. Microbiol. 128:294–298.PubMedGoogle Scholar
  14. Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.PubMedGoogle Scholar
  15. Braun, M., and G. Gottschalk. 1982. Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zbl. Bakt. Hyg., I. abt. Orig. C3, pp. 368–376.Google Scholar
  16. Braus-Stromeyer, S. A., R. Hermann, A. M. Cook, and T. Leisinger. 1993. Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium. Appl. Environ. Microbiol. 59: 3790–3797.PubMedGoogle Scholar
  17. Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.PubMedGoogle Scholar
  18. Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2 - utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.Google Scholar
  19. Breznak, J. A., and M. D. Kane. 1990. Microbiol H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 87:309–314.Google Scholar
  20. Brock, T. D. 1989. Evolutionary relationships of the autotrophic bacteria. In: Autotrophic Bacteria, H. G. Schlegel and B. Bowien (eds.), pp. 499–512. Science Tech Publishers, Madison, WI.Google Scholar
  21. Brulla, W. J., and M. P. Bryant. 1989. Growth of the syntrophic anaerobic acetogen, strain PA-1, with glucose or succinate as energy source. Appl. Environ. Microbiol. 55:1289–1290.PubMedGoogle Scholar
  22. Brumm, P. J. 1988. Fermentation of single and mixed substrates by the parent and an acid-tolerant, mutant strain of Clostridium thermoaceticum. Biotechnol. Bioengineer. 32:444–450.Google Scholar
  23. Busche, R. M. (1991). Extractive fermentation of acetic acid: Economic tradeoff between yield of Clostridium and concentration of Acetobacter. Appl. Biochem. Biotechnol. 28/ 29:605–621.Google Scholar
  24. Buschhorn, H., P. Dürre, and G. Gottschalk. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 55:1835–1840.PubMedGoogle Scholar
  25. Cato, E. P., W. L. George, and S. M. Finegold. 1986. Genus Clostridium Prazmowski 1880. In: Bergey’s Manual of Systematic Bacteriology, P. H. A. Sneath (ed.), Vol. 2, pp. 1141–1200. Williams and Wilkins, Baltimore, MD.Google Scholar
  26. Cato, E. S., and E. Stackebrandt. 1989. Taxonomy and phylogeny. In: Clostridia, N. P. Minton, and D. J. Clarke (eds.), pp. 1–26. Plenum Press, New York.Google Scholar
  27. Charakhch’yan, D.-I. A., A. N. Mileeva, L. L. Mityushina, and S. S. Belyaev. 1992. Acetogenic bacteria from oil fields of Tataria and western Siberia. Mikrobiologiya 61:306–315.Google Scholar
  28. Cheryan, M., and S. Parekh. 1992. Acetate and calcium magnesium acetate (CMA) production with mutant strains of Clostridium thermoaceticum ATCC 49707. Abstr. Ann. Meet. Am. Soc. Microbiol., p. 315, Abstr. 0-39.Google Scholar
  29. Clark, J. E., and L. G. Ljungdahl. 1984. Purification and properties of 5, 10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J. Biol. Chem. 259:10845–10849.PubMedGoogle Scholar
  30. Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.Google Scholar
  31. Cord-Ruwisch, R., and B. Ollivier. 1986. Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. Arch. Microbiol. 144:163–165.Google Scholar
  32. Daniel, S. L., T. Hsu, S. I. Dean, H. L. Drake. 1990. Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172:4464–4471.PubMedGoogle Scholar
  33. Daniel, S. L., H. L. Drake. 1993. Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 59:3062–3069.PubMedGoogle Scholar
  34. Das, A., J. Hugenholtz, H. van Halbeek, and L. G. Ljungdahl. 1989. Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum. J. Bacteriol. 171:5823–5829.PubMedGoogle Scholar
  35. Das, A., L. G. Ljungdahl. 1993. F0 and F1 parts of ATP synthases from Clostridium thermoautotrophicum and Escherichia coli are not functionally compatible. FEBS Lett. 317:17–21.PubMedGoogle Scholar
  36. Dehning, I., M. Stieb, B. Schink. 1989. Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch. Microbiol. 151:421–426.Google Scholar
  37. DeWeerd, K. A., A. Saxena, D. P. Nagle, Jr., J. M. Suflita. 1988. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl. Environ. Microbiol. 54:1237–1242.PubMedGoogle Scholar
  38. Diekert, G., and R. K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606.PubMedGoogle Scholar
  39. Diekert, G., and M. Ritter. 1983. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 151:41–44.PubMedGoogle Scholar
  40. Diekert, G., M. Hansch, and R. Conrad. 1984. Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate? Arch. Microbiol. 138:224–228.Google Scholar
  41. Diekert, G., E. Schrader, and W. Harder. 1986. Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii. Arch. Microbiol. 144:386–392.Google Scholar
  42. Diekert, G. 1992. The acetogenic bacteria. In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.) The Prokaryotes, 2nd ed., pp. 517–533. Springer-Verlag, New York.Google Scholar
  43. Dimroth, P. 1987. Sodium ion transport decarboxlases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51:320–340.PubMedGoogle Scholar
  44. Dorn, M., J. R. Andreesen, and G. Gottschalk. (1978). Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J. Bacteriol. 133:26–32.PubMedGoogle Scholar
  45. Dörner, C., and B. Schink. 1991. Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch. Microbiol. 156:302–306.Google Scholar
  46. Drake, H. L., S.-I. Hu, and H. G. Wood. 1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J. Biol. Chem. 255:7174–7180.PubMedGoogle Scholar
  47. Drake, H. L., S.-I. Hu, and H. G. Wood. 1981a. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate: properties of phosphotransacetylase. J. Biol. Chem. 255:7174–7180.Google Scholar
  48. Drake, H. L., S.-I. Hu, and H. G. Wood. 1981b. The synthesis of acetate from carbon monoxide plus methyltetrahydrofolate and the involvement of the nickel enzyme, CO dehydrogenase, Abstr. K42. p. 144. Abstr. Ann. Meet. Am. Soc. Microbiol, 1981.Google Scholar
  49. Drake, H. L. 1982. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J. Bacteriol. 150:702–709.PubMedGoogle Scholar
  50. Drake, H. L. 1992. Acetogenesis and acetogenic bacteria. In: Encyclopedia of Microbiology, J. Lederberg (ed.), Vol. 1, pp. 1–15. Academic Press, San DiegoGoogle Scholar
  51. Drake, H. L. 1993. CO2, reductant, and the autrophic acetyl-CoA pathway: alternative origins and destinations. In: Microbial Growth on C 1 Compounds, C. Murrell, and D. P. Kelly (eds.), pp. 493–507. Intercept Limited, Andover, EnglaGoogle Scholar
  52. Drent, W. J., and J. C. Gottschal. 1991. Fermentation of inulin by a new strain of Clostridium thermoautotrophicum isolated from dahlia tubers. FEMS Microbiol. Lett. 78:285–292.Google Scholar
  53. Eden, G., and G. Fuchs. 1982. Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch. Microbiol. 133:66–74.Google Scholar
  54. Eden, G., and G. Fuchs. 1983. Autotrophic CO2 fixation in Acetobacterium woodii II. Demonstration of enzymes involved. Arch. Microbiol. 135:68–73.Google Scholar
  55. Eichler, B., and B. Schink. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140:147–152.Google Scholar
  56. Egli, C., T. Tschan, R. Scholtz, A. M. Cook, and T. Leisinger. 1988. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl. Environ. Microbiol. 54:2819–2824.PubMedGoogle Scholar
  57. El Ghazzawi, E. 1967. Neuisolierung von Clostridium formicoaceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch. Mikrobiol. 57:1–19.Google Scholar
  58. Emde, R., and B. Schink. 1987. Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch. Microbiol. 149:142–148.Google Scholar
  59. von Eysmondt, J., Dj. Vasic-Racki, and Ch. Wandrey. 1990. Acetic acid production by Acetogenium kivui in continuous culture-kinetic studies and computer simulations. Appl. Microbiol. Biotechnol. 34:344–349.Google Scholar
  60. Ferry, J. G. (1992). Methane from acetate. J. Bacteriol. 174:5489–5495.PubMedGoogle Scholar
  61. Fischer, F., R. Lieske, and K. Winzer. 1932. Biologische Gasreaktionen. II. Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem. Z. 245:2–12.Google Scholar
  62. Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715.PubMedGoogle Scholar
  63. Frazer, A. C., and L. Y. Young. 1985. A gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl. Environ. Microbiol. 49:1345–1347.PubMedGoogle Scholar
  64. Freedman, D. L., and J. M. Gosset. 1991. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57:2847–2857.PubMedGoogle Scholar
  65. Fuchs, G., U. Schnitker, and R. K. Thauer. 1974. Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum. Eur. J. Biochem. 49:111–115.PubMedGoogle Scholar
  66. Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.Google Scholar
  67. Fuchs, G. 1989. Alternative pathways of autotrophic CO2 fixation. In: Autotrophic Bacteria, H. G. Schlegel and B. Bowien (eds.), pp. 365–382, Science Tech, Madison, WI and Springer-Verlag, BerGoogle Scholar
  68. Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987. Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch. Microbiol. 148:305–313.Google Scholar
  69. Geerligs, G., P. Schönheit, and G. Diekert. 1989. Sodium dependent acetate formation from CO2 in Peptostreptococcus productus (strain Marburg). FEMS Microbiol. Lett. 57: 253–258.Google Scholar
  70. Gorst, C. M., and S. W. Ragsdale. 1991. Characterization of the NiFeCO complex of carbon monoxide dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme A synthesis. J. Biol. Chem. 266:20687–20693.PubMedGoogle Scholar
  71. Gößner, A., S. L. Daniel, and H. L. Drake. 1994. Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch. Microbiol. 161:126–131.Google Scholar
  72. Gottschalk, G. 1989. Bioenergetics of methanogenic and acetogenic bacteria. In H. G. Schlegel and B. Bowien (eds.), Autotrophic Bacteria, pp. 383–396. Science Tech, Madison, WI.Google Scholar
  73. Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.PubMedGoogle Scholar
  74. Grethlein, A. J., R. M. Worden, M. K. Jain, and R. Datta. 1991. Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J. Ferment. Bioengineer. 72:58–60.Google Scholar
  75. Grethlein, A. J., and M. K. Jain. 1992. Bioprocessing of coal-derived synthesis gases by anaerobic bacteria. TIBTECH 10:418–423.Google Scholar
  76. Gunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377.PubMedGoogle Scholar
  77. Heijthuijsen, J. H. F. G., and T. A. Hansen. 1986. Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol. Ecol. 38:57–64.Google Scholar
  78. Heijthuijsen, J. H. F. G., and T. A. Hansen. 1989. Selection of sulphur sources for the growth of Butyribacterium methylotrophicum and Acetobacterium woodii. Appl. Microbiol. Biotechnol. 32:186–192.Google Scholar
  79. Heinonen, J. K., and H. L. Drake. 1988. Comparative assessment of inorganic pyrophosphate and pyrophosphatase levels of Escherichia coli, Clostridium pasteurianum, and Clostridium thermoaceticum. FEMS Microbiol. Lett. 52: 205–208.Google Scholar
  80. Heise, R., V. Müller, and G. Gottschalk. 1989. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J. Bacteriol. 171:5473–5478.PubMedGoogle Scholar
  81. Heise, R., J. Reidlinger, V. Müller, and G. Gottschalk. 1991. A sodium-stimulated ATP synthase in the acetogenic bacterium Acetobacterium woodii. FEBS Lett. 295:119–122.PubMedGoogle Scholar
  82. Heise, R., V. Müller, and G. Gottschalk. 1992. Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur. J. Biochem. 206:553–557.PubMedGoogle Scholar
  83. Heise, R., V. Müller, and G. Gottschalk. 1993. Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Micrbiol. Lett. 112:261–268.Google Scholar
  84. Hermann, M., M.-R. Popoff, and M. Sebald. 1987. Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int. J. Syst. Bacteriol. 37:93–101.Google Scholar
  85. Hsu, T., M. F. Lux, and H. L. Drake. 1990. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J. Bacteriol. 172:5901–5907.PubMedGoogle Scholar
  86. Hu, S.-L., H. L. Drake, and H. G. Wood. 1982. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J. Bacteriol. 149:440–448.PubMedGoogle Scholar
  87. Hu, S.-I., E. Pezacka, and H. G. Wood. 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum: purification of the corrinoid protein. J. Biol. Chem. 259:8892–8897.PubMedGoogle Scholar
  88. Hugenholtz, J., and L. G. Ljungdahl. 1989. Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum. J. Bacteriol. 171:2873–2875.PubMedGoogle Scholar
  89. Hugenholtz, J., and L. G. Ljungdahl. 1990. Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum. FEMS Microbiol. Lett. 69:117–122.Google Scholar
  90. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology, J. R. Norris and D. W. Ribbons (eds.), Vol. 3B, pp. 117–132. Academic Press, New York.Google Scholar
  91. Ibba, M., and G. H. Fynn. 1991. Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp. Biotechnol. Lett. 13:671–676.Google Scholar
  92. Inoue, K., S. Kageyama, K. Miki, T. Morinaga, Y. Kamagata, K. Nakamura, and E. Mikami. 1992. Vitamin B12 Production by Acetobacterium sp. and its tetrachloromethane-resistant mutants. J. Ferment. Bioengineer. 73:76–78.Google Scholar
  93. Ivey, D. M., and L. G. Ljungdahl. 1986. Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J. Bacteriol. 165:252–257.PubMedGoogle Scholar
  94. Jones, W. J., D. P. Nagle, Jr., and W. B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51:135–177.PubMedGoogle Scholar
  95. Kamen, M. D. 1963. The early history of carbon-14. J. Chem. Educ. 40:234–242.Google Scholar
  96. Kamlage, B., and M. Blaut. 1993. Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups. J. Bacteriol. 175:3043–3050.PubMedGoogle Scholar
  97. Kamlage, B., A. Boelter, and M. Blaut. 1993. Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates. Arch. Microbiol. 159:189–196.Google Scholar
  98. Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen. nov. sp. nov., an H2/ CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.PubMedGoogle Scholar
  99. Kane, M. D., A. Brauman, and J. A. Breznak. 1991. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.Google Scholar
  100. Kellum, R., and H. L. Drake. 1984. Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum. J. Bacteriol. 160:466–469.PubMedGoogle Scholar
  101. Kellum, R., and H. L. Drake. 1986. Effects of carbon monoxide on one-carbon enzymes and energetics of Clostridium thermoaceticum. FEMS Microbiol. Lett. 34:41–45.Google Scholar
  102. Kerby, R., and J. G. Zeikus. 1983. Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr. Microbiol. 8:27–30.Google Scholar
  103. Klemps, R., S. M. Schoberth, and H. Sahm. 1987. Production of acetic acid by Acetogenium kivui. Appl. Microbiol. Biotechnol. 27:229–234.Google Scholar
  104. Koesnadar, N. Nishio, A. Yamamoto, and S. Nagi. 1991. Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum. J. Ferment. Bioengineer. 72:11–14.Google Scholar
  105. Kotsyurbenko, O. R., M. V. Simankova, N. P. Bolotina, T. N. Zhilina, and A. N. Nozhevnikova. 1992. Psychrotrophic homoacetogenic bacteria from several environments. Abstr. C136. 7th Int. Symp. C 1-Compounds. 1992.Google Scholar
  106. Krumholz, L. R., and M. P. Bryant. 1985. Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456.Google Scholar
  107. Krumholz, L. R., and M. P. Bryant. 1986. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.Google Scholar
  108. Küsel, K., and H. L. Drake. 1994. Acetate synthesis by soil from a Bavarian beech forest. Appl. Environ. Microbiol. 60:1370–1373.PubMedGoogle Scholar
  109. Ladapo, J., and W. B. Whitman. 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA 87:5598–5602.PubMedGoogle Scholar
  110. Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.PubMedGoogle Scholar
  111. Lee, C.-K., P. Dürre, H. Hippe, and G. Gottschalk. 1987. Screening for plasmids in the genus Clostridium. Arch. Microbiol. 148: 107–114.PubMedGoogle Scholar
  112. Lee, M. J., and S. H. Zinder. 1988. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54:124–129.PubMedGoogle Scholar
  113. Leedle, J. A. Z., and R. C. Greening. 1988. Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high-or low-forage diets once daily. Appl. Environ. Microbiol. 54:502–506.PubMedGoogle Scholar
  114. Leigh, J. A., F. Mayer, and R. S. Wolfe. 1981. Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch. Microbiol. 129:275–280.Google Scholar
  115. Lentz, K., and H. G. Wood. 1955. Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J. Biol. Chem. 215:645–654.PubMedGoogle Scholar
  116. Liu, C.-L., N. Hart, and H. D. Peck, Jr. 1982. Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus Desulfotomaculum. Science 217:363–364.PubMedGoogle Scholar
  117. Liu, S., and J. M. Suflita. 1993. H2/CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl. Environ. Microbiol. 59:1325–1331.PubMedGoogle Scholar
  118. Ljungdahl, L., and H. G. Wood. 1965. Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum. J. Bacteriol. 89:1055–1064.PubMedGoogle Scholar
  119. Ljungdahl, L., E. Irion, and H. G. Wood. 1966. Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum. Fed. Proc. 25:1642–1648.PubMedGoogle Scholar
  120. Ljungdahl, L. G. and H. G. Wood. 1969. Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann. Rev. Microbiol. 23:515–538.Google Scholar
  121. Ljungdahl, L. G., F. Bryant, L. Carreira, T. Saiki, and J. Wiegel. 1981. Some aspects of thermophilic and extreme thermophilic anaerobic microorganisms. In: Trends in the Biology of Fermentations, A. Hollaender (ed.), pp. 397–419. Plenum Press, New YoGoogle Scholar
  122. Ljungdahl, L. G., L. H. Carreira, R. J. Garrison, N. E. Rabek, and J. Wiegel. 1985. Comparison of three thermophilic acetogenic bacteria for production of calcium magnesium acetate. Biotechnol. Bioengeer. Symp. 15:207–223.Google Scholar
  123. Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40:415–450.Google Scholar
  124. Ljungdahl, L. G., J. Hugenholtz, and J. Wiegel. 1989. Acetogenic and Acid-Producing Clostridia. In: Clostridia, N. P. Minton and D. J. Clarke (eds.), pp. 145–191. Plenum Press, New YoGoogle Scholar
  125. Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47: 961–964.PubMedGoogle Scholar
  126. Loubiere, P., E. Gros, V. Paquet, and N. D. Lindley. 1992. Kinetics and physiological implications of the growth behaviour of Eubacterium limosum on glucose/methanol mixtures. J. Gen. Microbiol. 138:979–985.Google Scholar
  127. Lovell, C. R., A. Przybyla, and L. G. Ljungdahl. 1990. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29:5687–5694.PubMedGoogle Scholar
  128. Lowe, A., M. K. Jain, and J. G. Zeikus. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57:451–509.PubMedGoogle Scholar
  129. Lundie, Jr., L. L. and H. L. Drake. 1984. Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159:700–703.PubMedGoogle Scholar
  130. Lux, M. F., E. Keith, T. Hsu, and H. L. Drake. 1990. Biotransformation of aromatic aldehydes by acetogenic bacteria. F EMS Microbiol. Lett. 67:73–78.Google Scholar
  131. Lux, M. F., and H. L. Drake. 1992. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol. Lett. 95:49–56.Google Scholar
  132. Lynd, L. H., and J. G. Zeikus. 1983. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J. Bacteriol. 153:1415–1423.PubMedGoogle Scholar
  133. Martin, D. R., L. L. Lundie, R. Kellum, and H. L. Drake. 1983. Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum. Curr. Microbiol. 8:337–340.Google Scholar
  134. Martin, D. R., A. Misra, and H. L. Drake. 1985. Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum. Appl. Environ. Microbiol. 49:1412–141PubMedGoogle Scholar
  135. Matthies, C., A. Freiberger, and H. L. Drake. 1993. Fumarate dissimilation and difierential reductant flow by Clostridiwn formicoaceticum and Clostridium aceticum. Arch. Microbiol. 160:273–278.Google Scholar
  136. Mayer, F., J. I. Elliott, D. Sherod, and L. G. Ljungdahl. 1982. Formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Eur. J. Biochem. 124:397–404.PubMedGoogle Scholar
  137. Meyer, O. 1988. Biology and biotechnology of aerobic carbon monoxide-oxidising bacteria. In: Biotechnology Focus 1, M. Schlingmann, W. Crueger, K. Esser, R. Thauer, and F. Wagner (eds.), pp. 3–31. Hanser Publishers, Munich, VienGoogle Scholar
  138. Meyer, O., K. Frunzke, and G. Mörsdorf. 1993. Biochemistry of the aerobic utilization of carbon monoxide. In: Microbial Growth on C 1 Compounds, J. C. Murrell, and D. P. Kelly (eds.), pp. 433–459. Intercept Ltd., Andover, EnglaGoogle Scholar
  139. Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139:388–396.Google Scholar
  140. Moench, T. T., and J. G. Zeikus. 1983. An improved preparation method for a titanium (III) media reductant. J. Microbiol. Methods 1:199–202.Google Scholar
  141. Moore, W., and E. Cato. 1965. Synonymy of Eubacterium limosum and Butyribacterium rettgeri. Int. Bull. Bacteriol. Nomen. Taxon. 15:69–80.Google Scholar
  142. Morton, T. A., C-F. Chou, and L. G. Ljungdahl. 1992. Cloning, sequencing, and expressions of genes encoding enzymes of the autotrophic acetyl-CoA pathway in the acetogen Clostridium thermoaceticum. In: Genetics and Molecular Biology of Anaerobic Bacteria, M. Sebald (ed.), pp. 389–406. Springer-Verlag, New York.Google Scholar
  143. Mountfort, D. O. 1992. Ecophysiological significance of anaerobes in the gastrointestinal tracts of marine fish. Abstr. C1-4-4, p. 91. Sixth Internat. Symp. on Microbial Ecology (ISME-6) 1992.Google Scholar
  144. Nagaranthal, K. R., and D. P. Nagle, Jr. 1992. Inhibition of methanogenesis in Methanobacterium thermoautotrophicum by lumazine, Abstr. 1-23, p. 240. Ann. Meet. Am. Soc. Microbiol. 1992.Google Scholar
  145. O’Brien, W. E., J. M. Brewer, and L. G. Ljungdahl. 1973. Purification and characterization of thermostable 5, 10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 248:403–408.PubMedGoogle Scholar
  146. Ohwaki, K., and R. E. Hungate. 1977. Hydrogen utilization by clostridia in sewage sludge. Appl. Environ. Microbiol. 33:1270–1274.PubMedGoogle Scholar
  147. Ollivier, B. M., R. A. Man, T. J. Ferguson, D. R. Boone, J. L. Garcia, and R. Robinson. 1985. Emendation of the genus Thermobacteroides: Thermobacteriodes proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int. J. Syst. Bacteriol. 35:425–428.Google Scholar
  148. Ollivier, B., R. Cordruwisch, A. Lombardo, and J.-L. Garcia. 1985. Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch. Microbiol. 142:307–310.Google Scholar
  149. Parekh, M., E. S. Keith, S. L. Daniel, and H. L. Drake. 1992. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds. FEMS Microbiol. Lett. 94:69–74.Google Scholar
  150. Parekh, S. R., and M. Cheryan. 1991. Production of acetate by mutant strains of Clostridium thermoaceticum. Appl. Microbiol. Biotechnol. 36:384–387.Google Scholar
  151. Park, E. Y., J. E. Clark, D. V. DerVartanian, and L. G. Ljungdahl. 1991. 5, 10-Methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia. In: Chemistry and Biochemistry of Flavoenzymes, F. Müller (ed.), Vol. 1, pp. 389–400. CRC Press, Boca RatonGoogle Scholar
  152. Patel, B. K. C., C. Monk, H. Littleworth, H. W. Morgan, and R. M. Daniel. 1987. Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Bacteriol. 37:123–126.Google Scholar
  153. Pezacka, E., and H. G. Wood. 1984a. Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc. Nad. Acad. Sci. USA 81: 6261–6265.Google Scholar
  154. Pezacka, E., and H. G. Wood. 1984b. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch. Microbiol. 137:63–69.PubMedGoogle Scholar
  155. Pezacka, E., and H. G. Wood. 1986. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase. J. Biol. Chem. 261:1609–1615.PubMedGoogle Scholar
  156. Poston, J. M., K. Kuratomi, and E. R. Stadtman. 1964. Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. Ann. N.Y. Acad. Sci. 112:804–806.PubMedGoogle Scholar
  157. Poston, J. M., K. Kuratomi, and E. R. Stadtman. 1966. The conversion of carbon dioxide to acetate: I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum. J. Biol. Chem. 241:4209–4216.PubMedGoogle Scholar
  158. Ragsdale, S. W., J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake. 1983. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfide protein. J. Biol. Chem. 258:2364–2369.PubMedGoogle Scholar
  159. Ragsdale, S. W., H. G. Wood, and W. E. Antholine. 1985. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Proc. Nati. Acad. Sci. USA 82:6811–6814.Google Scholar
  160. Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26:261–300.PubMedGoogle Scholar
  161. Reeve, J. N. 1992. Molecular biology of methanogens. Annu. Rev. Microbiol. 46:165-191.Google Scholar
  162. Roberts, D. L., J. E. James-Hagstrom, D. K. Garvin, C. M. Gorst, J. A. Runquist, J. R. Baur, F. C. Haase, and S. W. Ragsdale. 1989. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Proc. Nati. Acad. Sci. USA 86:32–36.Google Scholar
  163. Sakami, W. 1962. Anaerobic gradient elution chromatography. Anal. Biochem. 3:358–360.Google Scholar
  164. Samain, E., G. Albangnac, H. C. Dubourguier, and J-P. Touzel. 1982. Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor-dependent association with a gram-negative homoacetogen. FEMS Microbiol. Lett. 15:69–74.Google Scholar
  165. Savage, M. D., and H. L. Drake. 1986. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol. 165:315–318.PubMedGoogle Scholar
  166. Savage, M. D., Z. Wu, S. L. Daniel, L. L. Lundie, Jr., and H. L. Drake. 1987. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl. Environ. Microbiol. 53:1902–1906.PubMedGoogle Scholar
  167. Schaupp, A. and L. G. Ljungdahl. 1974. Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch. Microbiol. 100:121–129.PubMedGoogle Scholar
  168. Schauder, R., B. Eikmanns, R. K. Thauer, F. Widdel, and G. Fuchs. 1986. Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the critic acid cycle. Arch. Microbiol. 145:162–172.Google Scholar
  169. Schink, B. 1984. Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch. Microbiol. 137:250–255.Google Scholar
  170. Schink, B., and M. Bomar. 1992. The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum. In: The Prokaryotes, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.), pp. 1925–1936. Springer-Verlag, New York.Google Scholar
  171. Schopf, J. W., J. M. Hayes, and M. R. Walter. 1983. Evolution of the earth’s earliest ecosystems: recent progress and unsolved problems. In: Earth’s Earliest Biosphere, J. W. Schöpf (ed.), pp. 361–384. Princeton University Press, PrincetonGoogle Scholar
  172. Schramm, E., and B. Schink. 1991. Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation 2:71–79.PubMedGoogle Scholar
  173. Schulman, M., R. K. Ghambeer, L. G. Ljungdahl, and H. G. Wood. 1973. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248:6255–6261.PubMedGoogle Scholar
  174. Schuppert, B., and B. Schink. 1990. Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. Arch. Microbiol. 153:200–204.Google Scholar
  175. Schwartz, R. D., and F. A. Keller, Jr. 1982. Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5. Appl. Environ. Microbiol. 43:117–123.PubMedGoogle Scholar
  176. Seifritz, C., S. L. Daniel, A. Gößner, and H. L. Drake. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175:8008–8013.PubMedGoogle Scholar
  177. Seiler, W. 1984. Contribution of biological processes to the global budget of CH4 in the atmosphere. In: Current Perspectives in Microbiol Ecology, M. J. Klug, and C. A. Reddy (eds), pp. 468–477. American Society of Microbiology, Washington, DGoogle Scholar
  178. Sembiring, T., and J. Winter. 1989. Anaerobic degradation of o-phenylphenol by mixed and pure cultures. Appl. Microbiol. Biotech. 31:89–92.Google Scholar
  179. Sembiring, T., and J. Winter. 1990. Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains. Appl. Microbiol. Biotechnol. 33:233–238.Google Scholar
  180. Sharak-Genthner, B.R., C. L. Davies, and M. P. Bryant. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19.Google Scholar
  181. Shin, W., and P. A. Lindahl. 1992a. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 31:12870–12875.PubMedGoogle Scholar
  182. Shin, W., and P. A. Lindahl. 1992b. Discovery of a labile nickel ion required for Co/ acetyl-CoA exchange activity in the NiFe complex of carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 114:9718–9719.Google Scholar
  183. Shin, W., and P. A. Lindahl. 1993. Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification. Biochim. Biophys. Acta 1161:317–322.PubMedGoogle Scholar
  184. Shin, W., P. R. Stafford, and P. A. Lindahl. 1992. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 31:6003–6011.PubMedGoogle Scholar
  185. Shin, W., M. E. Anderson, and P. A. Lindahl. 1993. Heterogenous nickel environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 115:5522–5526.Google Scholar
  186. Sleat, R., R. A. Man, and R. Robinson. 1985. Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2. Int. J. Syst. Bacteriol. 35:10–15.Google Scholar
  187. Smith, M. R., and R. A. Man. 1981. 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutants. Curr. Microbiol. 6:321–326.Google Scholar
  188. Stupperich, E., and R. Konle. 1993. Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata. Appl. Environ. Microbiol. 59:3110–3116.PubMedGoogle Scholar
  189. Sugaya, K., D. Tusé, and J. L. Jones. 1986. Production of acetic acid by Clostridium thermoaceticum in batch and continuous fermentations. Biotechnol. Bioengineer. 28:678–683.Google Scholar
  190. Tanaka, K., and N. Pfennig. 1988. Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149:181–187.Google Scholar
  191. Tanner, R. S., E. Stakebrandt, G. E. Fox, and C. R. Woese. 1981. A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue. Curr. Microbiol. 5:35–38.Google Scholar
  192. Tanner, R. S., and D. Yang. 1990. Clostridium Ijungdahlii PETC sp. nov., a new, acetogenic, gram-positive, anaerobic bacterium. Abstr. R-21, p. 249. Abstr. Ann. Meet. Am. Soc. Microbiol., 1990.Google Scholar
  193. Tanner, R. S., L. M. Miller, and D. Yang. 1993. Clostridium ljungdahlii sp. nov., and acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:232–236.PubMedGoogle Scholar
  194. Thauer, R. K. 1988. Citric acid cycle, 50 years on: modification and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. 176:497–508.PubMedGoogle Scholar
  195. Thauer, R. K., G. Fuchs, B. Käufer, and U. Schnitker. 1974. Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum. Eur. J. Biochem. 45:343–349.PubMedGoogle Scholar
  196. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  197. Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.PubMedGoogle Scholar
  198. Traunecker, J., A. Preuß, and G. Diekert. 1991. Isolation and characterization of a methyl cloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156:416–421.Google Scholar
  199. Tschech, A., and N. Pfennig. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137:163–167.Google Scholar
  200. Varma, A. K., and H. D. Peck, Jr. 1983. Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria. FEMS Microbiol. Lett. 16:281–285.Google Scholar
  201. Wagener, S., and B. Schink. 1988. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54:561–565.PubMedGoogle Scholar
  202. Wang, G., and D. I. C. Wang. 1983. Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum. Appl. Biochem. Biotechnol. 8:491–503.PubMedGoogle Scholar
  203. Wang, G., and D. I. C. Wang. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47:294–29PubMedGoogle Scholar
  204. Whitman, W. B. 1985. Methanogenic bacteria. In: C. R. Woese and R. S. Wolfe (eds.) The Bacteria, Vol. VIII, pp. 3–84. Academic Press, San Diego, CA.Google Scholar
  205. Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. The methanogenic bacteria. In: A. Balows, H. G. Triiper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.). The Prokaryotes, 2nd ed., pp. 719–767, Springer-Verlag, New York.Google Scholar
  206. Wiegel, J., M. Braun, and G. Gottschalk. 1981. Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260.Google Scholar
  207. Wiegel, J., L. H. Carreira, R. J. Garrison, N. E. Robek, and L. G. Ljungdahl. 1990. Calcium magnesium acetate (CMA) manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria. In: Calcium Magnesium Acetate, D. L. Wise, Y. Levendis, and M. Metghalchi (eds.), pp. 359–416. Elsevier, Amsterdam.Google Scholar
  208. Wieringa, K. T. (1936). Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Antonie van Leeuwenhoek 3:263–273.Google Scholar
  209. Wieringa, K. T. 1939-1940. The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek J. Microbiol. Seriol 6:251–262.Google Scholar
  210. Wieringa, K. T. 1941. Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe Bazillen. Brennstoff-Chemie 22:161–164.Google Scholar
  211. Winter, J. U., and R. S. Wolfe. 1980. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124:73–79.PubMedGoogle Scholar
  212. Wohlfahrt, G., and G. Diekert. 1991. Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch. Microbiol. 155:378–381.Google Scholar
  213. Wood, H. G., and C. H. Werkman. 1936. Mechanism of glucose dissimilation by the propionic acid bacteria. Biochem. J. 30:618–623.PubMedGoogle Scholar
  214. Wood, G. H., and C. H. Werkman. 1938. The utilization of CO2 by the propionic acid bacteria. Biochem. J. 32:1262–1271.PubMedGoogle Scholar
  215. Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941a. Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J. Biol. Chem. 139:365–376.Google Scholar
  216. Wood, H. G., C. H. Werkman, A. Hemingway, and A. O. Nier. 1941b. The position of carbon dioxide carbon in succinic acid synthesized by heterotrophic bacteria. J. Biol. Chem. 139:377–381.Google Scholar
  217. Wood, H. G. 1952a. A study of carbon dioxide fixation by mass determination on the types of C13-acetate. J. Biol. Chem. 194:905–931.PubMedGoogle Scholar
  218. Wood, H. G. 1952b. Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. J. Biol. Chem. 199:579–583.PubMedGoogle Scholar
  219. Wood, H. G. 1972. My life and carbon dioxide fixation. In: The Molecular Basis of Biological Transport, Miami Winter Symposium Vol. 3, J. F. Woessner, Jr., and F. Huijing (eds.), pp. 1–54. Academic Press, New York.Google Scholar
  220. Wood, H. G. 1976. Trailing the propionic acid bacteria. In: Reflections on Biochemistry, A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro (eds.), pp. 105–115. Permagon Press, OxfoGoogle Scholar
  221. Wood, H. G. 1982. The discovery of the fixation of CO2 by heterotrophic organisms and metabolism of the propionic bacteria. In: Of Oxygen, Fuels, and Living Matter, Part 2, G. Semenza (ed.), pp. 173–250, John Wiley and Sons, New York.Google Scholar
  222. Wood, H. G. 1985. Then and now. Annu. Rev. Biochem. 54:1–41.PubMedGoogle Scholar
  223. Wood, H. G. 1989. Past and present of CO2 utilization. In: Autotrophic Bacteria, H. G. Schlegel and B. Bowien (eds.), pp. 33–52. Science Tech. Madison and Springer-Verlag, Berlin.Google Scholar
  224. Wood, H. G. 1991. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5:156–163.PubMedGoogle Scholar
  225. Wood, H. G., and L. G. Ljungdahl. 1991. Autotrophic character of the acetogenic bacteria. In: Variations in Autotrophic Life, J. M. Shively, and L. L. Barton (eds.), pp. 201–250. Academic Press, San Diego, CA.Google Scholar
  226. Worden, R. M., A. J. Grethlein, J. G. Zeikus, and R. Datta. 1989. Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl. Biochem. Biotechnol. 20/21:687–698.Google Scholar
  227. Wu, Z., S. L. Daniel, and H. L. Drake. 1988. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J. Bacteriol. 170:5747–5750.PubMedGoogle Scholar
  228. Yamamoto, I., T. Saiki, S.-M. Liu, and L. G. Ljungdahl. 1983. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Biol. Chem. 258:1826–1832.PubMedGoogle Scholar
  229. Yang, H., and H. L. Drake. 1990. Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56:81–86.PubMedGoogle Scholar
  230. Zehnder, A. J. B., and K. Wuhrmann. 1976. Titanium III citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166.PubMedGoogle Scholar
  231. Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch. Microbiol. 124:1–11.PubMedGoogle Scholar
  232. Zeikus, J. G., L. H. Lynd, T. E. Thompson, J. A. Krzycki, P. J. Weimer, and P. W. Hegge. 1980. Isolation and characterization of a new methylotrophic, acidogenic anaerobe, the Marburg strain. Curr. Microbiol. 3:381–386.Google Scholar
  233. Zeikus, J. G. 1983. Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv. Microbial. Physiol. 24:215–299.Google Scholar
  234. Zeikus, J. G., R. Kerby, and J. A. Krzycki. 1985. Single-carbon chemistry of acetogenic and methanogenic bacteria. Science 227:1167–1173.PubMedGoogle Scholar
  235. Zhilina, T. N., and G. A. Zavarzin. 1990. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87:315–322.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Harold L. Drake

There are no affiliations available

Personalised recommendations