Stimulation of Feeding: Insect Control Agents

  • D. A. Avé


There is an increased public and government interest in means of managing populations of pest insects with reduced amounts of insecticides in order to limit the impact on the environment and human health. In the past decade the search for commercial alternatives to the “classic chemical” insecticides has received new impetus. Established agricultural product companies, such as Ciba-Geigy, Sandoz and Abbott, and those formed during the 1980s, such as Ecogen (includes former Scentry), Mycogen, Entotech, Biosys (includes former AgriSense), are competing in this market. The “alternative” pest control materials include naturally occurring chemicals such as pheromones and plant chemicals and various insect disease organisms such as bacteria, nematodes, viruses, fungi, and protozoa (Ghassemi et al., 1983). All of these materials are used in what can be considered a biorational approach to pest control. Because some of the biopesticides such as bacteria and virusses do not act by contact but have to be ingested by the insect pest, the development of feeding stimulants to increase the uptake of the biopesticide by the pest has received new attention. Frequently, literature on materials that stimulate feeding on insecticides has not distinguished between food attractants and contact feeding stimulants, whereas nonpolar materials in principle can have both functions. The word “bait” is also used. This term includes either of the above mainly because the materials used are chemically not well-defined. In addition, a bait implies the presence of “a poisonous material.”


Bacillus Thuringiensis Colorado Potato Beetle Nuclear Polyhedrosis Virus Insect Feeding Soybean Lecithin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G. E., and Pate, T. L. (1966). The potential role of a feeding stimulant used in combination with the nuclear polyhedrosis virus of Heliothis. J. Invert. Pathol. 8, 129–131.CrossRefGoogle Scholar
  2. Appel, A. G. (1990). Laboratory and field performance of consumer bait products for German cockroach (Dictyoptera: Blattellidae) control. J. Econ. Entomol. 83, 53–59.Google Scholar
  3. Barson, G. (1982). Laboratory evaluation of boric acid plus porridge oats and iodofenphos gel as toxic baits against the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). Bull. Entomol. Res. 72, 229–237.CrossRefGoogle Scholar
  4. Bartelt, R. J., McGuire, M. R., and Black, D. A. (1990). Feeding stimulants for the European corn borer (Lepidoptera: Pyralidae): additives to a starch-based formulation for Bacillus thuringiensis. Environ. Entomol. 19, 182–189.Google Scholar
  5. Bell, M. R., and Kanavel, R. F. (1975). Potential bait formulations to increase effectiveness of nuclear polyhedrosis virus against the pink bollworm. J. Econ. Entomol. 68, 389–391.Google Scholar
  6. Bell, M. R., and Kanavel, R. F. (1977). Field tests of a nuclear polyhedrosis virus in a bait formulation for control of pink bollworms and Heliothis spp. on cotton in Arizona. J. Econ. Entomol. 70, 625–628.Google Scholar
  7. Bell, M. R., and Kanavel, R. F. (1978). Tobacco budworm: development of a spray adjuvant to increase effectiveness of a nuclear polyhedrosis virus. J. Econ. Entomol. 71, 350–352.Google Scholar
  8. Bell, M. R., and Romine, C. L. (1980). Tobacco budworm field evaluation of microbial control in cotton using Bacillus thuringiensis and nuclear polyhedrosis virus with a feeding adjuvant. J. Econ. Entomol. 73, 427–430.Google Scholar
  9. Blaney, W. M, Simmonds, M. S. J., Evans, S. V., and Fellows, L. E. (1984). The role of the secondary plant compound 2,5-dihydroxymethyl–3,4-dihydroxypyrrolidine as a feeding inhibitor for insects. Entomol. Exp. Appl. 36, 209–216.CrossRefGoogle Scholar
  10. Blaney, W. M., Simmonds, M. S. J., Ley, S. V., and Jones, P. S. (1988). Insect antifeedants: a behavioural and electrophysiological investigation of natural and synthetically derived clerodane diterpenoids. Entomol. Exp. Appl. 46, 267–274.CrossRefGoogle Scholar
  11. Blom, F. (1978). Sensory activity and food intake: a study of input-output relationships in two phytophagous insects. Netherlands J. Zool. 28, 277–340.CrossRefGoogle Scholar
  12. Bryant, J. E., and Yendol, W. G. (1988). Evaluation of the influence of droplet size and density of Bacillus thuringiensis against gypsy moth larvae (Lepidoptera: Lymantriidae). J. Econ. Entomol. 81, 130–134.Google Scholar
  13. Capinera, J. L., and Hibbard, B. E. (1987). Bait formulations of chemical and microbial insecticides for the suppression of crop-feeding grasshoppers. J. Agric. Entomol. 4, 337–344.Google Scholar
  14. Chapple, A. C. (1993). Dose transfer of Bacillus thuringiensis to the Diamondback moth (Plutella xylostella) via cabbage: a synthesis. Ph.D. dissertation, Ohio State University.Google Scholar
  15. Dethier, V. G. (1973). Electrophysiological studies of gustation in lepidopterous larvae. II. Taste spectra in relation to food-plant discrimination. J. Comp. Physiol. 82, 103–134.CrossRefGoogle Scholar
  16. Dethier, V. G. (1980). Food-aversion learning in two polyphagous caterpillars, Diacrisia virginica and Estigmene congrua. Physiol. Entomol. 5, 321–325.CrossRefGoogle Scholar
  17. Dethier, V. G., and Kuch, J. H. (1971). Electrophysiological studies of gustation in lepidopterous larvae. I. Comparative sensitivity to sugars, amino acids, and glycosides. Z. Vergl. Physiol. 72, 343–363.CrossRefGoogle Scholar
  18. Dethier, V. G., and Yost, M. T. (1979). Oligophagy and absence of food-aversion learning in tobacco hornworms, Manduca sexta. Physiol. Entomol. 4, 125–130.CrossRefGoogle Scholar
  19. Dunkle, R. L., and Shasha, B. S. (1988). Starch-encapsulated Bacillus thuringiensis: a potential new method for increasing environmental stability of entomopathogens. Environ. Entomol. 17, 120–126.Google Scholar
  20. Durant, J. A. (1984). Cotton insect pests: field evaluation of selected insecticide treatments. J. Agric. Entomol. 1, 201–211.Google Scholar
  21. El-Nockrashy, A. S., Salama, H. S., and Tana, F. (1986). Influence of bait formulations on the effectiveness of Bacillus thuringiensis against Spodoptera littoralis (Boisd) (Lep., Noctuidae). J. Appl. Entomol. 101, 381–389.CrossRefGoogle Scholar
  22. Farrar, R. R., Jr., and Ridgway, R. L. (1994). Comparative studies of the effects of nutrient-based phagostimulants on six lepidopterous insect pests. J. Econ. Entomol. 87, 44–52.Google Scholar
  23. Frazier, J. L. (1986). The perception of plant allelochemicals that inhibit feeding. In: Brattsten, L. B., and Ahmad, S. (eds.), Molecular Aspects of Insect-Plant Associations. Plenum Press, New York, pp. 1–42.CrossRefGoogle Scholar
  24. Frazier, J. L. (1992). How animals perceive secondary plant compounds. In: Rosenthal, G. A., Berenbaum, M. R. (eds.), Herbivores: Their Interaction with Secondary Plant Metabolites, vol. 2. Academic Press, San Diego, pp. 89–134.Google Scholar
  25. Ghassemi, M., Painter, P., Painter, P., Quinlivan, S., and Dellarco, M. (1983). Bacillus thuringiensis, nucleopolyhedrosis virus, and pheromones: environmental considerations and uncertainties in large scale insect control. Environ. Int. 9, 39–49.CrossRefGoogle Scholar
  26. Gholson, L. E., and Showers, W. B. (1979). Feeding behavior of black cutworms on seedling corn and organic baits in the greenhouse. Environ. Entomol. 8, 552–557.Google Scholar
  27. Giles, D. P., and Rothwell, D. N. (1983). The sub-lethal activity of amidines on insects and acarids. Pesticide Sci. 14, 303–312.CrossRefGoogle Scholar
  28. Gist, G. L., and Pless, C. D. (1985). Feeding deterrent effects of synthetic pyrethroids on the fall armyworm, Spodoptera frugiperda. Florida Entomol. 68, 456-461.CrossRefGoogle Scholar
  29. Gothilf, S., and Beck, S. D. (1967). Larval feeding behaviour of the cabbage looper, Trichoplusia ni. J. Insect Physiol. 13, 1039–1053.CrossRefGoogle Scholar
  30. Gould, F. (1991). Arthropod behavior and the efficacy of plant protectants. Annu. Rev. Entomol. 36, 305–330.CrossRefGoogle Scholar
  31. Gould, F., and Anderson, A. (1991). Effects of Bacillus thuringiensis and HD-73 delta-endotoxin on growth, behaviour, and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environ. Entomol. 20, 30–38.Google Scholar
  32. Gould, F., Anderson, A., Landis, D., and Van Mellaert, H. (1991). Feeding behavior and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins. Entomol. Exp. Appl. 58, 199–210.CrossRefGoogle Scholar
  33. Guerra, A. A., and Shaver, T. N. (1969). Feeding stimulants from plants for larvae of the tobacco budworm and boll worm. J. Econ. Entomol. 62, 98–100.Google Scholar
  34. Hall, F. R., Adams, A. J., and Hoy, C. W. (1989). Correlation of precisely defined spray deposit parameters with biological responses of resistant diamond moth (DBM) field populations. Aspects Appl. Biol. 21, 125–127.Google Scholar
  35. Haynes, K. F. (1988). Sublethal effects of neurotoxic insecticides on insect behavior. Annu. Rev. Entomol. 33, 149–168.PubMedCrossRefGoogle Scholar
  36. Hoy, C. W., McCulloch, C. E., Shoemaker, C. A., Shelton, A. M. (1989). Transition probabilities for Trichoplusia ni (Lepidoptera: Noctuidae) larvae on cabbage as a function of microclimate. Environ. Entomol. 18, 187–194.Google Scholar
  37. Hoy, CH., Adams, A. J., and Hall, F. R. (1990a). Behavioral response of Plutella xylostella (Lepidoptera: Plutellidae) populations to permethrin deposits. J. Econ. Entomol. 83, 1216–1221.Google Scholar
  38. Hoy, C. H., McCulloch, C. E., Sawyer, A. J., Shelton, A. M., and Shoemaker, C. A. (1990b). Effect of intraplant insect movement on economic thresholds. Environ. Entomol. 19, 1578–1596.Google Scholar
  39. Hsiao, T. H. (1969). Adenine and related substances as potent feeding stimulants for the alfalfa weevil, Hypera positica. J. Insect Physiol. 15, 1785–1790.CrossRefGoogle Scholar
  40. Ignoffo, C. M., Hostetter, D. L., and Smith, D. B. (1976). Gustatory stimulant, sunlight protection, evaporation retardant: three characteristics of a microbial insecticidal stimulant. J. Econ. Entomol. 69, 207–210.Google Scholar
  41. Johnson, D. R. (1982). Suppression of Heliothis spp. on cotton by using Bacillus thuringiensis, Baculovirus heliothis and two feeding adjuvants. J. Econ. Entomol. 75, 207–210.Google Scholar
  42. Kepner, R. L., and Yu, S. J. (1987). Development of a toxic bait for control of mole crickets (Orthoptera: Gryllotalpidae). J. Econ. Entomol. 80, 659–665.Google Scholar
  43. Lampert, E. P., and Southern, P. S. (1987). Evaluation of pesticide application methods for control of tobacco budworms (Lepidoptera: Noctuidae) on flue-cured tobacco. J. Econ. Entomol. 80, 961–967.Google Scholar
  44. Lance, D. R., and Sutter, G. R. (1990). Field-cage and laboratory evaluations of semio-chemical-based baits for managing western corn rootworm (Coleoptera Chrysomelidae). J. Econ. Entomol. 83, 1085–1090.Google Scholar
  45. Lockwood, J. A., Sparks, T. C, and Story, R. N. (1984). Evolution of insect resistance to insecticides: a re-evaluation of the roles of physiology and behavior. Bull. Entomol. Soc. Am. 30, 41–51.Google Scholar
  46. Luttrell, R. G., Yearian, W. C, and Young, S. Y. (1983). Effects of spray adjuvants on Heliothis zea (Lepidoptera: Noctuidae) nuclear-polyhedrosis virus efficacy. J. Econ. Entomol. 76, 162–167.Google Scholar
  47. Lutwama, J. J., and Matanmi, B. A. (1988). Efficacy of Bacillus thuringiensis subsp. Kurstaki and Baculovirus heliothis foliar applications for suppression of Helicoverpa armigera (Hubner) (Noctuidae) and other lepidopterous larvae on tomato in southwestern Nigeria. Bull. Entomol. Res. 78, 173–179.CrossRefGoogle Scholar
  48. Ma, W. C. (1972). Dynamics of feeding responses in Pieris brassicae Linn as a function of chemosensory input: a behavioural, ultrastructural and electrophysiological study. Meded. Landbouwhogesch. Wageningen 72–11.Google Scholar
  49. McGuire, M. R., and Shasha, B. S. (1990). Sprayable self-encapsulating starch formulations for Bacillus thuringiensis. J. Econ. Entomol. 83, 1813–1817.PubMedGoogle Scholar
  50. McGuire, M. R., Street, D. A., and Shasha, B. S. (1991). Evaluation of starch encapsulation for formulation of grasshopper (Orthoptera, Acrididae) entomopoxviruses. J. Econ. Entomol. 84, 1652–1656.Google Scholar
  51. McKibben, G. H., Smith, J. W., and McGovern, W. L. (1990). Design of an attract-and-kill device for the boll weevil (Coleoptera, Curculionidae). J. Entomol. Sci. 25, 581–586.Google Scholar
  52. McLaughlin, R. E., Andrews, G., and Bell, M. R. (1971). Field tests for control of Heliothis spp. with a nuclear-polyhedrosis virus included in a boll weevil bait. J. Invert. Pathol. 18, 304–305.CrossRefGoogle Scholar
  53. Meisner, J., Ascher, K. R. S., and Eizick, C. (1984). Effect of the commercial phagostimulants Coax and Gustol on the toxicity of cypermethrin and deltamethrin against Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 17, 1123–1126.Google Scholar
  54. Meisner, J., Hadar, D., Wysoki, M., and Harpaz, I. (1990). Phagostimulants enhancing the efficacy of Bacillus thuringiensis formulations against the giant looper, Boarmia (Ascotis) selenaria, in avocado. Phytoparasitica 18, 107–112.CrossRefGoogle Scholar
  55. Metcalf, R. L., Metcalf, R. A., Rhodes, A. M. (1980). Cucurbitacins as kairomones for diabroticite beetles. Proc. Natl. Acad. Sci. 77, 3769–3772.PubMedCrossRefGoogle Scholar
  56. Metcalf, R. L., Ferguson, J. E., Lampman, R., and Andersen, J. F. (1987). Dry cucurbit-acin-containing baits for controlling Diabroticite beetles (Coleoptera: Chrysomelidae). J. Econ. Entomol. 80, 870–875.Google Scholar
  57. Mitchell, B. K. (1974). Behavioural and electrophysiological investigations on the response of larvae of the colorado potato beetle (Leptinotarsa decemlineata) to amino acids. Entomol. Exp. Appl. 17, 255–264.CrossRefGoogle Scholar
  58. Montoya, E. L., Ignoffo, C. M., and McGarr, R. L. (1966). A feeding stimulant to increase effectiveness of, and a field test with, nuclear-polyhedrosis virus of Heliothis. J. Invert. Pathol. 8, 320–324.CrossRefGoogle Scholar
  59. Moriarty, F. (1969). The sublethal effects of synthetic insecticides on insects. Biol. Rev. 44, 321–357.PubMedCrossRefGoogle Scholar
  60. Navon, A., Meisner, J., and Ascher, K. R. S. (1987). Feeding stimulant mixtures for Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 80, 990–993.Google Scholar
  61. Neilson, W. T. A. (1960). Field tests of some hydrolyzed proteins as lures for the apple maggot Rhagoletis pomonella. Can. Entomol. 92, 464–467.CrossRefGoogle Scholar
  62. Onsager, J. A., Rees, N. E., Henry, J. E., Foster, R. N. (1981). Integration of bait formulations of Nosema locusta and carbaryl for control of rangeland grasshoppers. J. Econ. Entomol. 74, 183–187.Google Scholar
  63. Patti, J. H., and Carner, G. R. (1974). Bacillus thuringiensis investigations for control of Heliothis spp. on cotton. J. Econ. Entomol. 67, 415–418.PubMedGoogle Scholar
  64. Pluthero, F. G., and Singh, R. S. (1984). Insect behavioural responses to toxins: practical and evolutionary considerations. Can. Entomol. 116, 57–68.CrossRefGoogle Scholar
  65. Polles, S. G., and Vinson, S. B. (1969). Effect of droplet size on persistence of ULV malathion and comparison of toxicity of ULV and EC malathion to tobacco budworm larvae. J. Econ. Entomol. 62, 89–94.Google Scholar
  66. Potter, M. F., and Watson, T. F. (1983a). Timing of nuclear polyhedrosis virus-bait spray combinations for control of egg and larval stages of tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 76, 446–448.Google Scholar
  67. Potter, M. F., and Watson, T. F. (1983b). Garbanzo bean as a potential feeding stimulant for use with a nuclear polyhedrosis virus of the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 76, 449–451.Google Scholar
  68. Quinn, M. A., Kepner, R. L., Walgenbach, D. D., Bohls, R. A., Pooler, P. D., Foster, R. N., Reuter, K. C, and Swain, J. L. (1989). Immediate and 2nd-year effects of insecticide spray and bait treatments on populations of rangeland grasshoppers. Can. Entomol. 121, 589–602.CrossRefGoogle Scholar
  69. Ramachandran, R., Raffa, K. F., Miller, M. J., Ellis, D. D., and McCown, B. H. (1993). Behavioral responses and sublethal effects of spruce budworm (Lepidoptera: Tortricidae) and fall webworm (Lepidoptera: Arctiidae) larvae to Bacillus thuringiensis CrylA(a) toxin in diet. Environ. Entomol. 22, 197–211.Google Scholar
  70. Retnakaran, A., Lauzon, H., and Fast, P. (1983). Bacillus thuringiensis induced anorexia in the spruce budworm, Choristoneura fumiferana. Entomol. Exp. Appl. 34, 233–239.CrossRefGoogle Scholar
  71. Rombach, M. C, Aguda, R. M., Picard, L., and Roberts, D. W. (1989). Arrested feeding of the Asiatic rice borer (Lepidoptera: Pyralidae) by Bacillus thuringiensis. J. Econ. Entomol. 82(2), 416–419.Google Scholar
  72. Ruscoe, C. N. E. (1977). The new NRDC pyrethroids as agricultural insecticides. Pesticide Sci. 8, 236–242.CrossRefGoogle Scholar
  73. Rust, M. K., and Reierson, D. A. (1981). Attraction and performance of insecticidal baits for German cockroach control. Int. Pest Control 23, 106–109.Google Scholar
  74. Schuster, D. J. (1979). Adjuvants tank-mixed with Bacillus thuringiensis for control of cabbage looper larvae on cabbage. J. Georgia Entomol. Soc. 14, 182–186.Google Scholar
  75. Smith, D. B., Hostetter, D. L., Pinnel, R. E., and Ignoffo, C. M. (1982). Laboratory studies of viral adjuvants: formulation development. J. Econ. Entomol. 75, 16–20.Google Scholar
  76. Sneh, B., and Gross, S. (1983). Biological control of the Egyptian cotton leafworm Spodoptera littoralis (Boisd.) (Lepidoptera, Noctuidae) in cotton and alfalfa fields using a preparation of Bacillus thuringiensis ssp entomocidus supplemented with adjuvants. Z. Angew. Entomol. 95, 418–424.CrossRefGoogle Scholar
  77. Sneh, B., Schuster, S., and Gross, S. (1983). Improvement of the insecticidal activity of Bacillus thuringiensis var. entomocidus on larvae of Spodoptera littoralis (Lepidoptera, Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and a UV-protectant. Z. Angew. Entomol. 96, 77–83.CrossRefGoogle Scholar
  78. Southern, P. S., and Jackson, D. M. (1984). Control of Heliothis virescens on flue-cured tobacco using Bacillus thuringiensis and a cottonseed flour feeding stimulant. Tobacco Sci. 28, 10–13.Google Scholar
  79. Spaulding, L., and Pasarela, N. R. (1989). Non-particulate, non-flowable, non-repellant insecticide-bait composition for the control of cockroaches. US Patent 4845103.Google Scholar
  80. Starks, K. J., McMillian, W. W., Sekul, A. A., and Cox, H. C. (1965). Corn earworm larval feeding response to corn silk and kernel extracts. Ann. Entomol. Soc. Am. 58, 74–76.Google Scholar
  81. Steiner, L. F., Rohner, G. G., Ayers, E. L., and Christenson, L. D. (1961). The role of attractants in recent Mediterranean fruit fly eradication program in Florida. J. Econ. Entomol. 54, 30–35.Google Scholar
  82. Tan, K-H. (1981). Antifeeding effect of cypermethrin and permethrin at sub-lethal levels against Pieris brassicae larvae. Pesticide Sci. 12, 619–626.CrossRefGoogle Scholar
  83. van Drongelen, W. (1979). Contact chemoreception of host plant specific chemicals in larvae of various Yponomeuta species (Lepidoptera). J. Comp. Physiol. 134, 265–279.CrossRefGoogle Scholar
  84. van Frankenhuyzen, K. (1990). Effect of temperature and exposure time on toxicity of Bacillus thuringiensis Berliner spray deposits to spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: tortricidae). Can. Entomol. 122, 69–75.CrossRefGoogle Scholar
  85. Yendol, W. G., Hamlen, R. A., and Rosario, S. B. (1975). Feeding behavior of gypsy moth larvae on Bacillus thuringiensis-treaitd foliage. J. Econ. Entomol. 68, 25–27.Google Scholar
  86. Young, J. R., and McMillian, W. W. (1979). Differential feeding by two strains of fall armyworm larvae on carbaryl treated surfaces. J. Econ. Entomol. 72, 202–203.Google Scholar
  87. Zehnder, G. W., and Gelernter, W. D. (1989). Activity of the M-ONE formulation of a new strain of Bacillus thuringiensis against the Colorado potato beetle (Coleoptera: Chrysomelidae): relationship between susceptibility and insect life stage. J. Econ. Entomol. 82, 756–761.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • D. A. Avé

There are no affiliations available

Personalised recommendations