Advertisement

Host Plant Choice in Pieris Butterflies

  • F. S. Chew
  • J. A. A. Renwick

Abstract

Pieris specificity for crucifers was recorded as early as 1660 by John Ray (Mickel, 1973) and the chemical affinity of glucosinolates produced by plants in the four major Pieris host plant families—Cruciferae, Tropaeolaceae, Capparaceae, and Resedaceae—was established by Guignard in the 1890s [reviewed by Feltwell, 1982]. (Verschaffelt 1910) demonstrated that P. brassicae larvae would feed on paper saturated with plant sap expressed from Bunias orientalis (Cruciferae). Thorsteinson (1953) tested behavioral responses of these larvae to.glucosinolates, and David and Gardiner (1962) showed that Pieris brassicae females would lay eggs on nonhost substrates dipped in glucosinolate solutions. Pieris butterflies thus provided some of the earliest and most compelling evidence for the biochemical mediation of insect-plant associations.

Keywords

Oviposition Behavior Indole Glucosinolates Oviposition Deterrent Oviposition Stimulant Nonhost Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behan, M. and Schoonhoven, L.M. (1978) Chemoreception of an oviposition deterrent associated with eggs in Pieris brassicae. Entomol. exp. appl. 24: 163–179.CrossRefGoogle Scholar
  2. Belkhiri, A. and Lockwood, G.B. (1990) An indole derivative and glucosinolates from Moricandia arvensis. Phytochemistry 29: 1315–1316.PubMedCrossRefGoogle Scholar
  3. Bergström, G. and Lundgren, L. (1973) Androconial secretion of three species of butterflies of the genus Pieris. Zoon (Suppl.) 1: 67–75.Google Scholar
  4. Bernardi, G. (1947) Révision de la classification des espèces holoarctique des genres Pieris Sehr, et Pontia Fabr. Miscnea entomol. 44: 65–79.Google Scholar
  5. Bernays, E. A. and Graham, M. (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–892.CrossRefGoogle Scholar
  6. Bodnaryk, R.P. (1992) Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31: 2671–2677.CrossRefGoogle Scholar
  7. Bowden, S.R. (1971) American white butterflies and English foodplants. J. Lepid. Soc. 25: 6–12.Google Scholar
  8. Calvert, W.H. and Hanson, F.E. (1983) The role of sensory structures and preoviposition behavior in oviposition by the patch butterfly, Chlosyne lacinia. Entomol. exp. appl. 33: 179–187.CrossRefGoogle Scholar
  9. Chew, F.S. (1975) Coevolution of pierid butterflies and their cruciferous foodplants. I. The relative quality of available resources. Oecologia 20: 117–127.CrossRefGoogle Scholar
  10. Chew, F.S. (1977a) Coevolution.…II. the distribution of eggs on potential foodplants. Evolution 31: 568–579.CrossRefGoogle Scholar
  11. Chew, F.S. (1977b) The effects of introduced mustards (Cruciferae) on some native North American cabbage butlerflies (Lepidoptera: Pieridae). Atala 5: 13–19.Google Scholar
  12. Chew, F.S. (1980) Foodplant preferences of Pieris caterpillars. Oecologia 46: 347–353.Google Scholar
  13. Chew, F.S. (1981) Coexistence and local extinction in two pierid butterflies. Am. Nat. 118: 655–672.CrossRefGoogle Scholar
  14. Chew, F.S. (1988a) Biological effects of glucosinolates. Am. Chem. Soc. Symp. 380: 155–181.Google Scholar
  15. Chew, F.S. (1988b) Searching for defensive chemistry in the Cruciferae. In: Chemical Mediation of Coevolution, (Spencer, K.C., ed.), pp. 81–112. Academic Press, San Diego, Calif.Google Scholar
  16. Chew, F.S. (1995) From weeds to crops: Changing habitats of Pieris butterflies. J. Lepid. Soc. (in press).Google Scholar
  17. Chew, F.S. and Courtney, S.P. (1991) Plant apparency and evolutionary escape from insect herbivory. Am. Nat. 138: 729–750.Google Scholar
  18. Chew, F.S. and Robbins, R.K. (1984) Egg-laying in butterflies. Symp. R. Entomol. Soc. Lond. 11: 65–79.Google Scholar
  19. Cole, R.A. (1976) Isothiocyanates, nitriles, and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 15: 759–762.CrossRefGoogle Scholar
  20. Courtney, S.P. (1986) The ecology of pierid butterflies: Dynamics and interactions. Adv. Ecol. Res. 15: 51–131.CrossRefGoogle Scholar
  21. Courtney, S.P. and Chew, F.S. (1987) Coexistence and host use by a large community of pierid butterflies: Habitat is the templet. Oecologia 71: 210–220.CrossRefGoogle Scholar
  22. David, W.A.L. and Gardiner, B.O.C. (1962) Oviposition and the hatching of eggs of Pieris brassicae (L.) in a laboratory culture. Bull. Entomol. Res. 53: 91–109.CrossRefGoogle Scholar
  23. David, W.A.L. and Gardiner, B.O.C. (1966) Mustard oil glucosides as feeding stimulants for Pieris brassicae larvae in a semi-synthetic diet. Entomol. exp. appl. 9: 247–255.CrossRefGoogle Scholar
  24. Davies, C.R. and Gilbert, N. (1985) A comparative study of the egg-laying behavior and larval development of Pieris rapae L. and P. brassicae L. on the same host plants. Oecologia 67: 278–281.CrossRefGoogle Scholar
  25. Daxenbichler, M.E., Spencer, G.F., Carlson, D.G., Rose, G.B., Briker, A.M., and Powell, R.G. (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30: 2623–2638.CrossRefGoogle Scholar
  26. Den Otter, C.J., Behan, M. and Maes, F.W. (1980) Single cell responses in female Pieris brassicae to plant volatiles and conspecific odours. J. Insect Physiol. 26: 465–472.CrossRefGoogle Scholar
  27. Dimock, M.B. and Renwick, J.A.A. (1991) Oviposition by field populations of Pieris rapae (Lepidoptera: Pieridac) deterred by an extract of a wild crucifer. Environ. Entomol. 20: 802–806.Google Scholar
  28. Dimock, M.B., Renwick, J.A.A., Radke, C.D., and Sachdev-Gupta, K. (1991) Chemical constituents of an unacceptable crucifer, Erysimum cheiranthoides, deter feeding by Pieris rapae. J. Chem. Ecol. 17: 525–533.CrossRefGoogle Scholar
  29. Douglas, M.M. (1986) The Lives of Butterflies. Univ. of Michigan, Ann Arbor.Google Scholar
  30. Ehrlich, P.R. and Raven, P.H. (1964) Butterflies and plants: A study in coevolution. Evolution 18: 586–608.CrossRefGoogle Scholar
  31. Elliot, M.C. and Stowe, B.B. (1971) Distribution and variation of indole glucosinolates in woad (Isatis tinctoria L.). Plant Physiology 48: 498–503.CrossRefGoogle Scholar
  32. Feeny, P. (1975) Biochemical coevolution between plants and their insect herbivores, in Coevolution of Animals and Plants (Gilbert, L.E. and Raven, P.H., eds.), pp. 3–19. Univ. of Texas, Austin.Google Scholar
  33. Feltwell, J. (1982) The Large White Butterfly: the Biology, Biochemistry, and Physiology of Pieris brassicae (Linnaeus). Dr. W. Junk Publishers, The Hague.Google Scholar
  34. Feltwell, J. and Vane-Wright, R.I. (1982) Classification of Pieris brassicae. In: The Large White Butterfly: The Biology, Biochemistry, and Physiology of Pieris brassicae (Linnaeus), (J. Feltwell, ed). Dr. W. Junk Publishers, The Hague.Google Scholar
  35. Fenwick, G.R., Heaney, R.K., and Mullin, W.J. (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Fd. Sci. Nut. 18, 123–201.CrossRefGoogle Scholar
  36. Fernald, M.L. (1950) Gray’s Manual of Botany, American Book Co., New York.Google Scholar
  37. Fox, R.M. (1966) The forelegs of butterflies. I. Introduction: Chemoreception. J. Res. Lepid. 5: 1–12.Google Scholar
  38. Gilbert, N. (1986) Control of fecundity in Pieris rapae. IV. Patterns of variation and their ecological consequences. J. Anim. Ecol. 55: 317–329.CrossRefGoogle Scholar
  39. Glenn, M.G., Chew, F.S., and Williams, P.H. (1988) Influence of glucosinolate content of Brassica (Cruciferae) roots on growth of vesicular-arbuscular mycorrhizal fungi. New Phytol. 110: 217–225.CrossRefGoogle Scholar
  40. Grula, J.W. and Taylor, O.R., Jr. (1980) A micromorphological and experimental study of the antennae of the sulfur butterflies, Colias eurytheme and C. philodice (Lepidoptera, Pieridae). J. Kans. Entomol. Soc. 52: 476–484.Google Scholar
  41. Harrington, H.D. (1954) Manual of the Plants of Colorado, Swallow Press, Chicago.Google Scholar
  42. Huang, X.P. and Renwick, J.A.A. (1993) Differential selection of host plants by two Pieris species: The role of oviposition stimulants and deterrents. Entomol. exp. appl. 36: 59–69.CrossRefGoogle Scholar
  43. Huang, X.P., Renwick, J.A.A. and Sachdev-Gupta, K. (1993a) A chemical basis for differential acceptance of Erysimum cheiranthoides by two Pieris species. J. Chem. Ecol. 19: 195–210.CrossRefGoogle Scholar
  44. Huang, X.P., Renwick, J.A.A. and Sachdev-Gupta, K. (1993b) Oviposition stimulants and deterrents regulating differential acceptance of Iberis amara by Pieris rapae and P. napi oleracea. J. Chem. Ecol. 19: 1645–1663.CrossRefGoogle Scholar
  45. Hedge, I.C. (1976) A systematic and geographical survey of the Old World Cruciferae, in The Biology and Chemistry of the Cruciferae. (Vaughan, J. G., MacLeod, A.J., and Jones, B.M.G., eds.), pp. 1–45, Academic Press, London.Google Scholar
  46. Ilse, D. (1937) New observations on responses to colours in egg-laying butterflies. Nature 140: 544–545.CrossRefGoogle Scholar
  47. Ives, P.M. (1978) How discriminating are cabbage butterflies? Aust. J. Ecol. 3: 261–276.CrossRefGoogle Scholar
  48. Jermy, T. (1993) Evolution of insect-plant relationships—a devil’s advocate approach, Entomol. exp. appl. 55: 3–12.CrossRefGoogle Scholar
  49. Keller, M. (1990) Responses of the parasitoid Cotesia rubecula to its host Pieris rapae in a flight tunnel. Entomol. exp. appl. 57: 243–249.CrossRefGoogle Scholar
  50. Klijnstra, J.W. (1982) Perception of the oviposition deterrent pheromone in Pieris brassicae, Proc. 5th Intl. Symp. Insect-Plant Relationships (Visser, J.H. and Minks, A.K., eds.), pp. 145–51. Pudoc, Wageningen.Google Scholar
  51. Klijnstra, J.W. and Roessingh, P. (1986) Perception of the oviposition deterring pheromone by tarsal and abdominal contact chemoreceptors in Pieris brassicae. Entomol. exp. appl. 40: 71–79.CrossRefGoogle Scholar
  52. Kolb, G. and Scherer, C. (1982) Experiments on wavelength specific behavior of Pieris brassicae L. during drumming and egg-laying. J. Comp. Physiol. 149: 325–332.CrossRefGoogle Scholar
  53. Koritsas, V.M., Lewis, J. A. and Fenwick, G.R. (1991) Glucosinolate responses of oilseed rope, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Ann. Appl. Biol. 118: 209–221.CrossRefGoogle Scholar
  54. Kudrna, O. 1974. Artogeia Verity, 1947. Gen. rev. for Papilio napi Linnaeus (Lep., Pieridae). Ent. Gaz. 25: 9–12.Google Scholar
  55. Lundgren, L. (1975) Natural plant chemicals acting as oviposition deterrents on cabbage butterflies [Pieris brassicae (L.), P. rapae (L.), and P. napi (L.)]. Zool. Scripta 4: 253–258.CrossRefGoogle Scholar
  56. Ma, W.C. and Schoonhoven, L.M. (1973) Tarsal chemosensory hairs of the large white butterfly Pieris brassicae and their possible role in oviposition behavior. Entomol. exp. appl. 16: 343–357.CrossRefGoogle Scholar
  57. Mickel, C.R. (1973) John Ray: Indefatiguable student of nature. Annu. Rev. Entomol. 18: 1–16.PubMedCrossRefGoogle Scholar
  58. Miller, J.R. and Strickler, K.L. (1984) Finding and accepting host plants. In: Chemical Ecology of Insects (Bell, W.J. and Cardé, R.T., eds.), pp. 127–155. Chapman and Hall, New York.Google Scholar
  59. Munz, P.A. and Keck, D.D. (1968) A California Flora. University of California Press, Berkeley, California.Google Scholar
  60. Nishida, R. (1994) Oviposition stimulants of swallowtail butterflies. In: Swallowtail Butterflies: Their Ecology and Evolutionary Biology. (Scriber, J.M., Tsubaki, Y., and Lederhouse, R.C., eds.) Scientific Publishers, Inc., Gainesville, Florida, in press.Google Scholar
  61. Ohsaki, N. (1980) Comparative population studies of 3 Pieris butterflies, P. rapae, P. melete, and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and non-migratory movements. Res. Popul. Ecol. 22: 163–183.CrossRefGoogle Scholar
  62. Ohsaki, N. (1986) Body temperature and behavioral thermoregulation strategies of three Pieris butterflies in relation to solar radiation. J. Ethology 4 (1): 1–9.CrossRefGoogle Scholar
  63. Renwick, J.A.A. and Radke, C.D. (1983) Chemical recognition of host plants for oviposition by the cabbage butterfly, Pieris rapae (Lepidoptera: Pieridae). Environ. Entomol. 12: 446–450.Google Scholar
  64. Renwick, J.A.A. and Radke, C.D. (1985) Constituents of host- and non-host plant deterring oviposition by the cabbage butterfly, Pieris rapae. Entomol. exp. appl. 39: 21–26.CrossRefGoogle Scholar
  65. Renwick, J.A.A. and Radke, C.D. (1987) Chemical stimulants and deterrents regulating acceptance or rejection of crucifers by cabbage butterflies. J. Chem. Ecol. 13: 1771–1776.CrossRefGoogle Scholar
  66. Renwick, J.A.A. (1988) Plant constituents as oviposition deterrents to lepidopterous insects. Am. Chem. Soc. Symp. 380: 378–385.Google Scholar
  67. Renwick, J.A.A., Radke, C.D. and Sachdev-Gupta, K. (1989) Chemical constituents of Erysimum cheiranthoides deterring oviposition by the cabbage butterfly, Pieris rapae. J. Chem. Ecol. 15: 2161–2169.CrossRefGoogle Scholar
  68. Renwick, J.A.A., Radke, C.D., Sachdev-Gupta, K. and Städler, E. (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3: 33–38.CrossRefGoogle Scholar
  69. Renwick, J.A.A. and Chew, F.S. (1994) Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 39: 377–400.CrossRefGoogle Scholar
  70. Robbins, R.K. and Henson, P.M. (1986) Pieris rapae is a better name than Artogeia rapae (Pieridae). J. Lepid. Soc. 40: 79–92.Google Scholar
  71. Rodman, J.E. (1981) Divergence, convergence, and parallelism in phytochemical characters: The glucosinolate-myrosinase system. In: Phytochemistry and Angiosperm Phylogeny, (Young, D.A. and Seigier, D.A., eds.), pp. 43–79. Praeger, New York.Google Scholar
  72. Rodman, J.E. and Chew, F.S. (1980) Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae. Biochem. Syst. Ecol. 8: 43–50.CrossRefGoogle Scholar
  73. Rodman, J.E., Brower, L. and Frey, J. (1982) Cardenolides in North American Erysimum (Cruciferae, a preliminary chemotaxonomic report. Taxon 3: 507–516.CrossRefGoogle Scholar
  74. Roessingh, P., Städler, E., Schoni, R., and Feeny, P. (1991) Tarsal contact chemoreceptors of the black swallowtail butterfly, Papilio polyxenes: Responses to phytochemicals from host and non-host plants. Physiol. Entomol. 16: 485–495.CrossRefGoogle Scholar
  75. Root, R.B. and Kareiva, P.M. (1984) The search for resources by cabbage butterflies (Pieris rapae): Ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65: 147–165.CrossRefGoogle Scholar
  76. Rothschild, M. and Schoonhoven, L.M. (1977) Assessment of egg-load by Pieris brassicae (Lepidoptera: Pieridae). Nature 266: 352–355.CrossRefGoogle Scholar
  77. Rothschild, M., Alborn, H., Stenhagen, G and Schoonhoven, L.M. (1988) A strophanthidin glycoside in Siberian wallflower: A contact deterrent for the large white butterfly. Phytochemistry 27: 101–108.CrossRefGoogle Scholar
  78. Sachdev-Gupta, K., Renwick, J.A. A. and Radke, C.D. (1990) Isolation and identification of oviposition deterrents to cabbage butterfly, Pieris rapae, from Erysimum cheiranthoides. J. Chem. Ecol. 16: 1059–1067.CrossRefGoogle Scholar
  79. Sachdev-Gupta, K., Radke, C.D., and Renwick, J.A.A. (1992) Chemical recognition of diverse hosts by Pieris rapae butterflies. In: Proc. 8th Intl. Symp. Insect-Plant Relationships, (Mencken, S.B.J., Visser, J.H., and Harrewijn, P., eds.), pp. 136–138. Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  80. Sachdev-Gupta, K., Radke, C.D., and Renwick, J.A.A. (1993a) Antifeedant activity of curcubitacins from Iberis amara against larvae of Pieris rapae. Phytochemistry 33: 1385–1388.CrossRefGoogle Scholar
  81. Sachdev-Gupta, K, Radke, C.D., Renwick, J.A.A., and Dimock, M.B. (1993b) Cardenolides from Erysimum cheiranthoides; feeding deterrents to Pieris rapae larvae. J. Chem. Ecol. 33: 1385–1369.Google Scholar
  82. Salisbury, F.B. and Ross, C.W. (1992) Plant Physiology, 4th Ed. Wadsworth, Belmont, Calif.Google Scholar
  83. Schoonhoven, L.M. (1972) Secondary plant substances and insects. Rec. Adv. Phytochem. 5: 197–224.Google Scholar
  84. Schoonhoven, L.M. (1977) Individuality of insect feeding behavior. Proc. Sci. K. Akad. Wet. Amsterdam. Ser. C 80: 341–350.Google Scholar
  85. Schoonhoven, L.M. and Dethier, V.G. (1966) Sensory aspects of host plant discrimination by ledpiopterous larvae. Arch. Neerland. Zool. 16: 497–530.CrossRefGoogle Scholar
  86. Schoonhoven, L.M., Beerling, E.A.M., Braaksma, R., and van Vugt, Y. (1990a) Does the imported cabbageworm, Pieris rapae, use an oviposition deterring pheromone? J. Chem. Ecol. 16: 1649–1655.CrossRefGoogle Scholar
  87. Schoonhoven, L.M., Beerling, E.A.M., Klijnstra, J.W., and van Vugt, Y. (1990b) Two related butterfly species avoid oviposition near each other’s eggs. Experientia 46: 526–528.CrossRefGoogle Scholar
  88. Schoonhoven, L.M., Sparnaay, T., van Wissen, W., and Meerman, J. (1981) Seven-week persistence of an oviposition-deterrent pheromone. J. Chem. Ecol. 7: 583–588.CrossRefGoogle Scholar
  89. Schraudolf, H. (1989) Indole glucosinolates of Capparis spinosa. Phytochemistry 28: 259–260.CrossRefGoogle Scholar
  90. Scriber, J.M. and Lederhouse, R.C. (1992) The thermal environment as a resource dictating geographic patterns of feeding specialization of insect herbivores. In: Effects of resource distribution on animal-plant interactions (Hunter, M.R., Ohguishi, T., and Price, P.W., eds.), pp. 429–466. Academic Press, New York.Google Scholar
  91. Shapiro, A.M. (1981) The pierid red-egg syndrome. Am. Nat. 117: 276–294.CrossRefGoogle Scholar
  92. Shapiro, A.M. (1986) The natural history of Tatochila distincta distincta, a rare butterfly from the puna of northwestern Argentina. J. New York Entomol. Soc. 94: 526–530.Google Scholar
  93. Shapiro, A.M. 1989 (91). The zoogeography and systematics of Argentine Andean and Patagonian pierid fauna. J. Res. Lepid. 28 (3): 137–238.Google Scholar
  94. Singer, M.C., Ehrlich, P.R., and Gilbert, L.E. (1971) Butterfly feeding on lycopsid. Science 172: 1341.PubMedCrossRefGoogle Scholar
  95. Städler, E. (1992) Behvaioral responses of insect to plant secondary compounds. In: Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd Ed., Vol. II, Ecological and Evolutionary processes (Rosenthal, G.A. and Berenbaum, M.R., eds.), pp. 45–88. Academic Press, New York.Google Scholar
  96. Städler, E. and Roessingh, P. (1990) Perception of surface chemicals by feeding and ovipositing insects. In: Proc. 7th Intl. Symp. Insect-Plant Relationships, Symp. Biol. Hung. 39 (Szentesi, A. and Jermy, T., eds.), pp. 71–86. Akadémia Kiadó, Budapest.Google Scholar
  97. Stermitz, F.R., Belofsky, G.N., Ng, D., and Singer, M.C. (1989) Quinolizidine alkaloids obtained by Pedicularis semibarbarta (Schrophulariaceae) from Lupinus falcratus (Le-guminosae) fail to influence the specialists herbivore, Euphydryas editha (Lepidoptera). J. Chem. Ecol. 15: 2521–2530.CrossRefGoogle Scholar
  98. Tabashnik, B., Wheelock, H., Rainboldt, J.D., and Watt, W.B. (1981) Individual varation in oviposition preferences in the butterfly Colias eurytheme. Oecologia 50: 225–230.CrossRefGoogle Scholar
  99. Terofal, F. (1965) Zum Problem der Wirtsspezifitat bei Pienden (Lep.) Mitt. Munch. Ent. Ges. 55: 68–74.Google Scholar
  100. Thorsteinson, A.J. (1953) The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis. (Curt.) Lepidoptera). Can. J. Zool. 31: 53–72.CrossRefGoogle Scholar
  101. Tookey, H.L., Daxenbichler, M.E., VanEtten, C.H., Kwolek, W.F., and Williams, P.H. (1980) Cabbage glucosinolates: Correspondence patterns in seeds and leafy heads. J. Amer. Soc. Hort. Sci. 105: 714–717.Google Scholar
  102. Topazzini, A., Mazza, M., and Pelosi, P. (1990) Electroantennogram responses of five Lepidoptera species to 26 general odourants. J. Insect Physiol. 36: 619–624.CrossRefGoogle Scholar
  103. Traynier, R.M.M. (1984) Associative learning in the oviposition behavior of the cabbage butterfly, Pieris rapae. Physiol. Entomol. 9: 465–472.CrossRefGoogle Scholar
  104. Traynier, R.M.M. and Hines, E.R. (1987) Probes by aphids indicated by stain induced fluorescence in leaves. Entomol. exp. appl. 45: 198–201.CrossRefGoogle Scholar
  105. Traynier, R.M.M. and Truscott, R.J.W. (1991) Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae. J. Chem. Ecol. 17: 1371–1380.CrossRefGoogle Scholar
  106. Truscott, R.J.W., Johnstone, P.K., Minchinton, I.R., and Sang, J.P. (1983) Indole glucosinolates in swede (Brassica napobrassica L. Mill.). J. Agric. Food Chem. 31: 863–867.CrossRefGoogle Scholar
  107. Turlings, T.C.J., Tumlinson, J.H., and Lewis, W.J. (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253.PubMedCrossRefGoogle Scholar
  108. van der Reijden, E.D. and Chew, F.S. (1992) Assessing host-plant suitability in caterpillars: Is the weight worth the wait? In: Proc. 8th Intl. Symp. Insects-plant Relationships. (Mencken, S.B.J., Visser, J.H., and Harrewijn, P., eds.), pp. 69–70, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  109. van Loon, J.J.A. (1990) Chemoreception of phenolic acids and flavonoids in larvae of two species of Pieris. J. Comp. Physiol. A 166: 889–899.CrossRefGoogle Scholar
  110. van Loon, J. J. A. and van Eeuwijk, F.A. (1989) Chemoreception of amino acids in larvae of two species of Pieris. Physiol. Entomol. 44: 459–469.Google Scholar
  111. van Loon, J.J.A., Frentz, W.H. and can Eeuwijk, F.A. (1992b) Electroantennogram responses to plant volatiles in two species of Pieris butterflies. Entomol. exp. appl. 62: 253–260.CrossRefGoogle Scholar
  112. van Loon, J.J.A., Blaakemeer, A., Griepink, F.C., van Beek, T.A., Schoonhoven, L.M. and de Groot, A. (1992a) Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae). Chemoecology 3: 39–44.CrossRefGoogle Scholar
  113. Verschaffelt, E. (1910) The cause determining the selection of food in some herbivorous insects. Proc. K. Ned. Akad. Wet. 13: 536–542.Google Scholar
  114. Vet, L.E.M. and Dicke, M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141–172.CrossRefGoogle Scholar
  115. Vet, L.E.M., Lewis, W.J., and Cardé, R.T. (1995) Parasitoid foraging and learning. In: Chemical Ecology of Insects II (Cardé, R.T. and Bell, W.J., eds) Chapman and Hall, New York.Google Scholar
  116. Webb, A. and Shelton, A. (1988) Laboratory rearing of the imported cabbageworm. New York Food Life Sci. Bull. 122: 1–5.Google Scholar
  117. Wiklund, C., Nylin, S., and Forsberg, J. (1991) Sex-related variation in growth rate as a result of selection for large size and protandry in a bivoltine butterfly, Pieris napi. Oikos 60: 241–250.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • F. S. Chew
    • 1
  • J. A. A. Renwick
    • 2
  1. 1.Department of BiologyTufts UniversityMedfordUSA
  2. 2.Boyce Thompson InstituteIthacaUSA

Personalised recommendations