Diffusion in Polymer Matrix and Anisotropic Photopolymerization

  • Vadim V. Krongauz
Chapter

Abstract

Photopolymers are used in printing and electronic industries, and their use is expanding to encompass holography, data storage and processing, optical wave-guides, and compact disks. A variety of new compositions is being sought to cater to new applications and novel methods of photoexposure. The photopolymers we will be discussing here consist of a plasticized polymer matrix and low molecular weight reagents dissolved in the plasticizer. In most applications (excluding three-dimensional imaging) this reactive mixture is coated from a solution onto an inert support such as a glass plate or a polymer sheet. After solvent evaporation the photopolymer film can be covered with an inert transparent cover for mechanical integrity. The manufacturing process usually does not exclude air, and oxygen dissolved in a plasticizer prior to or during the coating operation plays an active role in the imaging photopolymerization. In typical applications the illumination applied from one side, perpendicular to the surface, initiates a chemical process that records the incident light pattern as a variation of polymerized and unpolymerized regions (Fig. 5-1). We will examine some peculiarities of polymerization in the photopolymer that affect the image quality and resolution. We will also consider how the photopolymers should be formulated and exposed in order to achieve optimal photospeed and image quality.

Keywords

Migration Quartz Anisotropy Recombination Toluene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Benson The Foundations of Chemical Kinetics (McGraw-Hill Book Co., New York and London, 1960).Google Scholar
  2. 2.
    Kh. S. Bagdasarian, Theory of Free Radical Polymerization, Israel Program for Scientific Translations, Jerusalem, IPST Cat. No. 2197, 1968.Google Scholar
  3. 3.
    J. Crank and G. S. Park, eds., Diffusion in Polymers (Academic Press, London and New York, 1968).Google Scholar
  4. 4.
    N. Lakshminarayanaiah, Transport Phenomena in Membranes (Academic Press, New York and London, 1969).Google Scholar
  5. 5.
    L. H. Sperling, Introduction to Physical Polymer Science (John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1986).Google Scholar
  6. 6.
    V. V. Krongauz and D. Reddy, Polymer Com. 32(1), 7 (1986).Google Scholar
  7. 7.
    V. V. Krongauz and R. M. Yohannan, Polymer 31(6), 1130 (1990).CrossRefGoogle Scholar
  8. 8.
    J. Comin, ed., Polymer Permeability (Elsevier, London, 1988).Google Scholar
  9. 9.
    J. M. Vergnaud, Liquid Transport Process in Polymeric Materials, Modeling and Industrial Applications (Prentice-Hall, Englewood Cliffs, NJ, (1981).Google Scholar
  10. 10.
    D. J. Meier, Molecular Basis of Transitions and Relaxations (Gordon and Breach Research Science Publishers, London, New York, Paris, 1978).Google Scholar
  11. 11.
    E. F. Haugh, U. S. Patent 3,658,526 (1972).Google Scholar
  12. 12.
    D. G. Howe, H. T. Thomas, and J. J. Wrobel. J. Photogr. Science. Eng. 23 97 (1979).Google Scholar
  13. 13.
    T. Ishitsuka and A. Yamagishita, Japanese Patent 60/227280 A2[85/227280] (1985).Google Scholar
  14. 14.
    T. Kurokawa and N. Takato, Japanese Patent 60/46690 B4[85/46690] (1985).Google Scholar
  15. 15.
    Fujitsu Ltd., Japanese Patent 57/31550 A2[82/34550] (1982).Google Scholar
  16. 16(a).
    M. Yu. Bazhenov, Yu. M. Bardash, A. A. Kostyuk, N. G. Kuvshinskii, S. I. Kudinova, N. G. Nahodkin, V. A. Pavlov, N. I. Sokolov, and E. E. Sirotkina, USSR Patent 840786 (1981):Google Scholar
  17. 16(b).
    Otkrytiya. Izobret. Prom. Obraztsy, Tovarnye Znaki, 23, (1981), 198.Google Scholar
  18. 17.
    K. Morimoto, A. Minobe, and M. Kuroda, Japanese Patent 49/106585 [74/106585] (1974).Google Scholar
  19. 18.
    T. Yamaoka and S. Namai, Nissan Motor Co., Japanese Patent 104183 [WO-9220016-A1] (1992).Google Scholar
  20. 19.
    D. K. Smith, Photogr. Sci., Engin. 12(5), 263–266 (1968).Google Scholar
  21. 20.
    A. B. Cohen and R. N. Fan, U.S. Patent 4,174,216 (1976).Google Scholar
  22. 21.
    R. B. Held, U. S. Patent 3,854,950 (1974).Google Scholar
  23. 22.
    V. V. Krongauz and C. C. Legere-Krongauz, Polymer 34(17), 3614–3619 (1993).CrossRefGoogle Scholar
  24. 23.
    D. G. Howe, H. T. Thomas, and J.J.Wrobel, Photogr. Sci., Engin. 23(6), 370–374 (1979).Google Scholar
  25. 24.
    B. L. Booth, i n Polymers for Electronic and Photonic Applications, C. P. Wong, ed. (Academic Press, Inc., Harcourt Brace Jovanovich, Publ., Boston, San Diego, New York, London, Tokyo, Toronto, 1993), pp. 549–599.Google Scholar
  26. 25.
    E. W. Orr, in Handbook of Coatings Additives,L. J. Calbo ed., (Marcel Dekker, Inc., New York, Basel, Hong Kong, 1987), p. 51.Google Scholar
  27. 26.
    J. G. Kloosterboer, G. M. M. van de Hei, and H. M. J. Boots, Polym. Comm. 25, 354 (1984).Google Scholar
  28. 27.
    J. G. Kloosterboer and G. J. M. Lippits, J. Imag. Sci. 30, 177 (1986).Google Scholar
  29. 28.
    J. G. Kloosterboer and G. E. C. M. Lijten, in Cross-Linked Polymers, Chemistry,Properties, and Applications, ACS Symposium Series 367, R. A. Dickie, S. S. Labana, and R. S. Bauer, eds. (ACS, Washington, D. C. 1988), pp. 409–426.CrossRefGoogle Scholar
  30. 29.
    A. M. Gupta, J. Phys. II France 3, 407–409 (1993).CrossRefGoogle Scholar
  31. 30(a).
    Yu. G. Medvedevskikh and V. V. Simonenko, Zh. Fiz. Khim. 66(5), 1432–1435 (1992).Google Scholar
  32. 30(b).
    Ibid, 66 (6), 652–8 (1992).Google Scholar
  33. 31.
    D. C. Neckers, Polym. Eng.,Sci. 32(20), 1481 (1992).CrossRefGoogle Scholar
  34. 32.
    C. G. Roffey, Photopolymerization of Surface Coatings (John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1982).Google Scholar
  35. 33(a).
    F. H. Dill, IEEE Trans. Electron. Dey. ED-22, 440 (1975).Google Scholar
  36. 33(b).
    F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, IEEE Trans. Electron. Dev. ED-22, 445 (1975).Google Scholar
  37. 34.
    S. V. Babu and Srinivasan, Proc. SPIE 539, 36 (1985).CrossRefGoogle Scholar
  38. 35.
    J. F. Rabek, Mechanism of Photophysical Processes and Photochemical Reactions in Polymers. Theory and Applications (John Wiley & Sons, New York, 1987).Google Scholar
  39. 36.
    B. L. Booth, Appl. Optics,26(6), 593–601 (1975).CrossRefGoogle Scholar
  40. 37.
    A. B. Cohen and P. Walker, in Imaging Processes and Materials, J. M. Strurge, ed.) (Van Nostrand Reinhold, New York, 1989), pp. 226–278 and references therein.Google Scholar
  41. 38.
    M. F. Molaire, J. Pol. Sci., Pol. Chem. Ed. 20, 847–861 (1982).CrossRefGoogle Scholar
  42. 39.
    C. T. Chang, L. Galloway, and M. Grossa, Proc. of SPSE’s 41st Annual Conference, May 22–26, (1989), 85–87.Google Scholar
  43. 40.
    R. T. Ingwall and M. Troll, Opt. Eng. 28(6), 586–591 (1989).CrossRefGoogle Scholar
  44. 41.
    T. Suzuki, Y. Todokoro, and K. Komenou, U.S. Patent 4,877,717 (1989).Google Scholar
  45. 42.
    D. J. Lougnot and C. Turck, Pure Appl. Opt. 1, 269–279 (1992).CrossRefGoogle Scholar
  46. 43(a).
    B. M. Monroe, SPSE Proc. Photochem. Imag. Sys. Symp., A. Herbert, ed., pp. 89–100, Springfield, VA (1988).Google Scholar
  47. 43(b).
    B. M. Monroe in Radiation Curing: Science and Technology,S. P. Papas ed. (Plenum Press, New York, 1992).Google Scholar
  48. 44.
    W. K. Smothers, U.S. Patent 88–144281L, (1988); EP 89–100496 (1989).Google Scholar
  49. 45.
    W. K. Smothers, T. J. Trout, A. M. Weber, and D. J. Mickish, IEE Conf. Publ., 311 (Int. Conf. Hologr. Syst.. Compon. Appl., 2nd) (1989) 184–189.Google Scholar
  50. 46.
    T. Yamaoka and K. Koseki, JP 02216180 A2 (1990).Google Scholar
  51. 47.
    N. Ikeda, Y. Yamagishi, T. Ishizuka, and M. Tani, JP 01300287 A2 (1989).Google Scholar
  52. 48.
    D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16 1055–1069 (1976).CrossRefGoogle Scholar
  53. 49.
    B. A. Smith and H. M. McConnell, Proc. Nat. Acad. Sci. USA 75(6), 2759–2763 (1978).CrossRefGoogle Scholar
  54. 50.
    D. E. Koppel and M. P. Sheetz, Biophys. J. 43 175–181 (1983).CrossRefGoogle Scholar
  55. 51.
    D. E. Koppel in Fast Methods in Physical Biochemistry and Cell Biology,R. I. Shaafi and S. M. Fernandes, eds. (Elsevier Science Publ., Amsterdam, 1983) pp. 339–367.Google Scholar
  56. 52.
    B. R. Ware Am. Lab. April (1984), 16–28.Google Scholar
  57. 53.
    J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16 565 (1948).CrossRefGoogle Scholar
  58. 54.
    J. G. Kirkwood, J. Polym. Sci 12 1 (1954).Google Scholar
  59. 55.
    D. G. Miles Jr., P. D. Lamb, K. W. Rhee, and C. S. Johnson, Jr., J. Phys. Chem 87 4815–4822 (1983).CrossRefGoogle Scholar
  60. 56.
    M. Antoniety, J. Coutandin, R. Gruttar, and H. Sillescu Macromolecules 17 798–802 (1984).CrossRefGoogle Scholar
  61. 57.
    J. A. Wesson, I. Noh, T. Kitano, and H. Yu Macromolecules 17 782–792 (1984).CrossRefGoogle Scholar
  62. 58.
    D. Lougnot, C. Carre, and J. P. FouassierMacromol. Chem., Macromol. Symp. 24 (Eur. Symp. Polym. Mater., Pt. 3) 209–216 (1987).CrossRefGoogle Scholar
  63. 59.
    C. Carre, D. J. Lougnot, and J. P. Fouassier, Macromolecules 22(2), 791–799 (1989).CrossRefGoogle Scholar
  64. 60.
    A. Liu, A. D. Trifunac, and V. V. Krongauz, J. Phys. Chem. 96 207 (1992).CrossRefGoogle Scholar
  65. 61.
    Y. Lin, A. Liu, A. D. Trifunac, and V. V. Krongauz, Chem. Phys. Lett. 198(1,2), 200–206 (1992).CrossRefGoogle Scholar
  66. 62.
    J. Crank, The Mathematics of Diffusion, 2nd edition, (Clarendon Press, Oxford 1975).Google Scholar
  67. 63.
    C. Decker, in Radiation Curing Science and Technology,(S. P. Pappas, ed. (Plenum Press, New York and London, 1992), pp. 135–179.CrossRefGoogle Scholar
  68. 64.
    J. Guthrie, M. B. Jeganathan, M. S. Otterburn, and J. Woods, Polym. Bul. 15 51–58 (1986).CrossRefGoogle Scholar
  69. 65.
    X. Zhang, I. N. Kochetov, J. Paczkowski, and D. C. Neckers, J. /mag. Sci. Technol. 36(4) (1992), 322–327.Google Scholar
  70. 66.
    E. A Lissi and A. Zanocco. J. Polym. Sci., Polym. Chem. Edn. 21 2197 (1983).CrossRefGoogle Scholar
  71. 67.
    A. R. Shultz and M. G. Joshi, J. Polym. Sci., Polym. Phys. Edn. 22 1753 (1984).CrossRefGoogle Scholar
  72. 68.
    V. V. Krongauz and R. M. Yohannan, SPIE OE/Lase Conference Proceedings, Photopolymer Device Physics, Chemistry and Applications, Los Angeles, U.S.A., 17–19 January, Vol. 1213, (1990), 174–183.CrossRefGoogle Scholar
  73. 69.
    V. V. Krongauz and R. M. Yohannan, Mol. Cryst. Liq. Cryst. 183 495–503 (1990).Google Scholar
  74. 70.
    V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, Polymer 32(9) 1654–1662 (1991).CrossRefGoogle Scholar
  75. 71.
    V. V. Krongauz and E. R. Schmelzer, Polymer 33(9) 1893–1901 (1992).CrossRefGoogle Scholar
  76. 72.
    V. V. Krongauz and E. R. Schmelzer, SPIE Conference Proceedings. Photopolymer Device Physics, Chemistry and Applications, San Diego, U.S.A., 24–26 July, Vol. 1559, (1991), 354–376.Google Scholar
  77. 73.
    X.- Z. Qin, A. Liu, A. D. Trifunac, and V. V. Krongauz, J. Phys. Chem. 95(15) 5822–5826 (1991).CrossRefGoogle Scholar
  78. 74.
    G. Oster, U.S. Patent 2,850,445 (1958).Google Scholar
  79. 75.
    J. D. Margerum, L. J. Miller, and J. B. Rust, Photogr. Sci. Eng. 12 177 (1968).Google Scholar
  80. 76.
    D. F. Eaton, A. G. Horgan, and J. P. Horgan, J. Photochem. Photobiol. A: Chem. 58 373 (1991).CrossRefGoogle Scholar
  81. 77.
    J. G. Kloosterboer, G. F. C. M. Lijten, and E J. A. M. Greidanus, Polym. Commun. 27 268 (1986).Google Scholar
  82. 78(a).
    L. A. Cescon, G. R. Coraor, R. Dessauler, E. F. Silversmith, and E. J. Urban J. Org Chem . 36(16), 2262 (1971).CrossRefGoogle Scholar
  83. 78(b).
    Ibid 2267 (1971).Google Scholar
  84. 79(a).
    R. H. Reim, A. MacLachlan, G. R. Cori, and E. J. UrbanJ. Org. Chem. 36(16), 2272 (1971).CrossRefGoogle Scholar
  85. 79(b).
    Ibid. 2275 (1971).Google Scholar
  86. 80.
    T. Hayashi and K. Maeda, Bul. Chem. Soc. Jpn 33, 565 (1960).CrossRefGoogle Scholar
  87. 81.
    T. Hayashi and K. Maeda, J. Chem. Phys. 32 1568 (1960).CrossRefGoogle Scholar
  88. 82.
    D. F. Eaton, Top. Cur. Chem. 156 199 (1990).CrossRefGoogle Scholar
  89. 83.
    C. A. Parker, Photoluminescence of Solutions (Elsevier Publishing Co., Amsterdam, London, New York, 1968).Google Scholar
  90. 84.
    L. P. Elinger, Polymer 5 (1), 559 (1964).CrossRefGoogle Scholar
  91. 85.
    O. Stem and M. Volmer, Phys. Z. 20 183 (1919).Google Scholar
  92. 86.
    J. Y. Moisan, in Polymer Permeability,J. Comin, ed. (Elsevier, London, 1988), p. 127.Google Scholar
  93. 87.
    D. Y. Chu, J. K. Thomas, and J. Kuczynski, Macromolecules 21 2094 (1988).CrossRefGoogle Scholar
  94. 88.
    N. C. Billingham, R. D. Calvert, and A. Uzuner, Polymer 31, 258 (1990).CrossRefGoogle Scholar
  95. 89.
    H. J. Timpe, B. Basse, F. W. Muller, and C. Muller, Europ. Polym. J. 23(12), 967–971 (1987).CrossRefGoogle Scholar
  96. 90.
    I. M. Krieger, G. W. Mulholland, and C. S. Dickey, J. Phys. Chem. 71(4) 1123 (1967).CrossRefGoogle Scholar
  97. 91.
    S. B. Maerov, J. Imag. Sci. 30 235 (1986).Google Scholar
  98. 92.
    S. B. Maerov, J. Appl. Polym. Sci 30 1499 (1985).CrossRefGoogle Scholar
  99. 93.
    C. W. Gear, in Information Processing 68, A. J. H. Morrell, ed. (North Holland, Amsterdam, 1969), pp. 187–193.Google Scholar
  100. 94.
    C. W. Gear, Comm. ACM 14 176 (1971).CrossRefGoogle Scholar
  101. 95.
    J. Hutchison and A. Ledwith, Polymer 14 405 (1973).CrossRefGoogle Scholar
  102. 96.
    J. Woods, Radcure Europe,85, Conference Proceedings, FC85-414 (May 6–8, 1985).Google Scholar
  103. 97.
    R. J. Holman and H. Rubin, J. Oil Col. Chem. Assoc. 61 189 (1978).Google Scholar
  104. 98.
    S. Clarke and R. A. Shanks, Polym. Photochem. 1 103 (1981).CrossRefGoogle Scholar
  105. 99.
    K. Albert, U. Gunther, M. Ilg, E. Bayer, and M. Grossa, Magnetic. Res. Microscopy (1992), 277.Google Scholar
  106. 100.
    M. C. Prystay and J. F. Power, Polym. Eng. and Science 33(1), 43 (1993).CrossRefGoogle Scholar
  107. 101.
    V. M. Treshnikov, S. A. Esin, N. A. Kuritsyna, B. R. Kalashnikov, L. L. Pomerantseva, and A. V. Oleinik, Zh. Nauchn. Prikl. Fotogr. Kinematogr. 32(5) 340 (1987).Google Scholar
  108. 102(a).
    C. A. Mack, Optical Eng. 27(12), 1093 (1988).CrossRefGoogle Scholar
  109. 102(b).
    M. J. Bowden, J. Electr. Soc. 128(5), 195C (1981).CrossRefGoogle Scholar
  110. 103.
    W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, Proc. SPIE-Int. Soc. Opt. Eng., Practical Hologr. N,1212 (1990), 20.Google Scholar
  111. 104.
    B. M. Monroe J. Imag. Sci. 35 25 (1991).Google Scholar
  112. 105.
    J. Crank and G. S. Park, Diffusion in Polymers (Academic Press, London and New York, 1968).Google Scholar
  113. 106.
    J. O. Herschelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1954).Google Scholar
  114. 107.
    G. Oster, Nature 173 300 (1954).CrossRefGoogle Scholar
  115. 108.
    W. S. DeForest, Photoresist: Materials and Processes (McGraw-Hill Book Co., Inc., New York, Sidney, St. Louis, San Francisco, 1975).Google Scholar
  116. 109.
    E. Leberzammer and R. P. Held, E. I. Du Pont Imaging Research and Development, private communications.Google Scholar
  117. 110.
    C. E. Hoyle, R. D. Hensel, and M. B. Grubb, Proc. 8th Int. Conf. Radiat. Curing, Soc. Manuf. Eng., Dearborn, Mich. (1984), p. 13.Google Scholar
  118. 111.
    C. E. Hoyle, R. D. Hensel, and M. B. Grubb, Polym. Photochem. 4 68 (1984).CrossRefGoogle Scholar
  119. 112.
    A. D. Kuchta Electron. Manufact. 34 8 (1988).Google Scholar
  120. 113.
    T. Omote, T. Yamaoka, and K. Koseki, J. Appl. Polym. Sci. 38 389 (1989).CrossRefGoogle Scholar
  121. 114(a).
    F. R. Wight, J. Polym. Sci., Polym. Lett., Ed. 16 121 (1978).CrossRefGoogle Scholar
  122. 114(b).
    F. R. Wight and J. A. Ors, in Polymers for Electronic and Photonic Applications, C. R Wong, ed. (Academic Press, Inc., Harcourt Brace Jovanovich, Publ., Boston, San Diego, New York, London, Tokyo, Toronto, 1993), pp. 387–434.Google Scholar
  123. 115.
    J. G. Kloosterboer and G. F. C. M. Lijten, Polym. Commun. 28 2 (1987).CrossRefGoogle Scholar
  124. 116.
    R. Karrer, S. Corbel, J. C. Andre, and D. J. Lougnot, J. Polym. Sci. A: Pol. Chem. 30 2715 (1992).CrossRefGoogle Scholar
  125. 117.
    L. C. Sawyer and D. T. Grubb, Polymer Microscopy (Chapman and Hall, University Press, Cambridge, 1987).CrossRefGoogle Scholar
  126. 118.
    V. N. Tsvetkov, E. I. Rjumtsev, and I. N. Shtennikova, in Liquid Crystalline Order in Polymers, A. Blumstein, ed. (Academic Press, New York, 1978), pp. 50–52.Google Scholar
  127. 119.
    D. G. Howe, H. T. Thomas, and J. J. Wrobel, Photogr. Sci. Eng. 23(6), 370 (1979).Google Scholar
  128. 120.
    S. V. Babu and E. Barouch, J. Imag. Science 33(6), 193 (1989).Google Scholar
  129. 121.
    B. F. Groffing and P. R. West, Solid State Tech. 28 152 (1985).Google Scholar
  130. 122.
    D. C. Hofer, C. G. Wilson, A. R. Neureuther, and M. Makey, Proc. SPIE 334 196 (1982).CrossRefGoogle Scholar
  131. 123.
    S. V. Babu, E. Barouch, and B. Bradie, J. Vac. Sci. Technol. B6 564 (1988).Google Scholar
  132. 124.
    V. V. Krongauz, unpublished results.Google Scholar
  133. 125.
    R. G. Jones and R. Karimian, Polymer 21(7) 832 (1986).CrossRefGoogle Scholar
  134. 126.
    V. D. McGinniss, J. Rad. Curing, January (1975), 3.Google Scholar
  135. 127(a).
    M. A. J. Wilks and M. R. Willis, Nature 212 500 (1966);CrossRefGoogle Scholar
  136. 127(b).
    Ibid J. Chem. Soc.,(B) 1526, (1968).Google Scholar
  137. 128(a).
    A. L. Prokhoda and V. A. Krongauz, Khim. Vys. Energ. 3(6), 495 (1969);Google Scholar
  138. 128(b).
    Ibid. 4(2), 174 (1970).Google Scholar
  139. 128(c).
    Ibid. 176 (1970). (d) 5(3), 262 (1970).Google Scholar
  140. 129(a).
    L.A. Cescon, G. R. Coraror, R. Dessauer, E. F. Silversmith, and E. J. Urban, J. Org. Chem. 36(16), 2262 (1971)CrossRefGoogle Scholar
  141. 129(b).
    Ibid. 2267 (1971).Google Scholar
  142. 129(c).
    Ibid. 36(16), 2272 (1972).Google Scholar
  143. 130.
    A Reiser, Photoreactive Polymers: The Science and Technology of Resists (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1989.Google Scholar
  144. 131.
    R. Dessauer and C. Looney, Photogr. Sci. Eng. 13 287 (1979).Google Scholar
  145. 132.
    Y. Lin, A. Liu, A. D. Trifunac, and V. V. Krongauz, Chem. Phys. Let. 198(1,2) 200 (1992).CrossRefGoogle Scholar
  146. 133.
    T. Omote, T. Yamaoka, and K. Koseki, J. Appl. Polym. Sci. 38 389 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Vadim V. Krongauz

There are no affiliations available

Personalised recommendations