Mechanics of Food Handling by Fluid-Feeding Insects

  • J. G. Kingsolver
  • T. L. Daniel

Abstract

Many insects meet their nutritional requirements through an entirely liquid diet, by feeding on fluids ranging from plant nectars and phloem to mammalian blood. A rich tradition in comparative anatomy and behavior has detailed (a) the diversity of mouthparts found in nectar-, blood-, and phloem-feeding insects and (b) the variety of behaviors used during the feeding process. This tradition has placed less emphasis on the common features in fluid feeding that are likely to result from the basic physical processes of moving fluid from the external environment to the inside of the insect.

Keywords

Sugar Hydrolysis Migration Sucrose Polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. B., and McAllan, J. W. (1958). Pectinase in certain insects. Can. J. Zool. 36, 305–308.CrossRefGoogle Scholar
  2. Aron, J. L., and May, R. M. (1982). The population dynamics of malaria. In: Anderson, R. M. (ed.), Population Dynamics of Infectious Diseases. Chapman & Hall, New York, pp. 139–179.Google Scholar
  3. Auclair, J. L. (1963). Aphid feeding nutrition. Annu. Rev. Entomol. 8, 439–490.CrossRefGoogle Scholar
  4. Baker, I., and Baker, H. G. (1982). Some constituents of floral nectars of Erythrina in relation to pollinators and systematics. Alertonia 4, 25–37.Google Scholar
  5. Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, New York.Google Scholar
  6. Bennet-Clark, H. C. (1962). Active control of the mechanical properties of insect cuticle. J. Insect Physiol. 8, 627–633.CrossRefGoogle Scholar
  7. Bennet-Clark, H. C. (1963a). Negative pressures produced in the pharyngeal pump of the blood-sucking bug, Rhodnius prolixus. J. Exp. Biol. 40, 223–229.Google Scholar
  8. Bennet-Clark, H. C. (1963b). The control of meal size in the blood sucking bug, Rhodnius prolixus. J. Exp. Biol. 40, 741–750.Google Scholar
  9. Boggs, C. L. (1988). Rates of nectar feeding in butterflies: effects of sex, size, age, and nectar concentration. Functional Ecol. 2, 289–295.CrossRefGoogle Scholar
  10. Boggs, C. L., and Ross, C. L. (1993). The effects of adult food limitation on life history traits in Speyeria mormonia (Lepidoptra: Nymphalidae). Ecology 74, 433–441.CrossRefGoogle Scholar
  11. Buxton, P. A. (1930). The biology of a blood-sucking bug, Rhodnius prolixus. Trans. R. Entomol. Soc. Lond. 78, 227–236.CrossRefGoogle Scholar
  12. Campbell, B. C, and Dreyer, D. L. (1985). Host-plant resistance of sorghum: differential hydrolysis of sorghum pectic substances by polysaccharases of greenbug biotypes (Schizaphis graminum, Homoptera: Aphididae). Arch. Insect Biochem. Physiol. 2, 203–215.CrossRefGoogle Scholar
  13. Campbell, B. C., Jones, K. C., and Dreyer, D. L. (1986). Discriminative behavioral responses by aphids to various plant matrix polysaccharides. Entomol. Exp. Appl. 41, 17–24.CrossRefGoogle Scholar
  14. Cartier, J. J. (1967). Factors of host plant specificity and artificial diets. Ann. Entomol. Soc. Am. 60, 18–21.Google Scholar
  15. Chisholm, I. F., and Lewis, T. (1984). A new look at thrips (Thysanoptera) mouthparts, their action and effects of feeding on plant tissue. Bull. Entomol. Res. 74, 663–675.CrossRefGoogle Scholar
  16. Clements, A. N. (1963). The Physiology of Mosquitoes. Pergamon Press, New York.Google Scholar
  17. Cranston, H. A., Boylan, C. W., Carroll, G. L., Sutera, S. P., Williamson, J. R., Gluzman, I. Y., and Krogstad, D. J. (1984). Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223, 400–403.PubMedCrossRefGoogle Scholar
  18. Dadd, R. H., and Mittler, T. E. (1965). Studies on the artificial feeding of the aphid Myzus persicae (Sulzer). III. Some major nutritional requirements. J. Insect Physiol. 11, 714–743.CrossRefGoogle Scholar
  19. Daniel, T. L., and Kingsolver, J. G. (1983). Feeding strategy and the mechanics of blood sucking in insects. J. Theor. Biol. 105, 661–672.PubMedCrossRefGoogle Scholar
  20. Daniel, T. L., Kingsolver, J. G., and Meyhofer, E. (1989). Mechanical determinants of nectar-feeding energetics in butterflies: muscle mechanics, feeding geometry, and functional significance. Oecologia (Berlin) 79, 66–75.CrossRefGoogle Scholar
  21. Day, M. F., and Krzykiewicz, H. (1954). Physiological studies on thrips in relation to transmission of tomato spotted wilt virus. Aust. J. Biol. Sci. 7, 274–281.PubMedGoogle Scholar
  22. Dethier, V. G., and Rhoades, M. V. (1954). Sugar preference-aversion functions for the blowfly. J. Exp. Zool. 126, 177–203.CrossRefGoogle Scholar
  23. Downes, J. A. (1958). The feeding habits of biting flies and their significance in classification. Annu. Rev. Entomol. 3, 249–266.CrossRefGoogle Scholar
  24. Eastham, L. E. S., and Eassa, Y. E. E. (1955). The feeding mechanism of the butterfly Pieris brassicae L. Philos. Trans. R. Soc. London Ser B 239, 1–43.CrossRefGoogle Scholar
  25. Edman, J. D., and Lynn, H. C. (1975). Relationship between bloodmeal volume and ovarian development in Culex nigripalpus (Diptera: Culicidae). Entomol. Exp. Appl. 18, 492–496.CrossRefGoogle Scholar
  26. Ewald, P. W., and Williams, W. A. (1982). Function of the bill and tongue in nectar uptake by hummingbirds. Auk 99, 573–576.Google Scholar
  27. Fahraeus, R. (1929). The suspension stability of the blood. Physiol. Rev. 9, 241–274.Google Scholar
  28. Farrell, A. P. (1991). Circulation of body fluids. In: Prosser, C. L. (ed.), Environmental and Metabolic Animal Physiology. Wiley—Liss, New York, pp. 509–558.Google Scholar
  29. Friend, W. G., and Smith, J. J. B. (1977). Factors affecting feeding by bloodsucking insects. Annu. Rev. Entomol. 23, 309–331.CrossRefGoogle Scholar
  30. Fung, Y. C. (1981). Biomechanics. Springer-Verlag, New York.Google Scholar
  31. Gillett, J. D. (1969). Natural selection and feeding speed in a blood-sucking insect. Proc. R. Soc. London Ser B 167, 316–329.CrossRefGoogle Scholar
  32. Gillett, J. D. (1972). The Mosquito. Doubleday, New York.Google Scholar
  33. Goldsmith, H. L., Cokelet, G. R., and Gaehtgens, P. (1989). Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257, 1005–1015.Google Scholar
  34. Hainsworth, F. R. (1989). “Fast food” vs. “haute cuisine”: painted ladies, Vanessa cardui (L.), select food to maximize net meal energy. Fund. Ecol. 3, 701–707.CrossRefGoogle Scholar
  35. Hainsworth, F. R., Precup, E., and Hamill, T. (1991). Feeding, energy processing rates and egg production in painted lady butterflies. J. Exp. Biol. 156, 249–265.Google Scholar
  36. Harder, L. D. (1982). Measurement and estimation of functional proboscis length in bumblebees (Hymenoptera: Apidae). Can J. Zool. 60, 1073–1079.CrossRefGoogle Scholar
  37. Harder, L. D. (1983). Flower handling efficiency of bumble bees: morphological aspects of probing time. Oecologia (Berlin) 57, 274–280.CrossRefGoogle Scholar
  38. Harder, L. D. (1985). Morphology as a predictor of flower choice by bumble bees. Ecology 66, 198–210.CrossRefGoogle Scholar
  39. Harder, L. D. (1986). Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia (Berlin) 69, 309–315.CrossRefGoogle Scholar
  40. Heinrich, B. (1976). Resource partitioning among some eusocial insects: bumblebees. Ecology 57, 874–889.CrossRefGoogle Scholar
  41. Heyneman, A. (1983). Optimal sugar concentrations of floral nectars—dependence on nectar energy flux and pollinator foraging costs. Oecologia (Berlin) 60, 198–213.CrossRefGoogle Scholar
  42. Hocking, B. (1971). Blood-sucking behavior of terrestrial arthropods. Annu. Rev. Entomol. 16, 1–26.PubMedCrossRefGoogle Scholar
  43. Hoffman, G. D., and McEvoy, P. B. (1986). Mechanical limitations on feeding by meadow spittlebugs Philaenus spumarius (Homoptera: Cercopidae) on wild and cultivated host plants. Ecol. Entomol. 11, 415–426.Google Scholar
  44. Horsfield, D. (1978). Evidence for xylem feeding by Philaenus spumarius (L.) (Homoptera: Cercopidae). Entomol. Exp. Appl. 24, 95–99.CrossRefGoogle Scholar
  45. Inouye, D. W. (1976). Resource partitioning and community structure: a study of bumblebees in the Colorado Rocky Mountains. Ph.D. Dissertation, University of North Carolina, Chapel Hill.Google Scholar
  46. Inouye, D. W. (1980). The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia (Berlin) 45, 197–201.CrossRefGoogle Scholar
  47. Kennedy, J. S., and Mittler, T. E. (1953). A method of obtaining phloem sap via the mouthparts of aphids. Nature 171, 258.Google Scholar
  48. Kennedy, J. S., Lamb, K. P., and Booth, C. O. (1958). Responses of Aphis fabae (Scop.) to water shortage in host plants in pots. Entomol. Exp. Appl. 1, 274–291.CrossRefGoogle Scholar
  49. Kimmins, F. M. (1986). Ultrastructure of the stylet pathway of Brevicoryne brassicae in host plant tissue, Brassica oleracea. Entomol. Exp. Appl. 41, 283–290.CrossRefGoogle Scholar
  50. Kimmins, F. M., and Tjallingii, W. F. (1985). Ultrastructure of sieve penetration by aphid stylets during electrical recording. Entomol. Exp. Appl. 39, 135–141.CrossRefGoogle Scholar
  51. Kingsolver, J. G., and Daniel, T. L. (1979). On the mechanics and energetics of nectar feeding in butterflies. J. Theor. Biol. 76, 167–179.PubMedCrossRefGoogle Scholar
  52. Kingsolver, J. G., and Daniel, T. L. (1983a). Mechanical determinants of nectar feeding strategy in hummingbirds: energetics, tongue morphology, and licking behavior. Oecologia (Berlin) 60, 214–226.CrossRefGoogle Scholar
  53. Kingsolver, J. G., and Daniel, T. L. (1993). The mechanics of fluid feeding in insects. Proc. Thomas Say Publ. Entomol. 1, 149–162.Google Scholar
  54. Kinsey, M. G., and McLean, D. L. (1967). Additional evidence that aphids ingest through an open stylet sheath. Ann. Entomol. Soc. Am. 60, 1263–1265.Google Scholar
  55. Krenn, H. W. (1990). Functional morphology and movements of the proboscis of Lepidoptera (Insecta). Zoomorphology 110, 105–114.CrossRefGoogle Scholar
  56. Lehane, M. J. (1991). Biology of Blood-Sucking Insects. Harper Collins Academic, London.CrossRefGoogle Scholar
  57. Lewis, T. R. (1973). Thrips: Their Biology, Ecology, and Economic Importance. Academic Press, New York.Google Scholar
  58. Ma, R., Reese, J. C., Black, W. C., and Bramel-Cox, P. (1990). Detection of pectinesterase and polygalacturonase from salivary secretions of living green bugs, Schizaphis graminum (Homoptera: Aphididae). J. Insect Physiol. 36, 507–512.CrossRefGoogle Scholar
  59. May, P. G. (1985). Nectar uptake rates and optimal nectar concentration of two butterfly species. Oecologia (Berlin) 66, 381–386.CrossRefGoogle Scholar
  60. McMahon, T. A. (1984). Muscles, Reflexes, and Locomotion. Princeton University Press, Princeton, NJ.Google Scholar
  61. Michener, C.D., and Brooks, R. W. (1984). Comparative study of the glossae of bees (Apoidea). Contrib. Am. Entomol. Inst. 22, 1–73.Google Scholar
  62. Miles, P. W. (1973). The saliva of Hemiptera. Adv. Insect Physiol. 9, 183–255.CrossRefGoogle Scholar
  63. Miles, P. W., McLean, D. L., and Kinsey, M. G. (1964). Evidence that two species of aphid ingest food through an open stylet sheath. Experientia 20, 582.PubMedCrossRefGoogle Scholar
  64. Mittler, T. E. (1957). Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera: Ahididae). I. The uptake of phloem sap. J. Exp. Biol. 34, 334–341.Google Scholar
  65. Mittler, T. E. (1958a). Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera: Aphididae). II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J. Exp. Biol. 35, 74–84.Google Scholar
  66. Mittler, T. E. (1958b). Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera: Aphididae). III. The nitrogen economy. J. Exp. Biol. 35, 626–638.Google Scholar
  67. Mittler, T. E. (1967a). Effect of amino acid and sugar concentrations on the food uptake of the aphid Myzus persicae. Entomologia Exp. Appl. 10, 39–51.CrossRefGoogle Scholar
  68. Mittler, T. E. (1967b). Water tensions in plants—an entomological approach. Ann. Entomol. Soc. Am. 60, 1074–1076.Google Scholar
  69. Mittler, T. E., and Dadd, R. H. (1963a). Studies on the artificial feeding of the aphid Myzus persicae (Sulzer). I. Relative uptake of water and sucrose solutions. J. Insect Physiol. 9, 623–645.CrossRefGoogle Scholar
  70. Mittler, T. E., and Dadd, R. H. (1963b). Studies on the artificial feeding of the aphid Myzus persicae (Sulzer). II. Relative survival, development, and larvipostion on different diets. J. Insect Physiol. 9, 741–757.CrossRefGoogle Scholar
  71. Muller, H. (1888). On the fertilisation of flowers by insects and on the reciprocal adaptations of both. Nature 8, 187–189.CrossRefGoogle Scholar
  72. Pivnick, K. A., and McNeil, J. N. (1985). Effects of nectar concentration on butterfly feeding: measured feeding rates for Thymelicus lincola (Lepidoptera: Hespiridae) and a general feeding model for adult Lepidoptera. Oecologia (Berlin) 66, 226–237.Google Scholar
  73. Pollard, D. G. (1973). Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review. Bull. Entomol. Res. 62, 631–714.CrossRefGoogle Scholar
  74. Preston, R. D. (1952). Movement of water in higher plants. In Frey-Wyssling, A. (ed.), Deformation and Flow in Biological Systems. Amsterdam.Google Scholar
  75. Prosser, C. L. (1973). Comparative Animal Physiology. W. B. Saunders, Philadelphia.Google Scholar
  76. Pyke, G. H., and Waser, N. M. (1981). On the production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13, 260–270.CrossRefGoogle Scholar
  77. Roubik, D. W., and Buchmann, S. L. (1984). Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest. Oecologia (Berlin) 61, 1–10.CrossRefGoogle Scholar
  78. Scolander, P. F., Hammel, H. T., Bradstreet, E. D., and Hemmingsen, E. A. (1965). Sap pressure in vascular plants. Science 148, 339–346.CrossRefGoogle Scholar
  79. Smith, J. J. B. (1979). Effect of diet viscosity on the operation of the pharyngeal pump in the blood-feeding bug Rhodnius prolixus. J. Exp. Biol. 82, 93–104.PubMedGoogle Scholar
  80. Snodgrass, R. E. (1935). Principles of Insect Morphology. McGraw-Hill, New York.Google Scholar
  81. Snodgrass, R. E. (1944). The feeding apparatus of biting and sucking insects affecting man and animals. Smithson. Misc. Collect. 104, 1–113.Google Scholar
  82. Snodgrass, R. E. (1956). Anatomy of the Honey Bee. Comstock Publications, Ithaca, New York.Google Scholar
  83. Spiller, N. J., Kimmins, F. M., and Llewellyn, M. (1985). Fine structure of aphid stylet pathways and its use in host plant resistance studies. Entomol. Exp. Appl. 38, 293–295.CrossRefGoogle Scholar
  84. Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton University Press, Princeton, NJ.Google Scholar
  85. Stevenson, R. D. (1992). Feeding rates of the tobacco hawkmoth Maduca sexta at artificial flowers. Am. Zool. 31, 57A.Google Scholar
  86. Tamm, S., and Gass, C. L. (1986). Energy intake rates and nectar concentration preferences by hummingbirds. Oecologia (Berlin) 70, 20–23.CrossRefGoogle Scholar
  87. Taraschi, T. F., Parashar, A., Hooks, M., and Rubin, H. (1986). Perturbation of red cell membrane structure during intracellular maturation of Plasmodium falciparum. Science 232, 102–105.PubMedCrossRefGoogle Scholar
  88. Tawfik, M. S. (1968). Feeding mechanisms and the forces involved in some bloodsucking insects. Quaest. Entomol. 4, 92–111.Google Scholar
  89. Vogel, S. (1981). Life in Moving Fluids. Willard Grant Press, New York.Google Scholar
  90. Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M. (1976). Mechanical Design in Organisms. Edward Arnold, London.Google Scholar
  91. Watt, W. B., Hoch, P. C., and Mills, S. G. (1974). Nectar resource use by Colias butterflies. Oecologia (Berlin) 14, 353–374.CrossRefGoogle Scholar
  92. Wearing, C. H. (1967). Studies on the relations of insect and host plant. II. Effects of water stress in host plants in pots on the fecundity of Myzus persicae (Sulz.) and Brevicoryne brassicae (L.). Nature 213, 1052–1053.CrossRefGoogle Scholar
  93. Wearing, C.H. (1968). Responses of aphids to pressure applied to liquid diet behind parafilm membrane: longevity and larviposition of Myzus persicae (Sulz.) and Brevicoryne brassicae (L.) (Homoptera: Aphididae) feeding on sucrose and sinigrin solutions. N. Z. J. Sci. 11, 105–121.Google Scholar
  94. Wearing, C.H., and Van Emden, H. F. (1967). Studies on the relations of insect and host plant. I. Effects of water stress in host plants in pots on infestation by Aphis fabae Scop., Myzus persicae (Sulz.) and Brevicoryne brassicae (L.). Nature 213, 1051–1052.CrossRefGoogle Scholar
  95. Weatherley, P. E., Peel, A. J., and Hill, G. P. (1959). The physiology of the sieve tube. Preliminary experiments using aphid mouthparts. J. Exp. Bot. 10, 1–16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • J. G. Kingsolver
  • T. L. Daniel

There are no affiliations available

Personalised recommendations