Skip to main content

Estimate of Interhemispheric Ocean Carbon Transport Based on ΣCO2 and Nutrient Distribution

  • Chapter
Ecological Time Series

Abstract

The partial pressure of CO2 in the atmosphere (pCO2) has been rising ever since the industrial revolution in the early 1800s. The release of CO2 from fossil fuel combustion is the main source of the extra amount of CO2 in the atmosphere. Other sources, such as deforestation and soil disturbances from agricultural practice, may have also contributed to the rise. Although the fossil fuel CO2 release is relatively well documented [Marland and Boden (1991) give an average of 5.4 gigatons (Gt) of carbon released per year for the 1980s], the release from land use is uncertain (Post et al. 1990). Direct observation of the increase in atmospheric CO2 partial pressure in the past few decades indicates that approximately 55% to 57% of the amount of carbon released from fossil fuel has remained in the atmosphere (Keeling et al. 1989a). To balance the carbon budget, the remaining anthropogenic CO2 molecules must have entered the ocean or terrestrial biosphere. The amount of carbon taken up by the ocean is estimated to be in the range between 26% and 35% of fossil fuel CO2 (Peng 1986). These estimates are made by various ocean models calibrated with the distribution of geochemical tracers in the ocean. An average for oceanic uptake in the 1980s is estimated to be about 2.1 gigatons of carbon per year (Gt C/year). Depending on the magnitude of the amount of carbon released from the land biosphere, we need to search for other carbon sinks (so-called missing sinks) and to quantify their sizes in order to balance the carbon budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bainbridge, A. E. 1981. GEOSECS Atlantic Expedition, Hydrographic Data Vol. 1. National Science Foundation, Washington, D.C.

    Google Scholar 

  • Brewer, P. G., C. Goyet, and D. Dyrssen. 1989. Carbon dioxide transport by ocean currents at 26° N latitude in the Atlantic Ocean. Science 246:477–479.

    Article  PubMed  CAS  Google Scholar 

  • Broecker, W. S. 1991. The great ocean conveyor. Oceanography 4:79–89.

    Google Scholar 

  • Broecker, W. S., and T.-H. Peng. 1992. Interhemispheric transport of carbon dioxide by ocean circulation. Nature 356:587–589.

    Article  CAS  Google Scholar 

  • Broecker, W. S., and T.-H. Peng, 1993. Greenhouse Puzzles. Eldigio Press, Lamont-Doherty Earth Observatory, Palisades, NY.

    Google Scholar 

  • Broecker, W. S., D. W. Spencer, and H. Craig. 1982. GEOSECS Pacific Expedition, Hydrographic Data Vol. 3. National Science Foundation, Washington, D.C.

    Google Scholar 

  • Broecker, W. S., S. Blanton, W. M. Smethie, Jr., and G. Ostlund. 1991a. Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean. Global Biogeochemical Cycles 5:87–117.

    Article  CAS  Google Scholar 

  • Broecker, W. S., A. Virgilio, and T.-H. Peng. 1991b. Radiocarbon age of water in the deep Atlantic revisted. Geophysical Research Letters 18:1–3.

    Article  CAS  Google Scholar 

  • Bryden, H. L., and M. M. Hall. 1980. Heat transport by currents across 25° N latitude in the Atlantic Ocean. Science 207:884–886.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R. R., E. M. Gmitrowicz, and A. J. Watson. 1990. Deep water renewal in the northern North Atlantic. Nature 344:848–850.

    Article  Google Scholar 

  • Gordon, A. L. 1986. Interocean exchange of thermocline water. Journal of Geophysical Research 91:5037–5046.

    Article  Google Scholar 

  • Heimann, M., and C. D. Keeling. 1986. Meridional eddy diffusion model of the transport of atmospheric carbon dioxide. 1. Seasonal carbon cycle over the tropical Pacific Ocean. Journal of Geophysical Research 91:7765–7781.

    Article  CAS  Google Scholar 

  • Hudson Cruise 82-001, Vol. 1. 1984. Physical Chemical Data Report, Scripps Institution of Oceanography, San Diego.

    Google Scholar 

  • Keeling, C. D., and M. Heimann. 1986. Meridional eddy diffusion model of the transport of atmospheric carbon dioxide. 2. Mean annual carbon cycle. Journal of Geophysical Research 91:7782–7796.

    Article  CAS  Google Scholar 

  • Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen. 1989a. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. Geophysical Monographs 55, American Geophysical Union, Washington, D.C., pp. 165–231.

    Google Scholar 

  • Keeling, C. D., S. D. Piper, and M. Heimann. 1989b. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In D. H. Peterson (ed.), Aspects of climate variability in the Pacific and the Western Americas. Geophysical Monographs 55, American Geophysical Union, Washington, D.C., pp. 305–363.

    Chapter  Google Scholar 

  • Marland, G., and T. A. Boden. 1991. “CO2 Emissions—Modern Record.” In T. A. Boden, R. J. Sepanski, and F. W. Stoss (eds.), Trends’91: A Compendium of Data on Global Change. ORNL/CDIAC-46, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, pp. 386–507.

    Google Scholar 

  • Overland, J. E., and A. T. Roach. 1987. Northward flow in the Bering and Chukchi Seas. Journal of Geophysical Research 92:7097–7105.

    Article  Google Scholar 

  • Peng, T.-H. 1986. Uptake of anthropogenic CO2 by lateral transport models of the ocean based on the distribution of bomb-produced 14C. Radiocarbon 28:363–375.

    CAS  Google Scholar 

  • Peng, T.-H., and W. S. Broecker. 1987. C/P ratios in marine detritus. Global Biogeochemical Cycles 1:155–161.

    Article  CAS  Google Scholar 

  • Peng, T.-H., T. Takahashi, W. S. Broecker, and J. Olafsson. 1987. Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: Observations and a model. Tellus 39B:439–458.

    Google Scholar 

  • Post, W. M., T.-H. Peng, W. R. Emanuel, A. W. King, V. H. Dale, and D. L. DeAngelis. 1990. The global carbon cycle. American Scientist 78:310–326.

    Google Scholar 

  • SAVE (South Atlantic Ventilation Experiment), 1988–1989. Preliminary Shipboard Chemical Physical Data Report (Legs 1–5), Scripps Institution of Oceanography, San Diego.

    Google Scholar 

  • Tans, P. P., I. Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438.

    Article  PubMed  CAS  Google Scholar 

  • TTO/NAS (Transient Tracers in the Ocean, North Atlantic Study). 1986. Shipboard Physical Chemical Data Report, Scripps Institution of Oceanography, San Diego.

    Google Scholar 

  • TTO/TAS (Transient Tracers in the Ocean, Tropical Atlantic Study). 1986. Shipboard Physical Chemical Data Report, Scripps Institution of Oceanography, San Diego.

    Google Scholar 

  • Weiss, R. F., W. S. Broecker, H. Craig, and D. Spencer. 1983. GEOSECS Indian Ocean Expedition, Hydrographic Data Vol. 5. National Science Foundation, Washington, D.C.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peng, TH., Broecker, W.S. (1995). Estimate of Interhemispheric Ocean Carbon Transport Based on ΣCO2 and Nutrient Distribution. In: Powell, T.M., Steele, J.H. (eds) Ecological Time Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1769-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1769-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-05201-9

  • Online ISBN: 978-1-4615-1769-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics