Skip to main content

Physical and Biological Scales of Variability in Lakes, Estuaries, and the Coastal Ocean

  • Chapter
Ecological Time Series

Abstract

What is meant by “scale”? Why is it an important concept in ecology? Why does scale play a particularly prominent role when one speaks of “coupling”? Can one make nontrivial, general statements, if phrased in terms of scale alone, that apply to several seemingly different systems? Can other generalizations that highlight “scale” and “coupling” help us understand why some ecological systems differ so greatly from others? I shall address aspects of these questions here, with particular emphasis on results from lakes, estuaries, and the coastal ocean. I begin with some elementary notions, then review how scale considerations enter the coupling between physical and biological systems in the size scale regime between 100 m and 100 km—a regime of great ecological interest and the scale of most lakes, estuaries, and the coastal ocean. Other papers in this volume (i.e., Roughgarden et al. 1989, see footnote at the bottom of this page) focus on, for example, terrestrial systems and the general question of how large, complex systems are structured; I end, then, by advancing some speculations about these and other areas I have neglected. Finally, some publications on theory in biological oceanography (and related disciplines) have recently appeared: one is nearly a tutorial (Platt et al. 1981) and the other assays the use and prospects for ecosystem theory (Ulanowicz and Piatt 1985). I therefore largely avoid the topics that these authors have addressed so well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. R., T. M. Powell, and P. J. Richerson. 1982. The relations of environmental variability to the spatial patterns of phytoplankton in Lake Tahoe. Journal of Plankton Research 4:927–41.

    Article  Google Scholar 

  • Barber, R. T., and F. P. Chavez. 1983. Biological consequences of El Niño. Science 222:1203–10.

    Article  PubMed  CAS  Google Scholar 

  • Barber, R. T. 1986. Ocean variability in relation to living resources during the 1982–1983 El Niño. Nature 319:279–85.

    Article  CAS  Google Scholar 

  • Bennett, A. F., and K. L. Denman. 1985. Phytoplankton patchiness: Inferences from particle statistics. Journal of Marine Research. 43:307–35.

    Article  CAS  Google Scholar 

  • Bennett, A. F.. 1988. Large-scale patchiness due to an annual cycle. Transcripts of the American Geophysical Union (EOS) 68:1696. Abstract only, and unpublished manuscript.

    Google Scholar 

  • Berg, H. 1983. Random Motion in Biology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Carpenter, S. R. 1987. Transmission of variance through lake food webs. Unpublished manuscript for workshop on complex interactions in lake communities. Department of Biological Sciences, University of Notre Dame (March).

    Google Scholar 

  • Carpenter, S. R., and J. F. Kitchell. 1984. Plankton community structure and limnetic primary production. American Naturalist 124:157–72.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, D. M. Lodge, D. Kretchmer, and X. He. 1987. Regulation of lake primary productivity by food-web structure. Ecology 68:1863–76.

    Article  Google Scholar 

  • Chatfield, C. 1980. Introduction to Multivariate Analysis. Chapman & Hall, New York.

    Google Scholar 

  • Chatfield, C. 1984. The Analysis of Time Series. Third edition. Chapman & Hall, New York.

    Google Scholar 

  • Clark, W. C. 1985. Scales of climate impacts. Climatic Change 7:5–27.

    Article  Google Scholar 

  • Dayton, P. K., and M. J. Tegner. 1984. Catastrophic storms, El Niño, and patch stability in a Southern California kelp forest. Science 224:283–85.

    Article  PubMed  CAS  Google Scholar 

  • Denman, K. L. 1983. “Predictability of the Marine Planktonic Ecosystems.” In G. Holloway and B. J. West (eds.), The Predictability of Fluid Motions. American Institute of Physics, Conference Proceedings No. 106, New York, pp. 601–602.

    Google Scholar 

  • Denman, K. L., and M. R. Abbott. 1988. Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color changes. [Unpublished manuscript.]

    Google Scholar 

  • Denman, K. L., and D. L. Mackas. 1978. Collection and analysis of underway data. In J. H. Steele (ed.), Spatial Pattern in Plankton Communities. Plenum, New York, pp. 85–109.

    Google Scholar 

  • Denman, K. L., and T. Piatt. 1976. The variance spectrum of phytoplankton in a turbulent ocean. Journal of Marine Research. 34:593–601.

    Google Scholar 

  • Denman, K. L., and T. M. Powell. 1984. Effects of physical processes on planktonic ecosystems in the coastal ocean. Oceanography and Marine Biology Annual Review 22:125–68.

    CAS  Google Scholar 

  • Denman, K. L., A. Okubo, and T. Piatt. 1977. The chlorophyll fluctuation spectrum in the sea. Limnology and Oceanography 22:1033–38.

    Article  CAS  Google Scholar 

  • Fahrig, L. 1988. A general model of populations in patchy habitats. Journal of Applied Mathematics 27(1):53–66.

    Google Scholar 

  • Fahrig, L., and J. E. Paloheimo. 1987. Determinants of local population abundance in patchy habitats. Unpublished manuscript.

    Google Scholar 

  • Gauch, H. G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, London, England.

    Book  Google Scholar 

  • Gill, A. E. 1982. Atmosphere-Ocean Dynamics. Academic Press, New York.

    Google Scholar 

  • Gower, J. F. R., K. L. Denman, and R. J. Holyer. 1980. Phytoplankton patchiness indicates the fluctuations spectrum of mesoscale oceanic structure. Nature 288:157–59.

    Article  Google Scholar 

  • Harris, G. P. 1986. Phytoplankton Ecology: Structure, Function, and Fluctuation. Chapman & Hall, London.

    Book  Google Scholar 

  • Harris, G. P., and A. M. Trimbee. 1986. Phytoplankton population dynamics of a small reservoir: Physical/biological coupling and the time scales of community change. Journal of Plankton Research 8:1011–25.

    Article  Google Scholar 

  • Jackson, G. A. 1980. Phytoplankton growth and Zooplankton grazing in oligotrophic oceans. Nature 284:439–41.

    Article  Google Scholar 

  • Jackson, G. A. 1985. Pulses, aggregates, and diffusion: Life in the small. Forty-eighth annual meeting of the American Society for Limnology and Oceanography, Minneapolis. Abstract only.

    Google Scholar 

  • Jackson, G. A., and R. R. Strathmann. 1981. Larval mortality from offshore mixing as a link between precompetent and competent periods of development. American Naturalist 118:16–26.

    Article  Google Scholar 

  • Johnson, D. F., L. W. Botsford, R. D. Methot, Jr., and T. C. Wainwright. 1986. Wind stress and cycles in Dungness crab (Cancer magister) catch off California, Oregon, and Washington. Canadian Journal of Fisheries and Aquatic Science 43:833–845.

    Google Scholar 

  • Kareiva, P. 1982. Experimental and mathematical analysis of herbivore movement: Quantifying the influence of plant spacing and quality on foraging discrimination. Ecological Monographs 52:261–82.

    Article  Google Scholar 

  • Kareiva, P. 1984. “Predator-prey Dynamics in Spatially Structured Populations: Manipulating Dispersal in a Coccinellid-aphid Interaction.” In S. A. Levin and T. G. Hallam (eds.), Mathematical Ecology. Lecture Notes in Biomathematics, vol. 54. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kareiva, P. 1986. “Patchiness, Dispersal and Species Interactions: Consequences for Communities of Herbivorous Insects.” In J. Diamond and T. J. Case (eds.), Community Ecology. Harper and Row, New York, pp. 192–206.

    Google Scholar 

  • Koehl, M. A. R., and J. R. Strickler. 1981. Copepod feeding currents: Food capture at low Reynolds number. Limnology and Oceanography 26:1062–73.

    Article  Google Scholar 

  • Lam, R. K., and B. W. Frost. 1976. Model of copepod filtering response to changes in size and concentration of food. Limnology and Oceanography 21:490–500.

    Article  Google Scholar 

  • Lehman, J. T. 1976. The filter feeder as an optimal forager, and the predicted shapes of feeding curves. Limnology and Oceanography 21:501–16.

    Article  Google Scholar 

  • Lehman, J. T., and D. Scavia. 1982. Microscale patchiness of nutrients in plankton communities. Science 216:729–30.

    Article  PubMed  CAS  Google Scholar 

  • Levin, S. A., and L. Buttel. 1988. Measures of patchiness in ecological systems. (Unpublished manuscript.)

    Google Scholar 

  • Levin, S. A., and R. T. Paine. 1974. Disturbance, patch formation, and community structure. Proceedings of the National Academy of Sciences USA 71:2744–47.

    Article  CAS  Google Scholar 

  • Mackas, D. L. 1984. Spatial autocorrelation of plankton community composition in a continental shelf ecosystem. Limnology and Oceanography 29:451–71.

    Article  Google Scholar 

  • Mackas, D. L., K. L. Denman, and M. R. Abbott. 1985. Plankton patchiness: Biology in the physical vernacular. Bulletin of Marine Science 37:652–74.

    Google Scholar 

  • McCarthy, J. J., and J. C. Goldman. 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203:670–72.

    Article  PubMed  CAS  Google Scholar 

  • Mimura, M., Y. Kan-on, and Y. Nichiura. 1988. “Oscillations in Segregation of Competing Populations.” In T. G. Hallam, L. J. Gross, and S. A. Levin (eds.), 1986 Proceedings of the Trieste Research Conference on Mathematical Ecology. World Scientific Publishing, Singapore, pp. 711–17.

    Google Scholar 

  • Murray, J. D., and G. F. Oster. 1984. Generation of biological pattern and form. IMA Journal of Mathematics Applied in Medicine and Biology 1:51–75.

    Article  PubMed  CAS  Google Scholar 

  • Okubo, A. 1980. Diffusion and Ecological Models. Springer-Verlag, New York.

    Google Scholar 

  • Okubo, A. 1984. “Critical Patch Size for Plankton and Patchiness.” In S. A. Levin and T. G. Hallam, eds., Mathematical Ecology. Lecture Notes in Biomathematics, vol. 54. Springer-Verlag, Berlin, pp. 456–77.

    Google Scholar 

  • Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100:65–75.

    Article  Google Scholar 

  • Paine, R. T. 1986. Benthic community—water column coupling during the 1982–83 El Niño: Are community changes at high latitudes attributable to cause or coincidence? Limnology and Oceanography 31:351–60.

    Article  Google Scholar 

  • Pedlosky, J. 1979. Geophysical Fluid Dynamics. Springer-Verlag, New York.

    Book  Google Scholar 

  • Platt, T. 1978. “Spectral Analysis of Spatial Structure in Phytoplankton Populations.” In J. H. Steele (ed.), Spatial Patterns in Plankton Communities. Plenum Press, New York, pp. 73–84.

    Google Scholar 

  • Platt, T., K. H. Mann, and R. E. Ulanowicz (eds.) 1981. Mathematical Models in Biological Oceanography. UNESCO Press, France.

    Google Scholar 

  • Powell, T., and P. J. Richerson. 1985. Temporal variation, spatial heterogeneity, and competition for resources in plankton systems: A theoretical model. American Naturalist 125:431–64.

    Article  Google Scholar 

  • Purcell, E. M. 1977. Life at low Reynolds numbers. American Journal of Physics 45:3–11.

    Article  Google Scholar 

  • Richerson, P. J., T. M. Powell, M. R. Leigh-Abbott, and J. A. Coil. 1978. “Spatial Heterogeneity in Closed Basins.” In J. H. Steele (ed), Spatial Patterns in Plankton Communities. Plenum Press, New York, pp. 239–76.

    Google Scholar 

  • Roughgarden, J. 1979. Theory of Population Genetics and Evolutionary Ecology: An Introduction. Macmillan, New York.

    Google Scholar 

  • Roughgarden, J., S. Gaines, and S. Pacala. 1987. “Supply Side Ecology: The Role of Physical Transport Processes.” In P. Giller and J. Gee (eds.), Organization of Communities: Past and Present. Proceedings of the British Ecological Society Symposium, Aberystwyth, Wales, April 1986. Blackwell Scientific, London.

    Google Scholar 

  • Scavia, D., G. Fahenstiel, M. Evans, D. Jude, and J. Lehman. 1986. Influence of salmonid predation and weather on long-term water quality in Lake Michigan. Canadian Journal of Fisheries and Aquatic Science 43:435–43.

    Article  CAS  Google Scholar 

  • Sheldon, R., A. Prakash, and W. Sutcliffe. 1972. The size distribution of particles in the ocean. Limnology and Oceanography 17:327–40.

    Article  Google Scholar 

  • Shugart, H. H. (ed.), 1978. Time Series and Ecological Processes. SIAM, Philadelphia.

    Google Scholar 

  • Sousa, W. P. 1984. The role of disturbance in natural communities. Annual Review of Ecological Systems 15:353–91.

    Article  Google Scholar 

  • Steele, J. H. 1974. The Structure of Marine Ecosystems. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Steele, J. H. 1978. “Some Comments on Plankton Patches.” In J. H. Steele (ed.), Spatial Patterns in Plankton Communities. Plenum Press, New York, pp. 1–20.

    Google Scholar 

  • Steele, J. H. 1984. Long-range plans. Woods Hole Oceanographic Institution, 1984 Annual Meeting, Woods Hole, MA.

    Google Scholar 

  • Steele, J. H. 1985. A comparison of terrestrial and marine ecological systems. Nature 313:355–58.

    Article  Google Scholar 

  • Steele, J. H., and E. W. Henderson. 1977. “Plankton Patches in the Northern North Sea.” In J. H. Steele (ed.), Fisheries Mathematics. Academic Press, New York, pp. 1–19.

    Google Scholar 

  • Strub, P. T., T. M. Powell, and C. R. Goldman. 1985. Climatic forcing: Effects of El Niño on a small, temperate lake. Science 227:55–57.

    Article  PubMed  CAS  Google Scholar 

  • Ulanowicz, R. E., and T. Piatt (eds.). 1985. Ecosystem theory for biological oceanography. Canadian Journal of Fisheries and Aquatic Science 213:260.

    Google Scholar 

  • Vogel, S. 1981. Life in Moving Fluids. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Williamson, M. 1972. The relation of principal component analysis to the analysis of variance. International Journal of Mathematical Education in Science and Technology 3:35–42.

    Article  Google Scholar 

  • Williamson, M. 1975. The biological interpretation of time series analysis. Bulletin of the Institute of Mathematics and its Applications. 11:67–69.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Powell, T.M. (1995). Physical and Biological Scales of Variability in Lakes, Estuaries, and the Coastal Ocean. In: Powell, T.M., Steele, J.H. (eds) Ecological Time Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1769-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1769-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-05201-9

  • Online ISBN: 978-1-4615-1769-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics