Advertisement

Host-Tree Chemistry Affecting Colonization in Bark Beetles

  • John A. Byers

Abstract

Bark beetles (order Coleoptera: family Scolytidae) comprise a taxonomic group of species that look similar although they differ widely in their ecology and biochemical adaptations to host trees. This diversity of bark beetle biology, in which each species is adapted to only one or a few host-tree species, has probably resulted from natural selection due to the great variety of trees and their biochemicals. It also is likely that each species of tree has coevolved various chemicals to defend against the herbivorous selection pressures of bark beetles and other insects (Erlich and Raven, 1965; Feeny, 1975; Cates, 1981; Berryman et al., 1985). Host-plant chemicals can be attractive, repellent, toxic, or nutritious to bark beetles and have effects on: (1) finding and accepting the host tree (host selection and suitability); (2) feeding stimulation and deterrence; (3) host resistance; (4) pheromone/allomone biosynthesis and communication; and (5) attraction of predators, parasites, and competitors of bark beetles.

Keywords

Bark Beetle Host Tree Pheromone Component Aggregation Pheromone Ambrosia Beetle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, R. P. (1989) Counterturns initiated by decrease in rate of increase of concentration: possible mechanism of chemotaxis by walking female Ips paraconfusus bark beetles. J. Chem. Ecol. 15: 183–208.CrossRefGoogle Scholar
  2. Akers, R. P. and Wood, D. L. (1989a) Olfactory orientation responses by walking female Ips paraconfusus bark beetles I. Chemotaxis assay. J. Chem. Ecol. 15: 3–24.CrossRefGoogle Scholar
  3. Akers, R. P. and Wood, D. L. (1989b) Olfactory orientation responses by walking female Ips paraconfusus bark beetles II. In an anemotaxis assay. J. Chem. Ecol. 15: 1147–1160.Google Scholar
  4. Anderbrant, O. (1985) Dispersal of reemerged spruce bark beetles, Ips typographus (Coleoptera, Scolytidae): a mark-recapture experiment. Z. Angew. Entomol. 99: 21–25.CrossRefGoogle Scholar
  5. Anderson, A. B. (1962) The influence of extractives on tree properties II. Ponderosa pine (Pinus ponderosa Dougl.). J. Inst. Wood Sci. 10: 29–47.Google Scholar
  6. Anderson, A. B., Riffer, R., and Wong, A. (1969) Monoterpenes, fatty and resin acids of Pinus ponderosa and Pinus jeffreyi. Phytochemistry 8: 873–875.CrossRefGoogle Scholar
  7. Anderson, W. W., Berisford, C. W., and Kimmich, R. H. (1979) Genetic differences among five populations of the southern pine beetle. Ann. Entomol. Soc. Am. 72: 323–327.Google Scholar
  8. Anderson, W. W., Berisford, C. W., Turnbow, R. H. and Brown, C. J. (1983) Genetic differences among populations of the black turpentine beetle, Dendroctonus terebrans, and an engraver beetle, Ips calligraphus (Coleoptera: Scolytidae). Ann. Entomol. Soc. Am. 76: 896–902.Google Scholar
  9. Atkins, M. D. (1969) Lipid loss with flight in the Douglas-fir beetle. Can. Entomol. 101: 164–165.CrossRefGoogle Scholar
  10. Austarå, O., Bakke, A., and Midtgaard, F. (1986) Response in Ips typographus to logging waste odors and synthetic pheromones. J. Appl. Entomol. 101: 194–198.CrossRefGoogle Scholar
  11. Baker, B. H., Hostetler, B. B., and Furniss, M. M. (1977) Response of eastern larch beetle (Coleoptera: Scolytidae) in Alaska to its natural attractant and to Douglas-fir beetle pheromones. Can. Entomol. 109: 289–294.CrossRefGoogle Scholar
  12. Baker, J. E. and Norris, D. M. (1967) A feeding stimulant for Scolytus multistriatus (Coleoptera: Scolytidae) isolated from the bark of Ulmus americana. Ann. Entomol. Soc. Am. 60: 1213–1215.Google Scholar
  13. Baker, J. E. and Norris, D. M. (1968) Further biological and chemical aspects of host selection by Scolytus multistriatus. Ann. Entomol. Soc. Am. 61: 1248–1255.Google Scholar
  14. Baker, T. C. (1989) Sex pheromone communication in the Lepidoptera: new research progress. Experientia 45: 248–262.CrossRefGoogle Scholar
  15. Baker, T. C., Hansson, B. S., Löfstedt, C., and Löfqvist, J. (1988) Adaptation of antennal neurones in moths is associated with cessation of pheromone-mediated upwind flight. Proc. Natl. Acad. Sci. USA 85: 9826–9830.PubMedCrossRefGoogle Scholar
  16. Bakke, A. (1975) Aggregation pheromone in the bark beetle Ips duplicatus (Sahlberg). Norw. J. Entomol. 22: 67–69.Google Scholar
  17. Bakke, A. (1981) Inhibition of the response in Ips typographus to the aggregation pheromone; field evaluation of verbenone and ipsenol. Z. Angew. Entomol. 92: 172–177.CrossRefGoogle Scholar
  18. Bakke, A. (1983) Dosage response of the ambrosia beetle Trypodendron lineatum (Oliver) (Coleoptera, Scolytidae) to semiochemicals. Z. Angew. Entomol. 95: 158–161.CrossRefGoogle Scholar
  19. Bakke, A. and Kvamme, T. (1981) Kairomone response in Thanasimus predators to pheromone components of Ips typographus. J. Chem. Ecol. 7: 305–312.CrossRefGoogle Scholar
  20. Bakke, A., Fryen, P., and Skattebl, L. (1977) Field response to a new pheromonal compound isolated from Ips typographus. Naturwissenschaften 64: 98.CrossRefGoogle Scholar
  21. Bedard, W. D., Tilden, P. E., Wood, D. L., Silverstein, R. M., Brownlee, R. G., and Rodin, J. O. (1969) Western pine beetle: field response to its sex pheromone and a synergistic host terpene, myrcene. Science 164: 1284–1285.PubMedCrossRefGoogle Scholar
  22. Bedard, W. D., Silverstein, R. M. and Wood, D. L. (1970) Bark beetle pheromones. Science 167: 1638–1639.PubMedCrossRefGoogle Scholar
  23. Begley, M.J. and Grove, J.F. 1985. Metabolic products of Phomopsis oblonga I. 3a,5a,6,7,8,9,9a,9b-octahydro-7,9b-dimethylnaphtho-1,2-c-furan-1-3h-one oblongolide. J. Chem. Soc. Perkin Trans. I. 0: 861–864.CrossRefGoogle Scholar
  24. Bennett, R. B. and Borden, J. H. (1971) Flight arrestment of tethered Dendroctonus pseudotsugae and Trypodendron lineatum (Coleoptera: Scolytidae) in response to olfactory stimuli. Ann. Entomol. Soc. Am. 64: 1273–1286.Google Scholar
  25. Berenbaum, M. R. and Isman, M. B. (1989) Herbivory in holometabolous and hemimetabolous insects: Contrasts between Orthoptera and Lepidoptera. Experientia 45: 229–236.CrossRefGoogle Scholar
  26. Berryman, A. A. (1969) Responses of Abies grandis to attack by Scolytus ventralis (Coleoptera: Scolytidae). Can. Entomol. 101: 1033–1041.CrossRefGoogle Scholar
  27. Berryman, A. A. (1972) Resistance of conifers to invasion by bark beetle-fungi associations. Bioscience 22: 598–602.CrossRefGoogle Scholar
  28. Berryman, A. A. and Ashraf, M. (1970) Effects of Abies grandis resin on the attack behavior and brood survival of Scolytus ventralis (Coleoptera: Scolytidae). Can. Entomol. 102: 1229–1236.CrossRefGoogle Scholar
  29. Berryman, A. A., Dennis, B., Raffa, K. F., and Stenseth, N. C. (1985) Evolution of optimal group attack with particular reference to bark beetles (Coleoptera: Scolytidae). Ecology 66: 898–903.CrossRefGoogle Scholar
  30. Billings, R. F. and Cameron, R. S. (1984) Kairomonal responses of Coleoptera: Monochamus titillator (Cerambycidae), Thanasimus dubius (Cleridae) and Temnochila virescens (Trogositidae) to behavioral chemicals of southern pine bark beetles Dendroctonus frontalis (Coleoptera: Scolytidae). Environ. Entomol. 13: 1542–1548.Google Scholar
  31. Birch, M. C. (1984) Aggregation in bark beetles. In: Chemical Ecology of Insects (Bell, W. J. and Cardé, R. T., eds.) pp. 331–353. Chapman and Hall, London.Google Scholar
  32. Birch, M. C., Light, D. M., Wood, D. L., Browne, L. E., Silverstein, R. M., Bergot, B. J., Ohloff, G., West, J. F. and Young, J. C. (1980a) Pheromonal attraction and allomonal interruption of Ips pini in California by the two enantiomers of ipsdienol. J. Chem. Ecol. 6: 703–717.CrossRefGoogle Scholar
  33. Birch, M. C., Svihra, P., Paine, T. D. and Miller, J. C. (1980b) Influence of chemically mediated behavior on host tree colonization by four cohabiting species of bark beetles. J. Chem. Ecol. 6: 395–414.CrossRefGoogle Scholar
  34. Birgersson, G. and Bergström, G. (1989) Volatiles released from individual spruce bark beetle entrance holes: quantitative variations during the first week of attack. J. Chem. Ecol. 15: 2465–2484.CrossRefGoogle Scholar
  35. Birgersson, G. and Leufvén, A. (1988) The influence of host tree response to Ips typographus and fungal attack on production of semiochemicals. Insect Biochem. 18: 761–770.CrossRefGoogle Scholar
  36. Birgersson, G., Schlyter, F., Löfqvist, J., and Bergström, G. (1984) Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases. J. Chem. Ecol. 10: 1029–1055.CrossRefGoogle Scholar
  37. Birgersson, G., Byers, J. A., Bergström, G., and Löfqvist, J. (1990) Production of pheromone components, chalcogran and methyl (E,Z)-2,4-decadienoate, in the spruce engraver Pityogenes chalcographies. J. Insect Physiol. 36: 391–395.CrossRefGoogle Scholar
  38. Bombosch, S., Engler, I., Gossenauer, H., and Herrmann, B. (1985) On the role of pheroprax influencing the settlement of Ips typographus on spruce. Z. Angew. Entomol. 100: 458–463.CrossRefGoogle Scholar
  39. Bordasch, R. P. and Berryman, A. A. (1977) Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae) 2. repellency of Abies grandis resins and some monoterpenes. Can. Entomol. 109: 95–100.CrossRefGoogle Scholar
  40. Borden, J. H. (1982) Aggregation pheromones. In: Bark beetles in North American Conifers: A System for the Study of Evolutionary Biology (Mitton, J. B. and Sturgeon, K. M., eds.) pp. 74–139. Univ. Texas Press, Austin, Tex.Google Scholar
  41. Borden, J. H. and Wood, D. L. (1966) The antennal receptors and olfactory response of Ips confusus (Coleoptera: Scolytidae) to male sex attractant in the laboratory. Ann. Entomol. Soc. Am. 59: 253–261.Google Scholar
  42. Borden, J. H., Handley, J. R., McLean, J. A., Silverstein, R. M., Chong, L., Slessor, K. N., Johnston, B. D., and Schuler, H. R. (1980) Enantiomer-based specificity in pheromone communication by two sympatric Gnathotrichus species (Coleoptera: Scolytidae). J. Chem. Ecol. 6: 445–456.CrossRefGoogle Scholar
  43. Borden, J. H., Chong, L., Slessor, K. N., Oehlschlager, A. C., Pierce, Jr., H. D., and Lindgren, B. S. (1981) Allelochemic activity of aggregation pheromones between three sympatric species of ambrosia beetles (Coleoptera: Scolytidae). Can. Entomol. 113: 557–563.CrossRefGoogle Scholar
  44. Borden, J. H., King, C. J., Lindgren, S., Chong, L., Gray, D. R., Oehlschlager, A. C., Slessor, K. N., and Pierce, Jr., H. D. (1982) Variation in response of Trypodendron lineatum from two continents to semiochemicals and trap form. Environ. Entomol. 11: 403–408.Google Scholar
  45. Borden, J. H., Hunt, D. W. A., Miller, D. R., and Slessor, K. N. (1986) Orientation in forest Coleoptera: An uncertain outcome of responses by individual beetles to variable stimuli. In: Mechanisms in Insect Olfaction (Payne, T. L., Birch, M. C., and Kennedy, C. E. J., eds.) pp. 97–109. Clarendon Press, Oxford, U.K.Google Scholar
  46. Borden, J. H., Pierce, A. M., Pierce, Jr., H. D., Chong, L. J., Stock, A. J., and Oehlschlager, A. C. (1987) Semiochemicals produced by western balsam bark beetle Dryocoetes confusus Swaine (Coleoptera: Scolytidae). J. Chem. Ecol. 13: 823–836.CrossRefGoogle Scholar
  47. Borg, T. K. and Nortis, D. M. (1971) Penetration of tritiated catechol: A feeding stimulant into chemo receptor sensilla of Scolytus multistriatus (Coleoptera: Scolytidae). Ann. Entomol. Soc. Am. 64: 544–547.Google Scholar
  48. Botterweg, P. F. (1982) Dispersal and flight behavior of the spruce bark beetle Ips typographus in relation to sex, size and fat content. Z. Angew. Entomol. 94: 466–489.CrossRefGoogle Scholar
  49. Brand, J. M., Bracke, J. W., Markovetz, A. J., Wood, D. L., and Browne, L. E. (1975) Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 254: 136–137.PubMedCrossRefGoogle Scholar
  50. Brand, J. M., Bracke, J. W., Britton, L. N., Markovetz, A. J., and Barras, S. J. (1976) Bark beetle pheromones: production of verbenone by a mycangial fungus of Dendroctonus frontalis. J. Chem. Ecol. 2: 195–199.CrossRefGoogle Scholar
  51. Bridges, J. R. (1987) Effects of terpenoid compounds on growth of symbiotic fungi associated with the southern pine beetle. Phytopathology 77: 83–85.CrossRefGoogle Scholar
  52. Bridges, J. R. and Perry, T. J. (1985) Effects of mycangial fungi on gallery construction and distribution of bluestain in southern pine beetle Dendroctonus frontalis infested pine bolts. J. Entomol. Sci. 20: 271–275.Google Scholar
  53. Bridges, J. R., Nettleton, W. A., and Connor, M. D. (1985) Southern pine beetle Dendroctonus frontalis (Coleoptera: Scolytidae) infestations without the bluestain fungus Ceratocystis minor. J. Econ. Entomol. 78: 325–327.Google Scholar
  54. Brown, M. W., Nebeker, T. E., and Honea, C. R. (1987) Thinning increases loblolly pine vigor and resistance to bark beetles. South. J. Appl. For. 11: 28–31.Google Scholar
  55. Burghardt, G. M. (1970) Defining “communication.” In: Communication by Chemical Signals (Johnstron, Jr., J. W., Moulton, D. G. and Turk, A., eds.) pp. 5–18. Appleton, New York.Google Scholar
  56. Byers, J. A. (1981a) Effect of mating on terminating aggregation during host colonization in the bark beetle, Ips paraconfusus. J. Chem. Ecol. 7: 1135–1147.CrossRefGoogle Scholar
  57. Byers, J. A. (1981b) Pheromone biosynthesis in the bark beetle, Ips paraconfusus, during feeding or exposure to vapours of host plant precursors. Insect Biochem. 11: 563–569.CrossRefGoogle Scholar
  58. Byers, J. A. (1982) Male-specific conversion of the host plant compound, myrcene, to the pheromone, (+)-ipsdienol, in the bark beetle, Dendroctonus brevicomis. J. Chem. Ecol. 8: 363–372.CrossRefGoogle Scholar
  59. Byers, J. A. (1983a) Bark beetle conversion of a plant compound to a sex-specific inhibitor of pheromone attraction. Science 220: 624–626.CrossRefGoogle Scholar
  60. Byers, J. A. (1983b) Influence of sex, maturity and host substances on pheromones in the guts of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus. J. Insect Physiol. 29: 5–13.CrossRefGoogle Scholar
  61. Byers, J. A. (1983c) Sex-specific responses to aggregation pheromone: Regulation of colonization density by the bark beetle Ips paraconfusus. J. Chem. Ecol. 9: 129–142.CrossRefGoogle Scholar
  62. Byers, J. A. (1984) Nearest neighbor analysis and simulation of distribution patterns indicates an attack spacing mechanism in the bark beetle, Ips typographus (Coleoptera: Scolytidae). Environ. Entomol. 13: 1191–1200.Google Scholar
  63. Byers, J. A. (1988) Novel diffusion-dilution method for release of semiochemicals: testing pheromone component ratios on western pine beetle. J. Chem. Ecol. 14: 199–212.CrossRefGoogle Scholar
  64. Byers, J. A. (1989a) Behavioral mechanisms involved in reducing competition in bark beetles. Holarc. Ecol. 12, 466–476.Google Scholar
  65. Byers, J. A. (1989b) Chemical ecology of bark beetles. Experientia 45: 271–283.CrossRefGoogle Scholar
  66. Byers, J. A. (1992a) Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron domesticum and other insects to short-chain alcohols and monoter-penes. J. Chem. Ecol. 18: 2385–2402.CrossRefGoogle Scholar
  67. Byers, J. A. (1992b) Dirichlet tessellation of bark beetle spatial attack points. J. Anim. Ecol. 61: 759–768.CrossRefGoogle Scholar
  68. Byers, J. A. (1992c) Optimal fractionation and bioassay plans for isolation of synergistic chemicals: the subtractive-combination method. J. Chem. Ecol. 18: 1603–1621.CrossRefGoogle Scholar
  69. Byers, J. A. (1993a) Avoidance of competition by spruce bark beetles, Ips typographus and Pityogenes chalcographus. Experientia 49: 272–275.CrossRefGoogle Scholar
  70. Byers, J. A. (1993b) Simulation and equation models of insect population control by pheromone-baited traps. J. Chem. Ecol. 19: 1939–1956.CrossRefGoogle Scholar
  71. Byers, J. A. and Birgersson, G. (1990) Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften 77: 385–387.CrossRefGoogle Scholar
  72. Byers, J. A. and Löfqvist, J. (1989) Flight initiation and survival in the bark beetle Ips typographus (Coleoptera: Scolytidae) during the spring dispersal. Holarc. Ecol. 12: 432–440.Google Scholar
  73. Byers, J. A. and Wood, D. L. (1980) Interspecific inhibition of the response of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus, to their pheromones in the field. J. Chem. Ecol. 6: 149–164.CrossRefGoogle Scholar
  74. Byers, J. A. and Wood, D. L. (1981a) Antibiotic-induced inhibition of pheromone synthesis in a bark beetle. Science, 213, 763–4.CrossRefGoogle Scholar
  75. Byers, J. A. and Wood, D. L. (1981b) Interspecific effects of pheromones on the attraction of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus in the laboratory. J. Chem. Ecol., 1, 9–18.CrossRefGoogle Scholar
  76. Byers, J. A., Wood, D. L., Browne, L. E., Fish, R. H., Piatek, B., and Hendry, L. B. (1979) Relationship between a host plant compound, myrcene and pheromone production in the bark beetle, Ips paraconfusus. J. Insect Physiol. 25: 477–482.CrossRefGoogle Scholar
  77. Byers, J. A., Wood, D. L., Craig, J., and Hendry, L. B. (1984) Attractive and inhibitory pheromones produced in the bark beetle, Dendroctonus brevicomis, during host colonization: Regulation of inter- and intraspecific competition. J. Chem. Ecol. 10: 861–877.CrossRefGoogle Scholar
  78. Byers, J. A., Lanne, B. S., Schlyter, F., Löfqvist, J., and Bergström, G. (1985) Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72: 324–326.CrossRefGoogle Scholar
  79. Byers, J. A., Birgersson, G., Löfqvist, J., and Bergström, G. (1988) Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle. Naturwissenschaften 75: 153–155.CrossRefGoogle Scholar
  80. Byers, J. A., Anderbrant, O., and Löfqvist, J. (1989a) Effective attraction radius: A method for comparing species attractants and determining densities of flying insects. J. Chem. Ecol. 15: 749–765.CrossRefGoogle Scholar
  81. Byers, J. A., Högberg, H. E., Unelius, R., Birgersson, G., and Löfqvist, J. (1989b) Structure-activity studies on aggregation pheromone components of Pityogenes chalco-graphus (Coleoptera: Scolytidae): All stereoisomers of chalcogran and methyl 2,4-decadienoate. J. Chem. Ecol. 15: 685–695.CrossRefGoogle Scholar
  82. Byers, J. A., Lanne, B. S., and Löfqvist, J. (1989c) Host-tree unsuitability recognized by pine shoot beetles in flight. Experientia 45: 489–492.CrossRefGoogle Scholar
  83. Byers, J. A., Birgersson, G., Löfqvist, J., Appelgren, M., and Bergström, G. (1990a) Isolation of pheromone synergists of bark beetle, Pityogenes chalcographus, from complex insect-plant odors by fractionation and subtractive-combination bioassay. J. Chem. Ecol. 16: 861–876.CrossRefGoogle Scholar
  84. Byers, J. A., Schlyter, F., Birgersson, G., and Francke, W. (1990b) E-myrcenol in Ips duplicatus: an aggregation pheromone component new for bark beetles. Experientia 46: 1209–1211.Google Scholar
  85. Cade, S. C., Hrutfiord, B. F., and Gara, R. I. (1970) Identification of a primary attractant for Gnathotrichus sulcatus isolated from western hemlock logs. J. Econ. Entomol. 63: 1014–1015.Google Scholar
  86. Camacho, A. D., Pierce, Jr., H. D. and Borden, J. A. (1993) Geometrical and optical isomerism of pheromones in two sympatric Dryocoetes species (Coleoptera: Scolytidae), mediates species specificity and response level. J. Chem. Ecol. 19: 2169–2182.CrossRefGoogle Scholar
  87. Cates, R. G. (1981) Host plant predictability and the feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores. Oecologia 48: 319–326.CrossRefGoogle Scholar
  88. Chapman, J. A. (1972) Ommatidia numbers and eyes in scolytid beetles. Ann. Entomol. Soc. Am. 65: 550–553.Google Scholar
  89. Chararas, C., Katoulas, M., and Koutroumpas, A. (1982) Feeding preference of Rugulos-colytus rugulosus bark beetle parasite of fruit trees. C. R. Seances Acad. Sci. Ser. Ill Sci. Vie. 294: 763–766.Google Scholar
  90. Chénier, J. V. R. and Philogène, B. J. R. (1989) Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J. Chem. Ecol. 15: 1729–1746.CrossRefGoogle Scholar
  91. Choudhury, J. H. and Kennedy, J. S. (1980) Light versus pheromone-bearing wind in the control of flight direction by bark beetles, Scolytus multistriatus. Physiol. Entomol. 5: 207–214.CrossRefGoogle Scholar
  92. Christiansen, E., Waring, R. H., and Berry man, A. A. (1987) Resistance of conifers to bark beetle attack: searching for general relationships. For. Ecol. Manage. 22: 89–106.CrossRefGoogle Scholar
  93. Claydon, N., Grove, J. F., and Pople, M. (1985) Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry 24: 937–944.CrossRefGoogle Scholar
  94. Cobb, Jr., F. W., Krstic, M., Zavarin, E. and Barber, Jr., H. W. (1968) Inhibitory effects of volatile oleoresin components on Fomes annosus and four Ceratocystis species. Phytopathology 58: 1327–1335.Google Scholar
  95. Conn, J. E., Borden, J. H., Hunt, D. W. A., Holman, J., Whitney, H. S., Spanier, O. J., Pierce, Jr., H. D., and Oehlschlager, A. C. (1984) Pheromone production by axenically reared Dendroctonus ponderosae and Ips paraconfusus (Coleoptera: Scolytidae). J. Chem. Ecol. 10: 281–290.CrossRefGoogle Scholar
  96. Cook, S. P. and Hain, F. P. (1987) Four parameters of the wound response of loblolly and shortleaf pines to inoculation with the blue-staining fungus associated with the southern pine beetle. Can. J. Bot. 65: 2403–2409.CrossRefGoogle Scholar
  97. Croteau, R., Gurkewitz, S., Johnson, M. A., and Fisk, H. J. (1987) Biochemistry of oleoresinosis. Monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol. 85: 1123–1128.PubMedCrossRefGoogle Scholar
  98. David, C. T., Kennedy, J. S., Ludlow, A. R., Perry, J. N., and Wall, C. (1982) A reappraisal of insect flight towards a distant point source of wind-borne odor. J. Chem. Ecol. 8: 1207–1215.CrossRefGoogle Scholar
  99. Dethier, V. G. (1982) Mechanisms of host-plant recognition. Entomol. exp. appl. 31: 49–56.CrossRefGoogle Scholar
  100. Dickens, J. C. (1981) Behavioural and electrophysiological responses of the bark beetle Ips typographus to potential pheromone components. Physiol. Entomol. 6: 251–262.CrossRefGoogle Scholar
  101. Dickens, J.C. (1986) Specificity in perception of pheromones and host odours in Coleoptera. In: Mechanisms in insect olfaction (Payne, T. L., Birch, M. C, and Kennedy, C. E. J., eds.). pp. 253–261. Clarendon Press, Oxford, U.K.Google Scholar
  102. Dickens, J. C., Gutmann, A., Payne, T. L., Ryker, L. C., and Rudinsky, J. A. (1983) Antennal olfactory responsiveness of Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae) to pheromones and host odors. J. Chem. Ecol. 9: 1383–1395.CrossRefGoogle Scholar
  103. Dickens, J. C., Payne, T. L., Ryker, L. C., and Rudinsky, J. A. (1985) Multiple acceptors for pheromonal enantiomers on single olfactory cells in the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae. J. Chem. Ecol. 11: 1359–1370.CrossRefGoogle Scholar
  104. Dickens, J. C., Billings, R. F., and Payne, T. L. (1992) Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia 48: 523–524.CrossRefGoogle Scholar
  105. Doke, N. and Tomiyama, K. (1980) Suppression of the hypersensitive response of potato tuber protoplasts to hyphal wall components by water soluble glucans isolated from Phytophthora infestans. Physiol. Plant Pathol. 16: 177–186.CrossRefGoogle Scholar
  106. Doskotch, R. W., Mikhail, A. A., and Chatterji, S. K. (1973) Structure of the water soluble feeding stimulant for Scolytus multistriatus: A revision. Phytochemistry 12: 1153–1155.CrossRefGoogle Scholar
  107. Elkinton, J. S. and Wood, D. L. (1980) Feeding and boring behavior of the bark beetle Ips paraconfusus (Coleoptera: Scolytidae) on the bark of a host and non-host tree species. Can. Entomol. 112: 797–809.CrossRefGoogle Scholar
  108. Elkinton, J. S., Wood, D. L., and Hendry, L. B. (1980) Pheromone production by the bark beetle, Ips paraconfusus, in the non-host, white fir. J. Chem. Ecol. 6: 979–987.CrossRefGoogle Scholar
  109. Elkinton, J. S., Wood, D. L., and Browne, L. E. (1981) Feeding and boring behavior of the bark beetle, Ips paraconfusus, in extracts of ponderosa pine phloem. J. Chem. Ecol. 1: 209–220.CrossRefGoogle Scholar
  110. Ehrlich, P. R. and Raven, P. H. (1965) Butterflies and plants: a study in coevolution. Evolution 8: 586–608.Google Scholar
  111. Faucheux, M. J. (1989) Morphology of the antennal club in the male and female bark beetles Ips sexdentatus (Boern.) and Ips typographus L. (Coleoptera: Scolytidae). Ann. Sci. Nat. Zool. Biol. Anim. 10: 231–243.Google Scholar
  112. Feeny, P. (1975) Biochemical coevolution between plants and their insect herbivores. In: Coevolution of Animals and Plants (Gilbert, L. E. and Raven, P. H., eds.) pp. 3–19. Univ. Texas Press, Austin, Tex.Google Scholar
  113. Fish, R. H., Browne, L. E., Wood, D. L., and Hendry, L. B. (1979) Pheromone biosynthetic pathways: conversion of deuterium labelled ipsdienol with sexual and enantioselectivity in Ips paraconfusus Lanier. Tetrah. Lett. 17: 1465–1468.CrossRefGoogle Scholar
  114. Fitzgerald, T. D. and Nagel, W. P. (1972) Oviposition and larval bark-surface orientation of Medetera aldrichii (Diptera: Dolichopodidae): Response to a prey-liberated plant terpene. Ann. Entomol. Soc. Am. 65: 328–330.Google Scholar
  115. Forsse, E. and Solbreck, C. (1985) Migration in the bark beetle Ips typographus L.: duration, timing and height of flight. Z. Angew. Entomol. 100: 47–57.CrossRefGoogle Scholar
  116. Funk, A. (1970) Fungal symbionts of the ambrosia beetle Gnathotrichus sulcatus. Can. J. Bot. 48: 1445–1448.CrossRefGoogle Scholar
  117. Fumiss, M. M., Woo, J. Y., Deyrup, M. A., and Atkinson, T. H. (1987) Prothoracic mycangium on pine-infesting Pityoborus spp. (Coleoptera: Scolytidae). Ann. Entomol. Soc. Am. 80: 692–696.Google Scholar
  118. Gilbert, B. L., Baker, J. E., and Norris, D. M. (1967) Juglone (5-hydroxy-l,4-napthoqui-none) from Carya ovata, a deterrent to feeding by Scolytus multistriatus. J. Insect Physiol. 13: 1453–1459.CrossRefGoogle Scholar
  119. Goeden, R. D. and Norris, D. M. (1964) Attraction of Scolytus quadrispinosus (Coleoptera: Scolytidae) to Carya spp. for oviposition. Ann. Entomol. Soc. Am. 57: 141–146.Google Scholar
  120. Goeden, R. D. and Norris, D. M. (1965) The behavior of Scolytus quadrispinosus (Coleoptera: Scolytidae) during the dispersal flight as related to its host specificities. Ann. Entomol. Soc. Am. 58: 249–252.Google Scholar
  121. Goldhammer, D. S., Stephen, F. M., and Paine, T. D. (1991) The effect of the fungi Ceratocystis minor Hedgecock-Hunt, Ceratocystis minor var. barrasii Taylor, and SJB 122 on reproduction of the southern pine beetle Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Can. Entomol. 122: 407–418.CrossRefGoogle Scholar
  122. Gollob, L. (1980) Monoterpene composition in bark beetle-resistant loblolly pine. Naturwissenschaften 67: 409–410.CrossRefGoogle Scholar
  123. Graham, K. (1959) Release by flight exercise of a chemotropic response from photopositive domination in a scolytid beetle. Nature 184: 283–284.CrossRefGoogle Scholar
  124. Graham, K. (1968) Anaerobic induction of primary chemical attractancy for ambrosia beetles. Can. J. Zool. 46: 905–908.CrossRefGoogle Scholar
  125. Gray, B., Billings, R. F., Gara, R. I., and Johnsey, R. L. (1972) On the emergence and initial flight behaviour of the mountain pine beetle, Dendroctonus ponderosae, in eastern Washington. Z. Angew. Entomol. 71: 250–259.CrossRefGoogle Scholar
  126. Gries, G., Nolte, R., and Sanders, W. (1989) Computer simulated host selection in Ips typographus. Entomol. exp. appl. 53: 211–217.CrossRefGoogle Scholar
  127. Groberman, L. J. and Borden, H. J. (1982) Electrophysiological response of Dendroctonus pseudotsugae and Ips paraconfusus (Coleoptera: Scolytidae) to selected wave length regions of the visible spectrum. Can. J. Zool. 60: 2180–2189.CrossRefGoogle Scholar
  128. Hain, F. P., Mawby, W. D., Cook, S. P., and Arthur, F. H. (1983) Host conifer reaction to stem invasion. Z. Angew. Entomol. 96: 247–256.CrossRefGoogle Scholar
  129. Hallberg, E. (1982) Sensory organs in Ips typographus (Insecta: Coleoptera)—fine structure of the sensilla of the maxillary and labial palps. Acta Zool. 63: 191–198.CrossRefGoogle Scholar
  130. Hanover, J. M. and Furniss, M. M. (1966) Monoterpene concentration in Douglas-fir in relation to geographic location and resistance to attack by the Douglas-fir beetle. U.S. Dep. Agric. For. Serv. Res. Pap. NC 6, pp. 23–28, Washington, D.C.Google Scholar
  131. Hansen, K. (1983) Reception of bark beetle pheromone in the predaceous clerid beetle, Thanasimus formicarius (Coleoptera: Cleridae). J. Comp. Physiol. A. 150: 371–378.CrossRefGoogle Scholar
  132. Happ, G. M., Happ, C. M., and French, J. R. J. (1976) Ultrastructure of the mesonotal mycangium of an ambrosia beetle Xyleborus dispar (Coleoptera: Scolytidae). Int. J. Insect Morphol. Embryol. 5: 381–392.CrossRefGoogle Scholar
  133. Hendry, L. B., Piatek, B., Browne, L. E., Wood, D. L., Byers, J. A., Fish, R. H., and Hicks, R. A. (1980) In vivo conversion of a labelled host plant chemical to pheromones of the bark beetle Ips paraconfusus. Nature 284: 485.CrossRefGoogle Scholar
  134. Himejima, M., Hobson, K. R., Otsuka, T., Wood, D. L., and Kubo, I. (1992) Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion. J. Chem. Ecol. 18: 1809–1818.CrossRefGoogle Scholar
  135. Hobson, K. R., Wood, D. L., Cool, L. G., White, P. R., Ohtsuka, T., Kubo, I., and Zavarin, E. (1993) Chiral specificity in responses by the bark beetle Dendroctonus valens to host kairomones. J. Chem. Ecol. 19: 1837–1846.CrossRefGoogle Scholar
  136. Hodges, J. D. and Lorio, Jr., P. L. (1975) Moisture stress and composition of xylem oleoresin in loblolly pine. For. Sci. 21: 283–290.Google Scholar
  137. Hodges, J. D., Elam, W. W., Watson, W. R., and Nebeker, T. E. (1979) Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. Can. Entomol. 111: 889–896.CrossRefGoogle Scholar
  138. Hodges, J. D., Nebeker, T. E., DeAngelis, J. D., Karr, B. L., and Blanche, C. A. (1985) Host resistance and mortality: A hypothesis based on the southern pine beetle-microorganism-host interactions. Bull. Entomol. Soc. Am. 31: 31–35.Google Scholar
  139. Horntvedt, R. E., Christiansen, H., Solheim, H., and Wang, S. (1983) Artificial inoculation with Ips typographus-associated bluestain fungi can kill healthy Norway spruce trees. Medd. Nor. Inst. Skogforsk., 38: 1–20.Google Scholar
  140. Hughes, P. R. (1973) Dendroctonus: Production of pheromones and related compounds in response to host monoterpenes. Z. Angew. Entomol. 73: 294–312.CrossRefGoogle Scholar
  141. Hughes, P. R. (1974) Myrcene: A precursor of pheromones in Ips beetles. J. Insect Physiol. 20: 1271–1275.CrossRefGoogle Scholar
  142. Hughes, P. R. and Renwick, J. A. A. (1977) Neural and hormonal control of pheromone biosynthesis in the bark beetle, Ips paraconfusus. Physiol. Entomol. 2: 117–123.CrossRefGoogle Scholar
  143. Hunt, D. W. A. and Borden, J. H. (1989) Terpene alcohol pheromone production by Dendroctonus ponderosae and Ips paraconfusus (Coleoptera: Scolytidae) in the absence of readily culturable microorganisms. J. Chem. Ecol. 15: 1433–1464.CrossRefGoogle Scholar
  144. Hynum, B. G. and Berryman, A. A. (1980) Dendroctonus ponderosae (Coleoptera: Scolytidae) pre-aggregation landing and gallery initiation on lodgepole pine. Can. Entomol. 112: 185–192.CrossRefGoogle Scholar
  145. Ivarsson, P., Schlyter, F., and Birgersson, G. (1993) Demonstration of de novo pheromone biosynthesis in Ips duplicatus (Coleoptera: Scolytidae): inhibition of ipsdienol and E-myrcenol production by compactin. Insect Biochem. Mol. Biol. 23: 655–662.CrossRefGoogle Scholar
  146. Jactel, H. (1991) Dispersal and flight behavior of Ips sexdentatus (Coleoptera: Scolytidae) in pine forest. Ann. Sei. For. 48: 417–428.CrossRefGoogle Scholar
  147. Jactel, H. and Gaillard, J. (1991) A preliminary study of the dispersal potential of Ips sexdentatus Boern (Coleoptera: Scolytidae) with an automatically recording flight mill. J. Appl. Entomol. 112: 138–145.CrossRefGoogle Scholar
  148. Jones, R. G. and Brindley, W. A. (1970) Tests of eight rearing media for the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), from lodgepole pine. Ann. Entomol. Soc. Am. 63: 313–316.Google Scholar
  149. Kajimura, H. and Hijii, N. (1992) Dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle Xylosandrus mutilatus Blandford (Coleoptera: Scolytidae) in relation to its life history. Ecol. Res. 7: 107–117.CrossRefGoogle Scholar
  150. Kimmerer, T. W. and Kozlowski, T. T. (1982) Ethylene, ethane, acetaldehyde and ethanol production by plants under stress. Plant Physiol. 69: 840–847.PubMedCrossRefGoogle Scholar
  151. Kinzer, G. W., Fentiman, Jr., A. F., Page, T. F., Foltz, R. L., Vité, J. P., and Pitman, G. B. (1969) Bark beetle attractants: identification, synthesis and field bioassay of a new compound isolated from Dendroctonus. Nature 211: 475–476.Google Scholar
  152. Klimetzek, D. and Francke, W. (1980) Relationship between the enantiomeric composition of α-pinene in host trees and the production of verbenols in Ips species. Experientia 36: 1343–1345.CrossRefGoogle Scholar
  153. Klimetzek, D., Köhler, J., Vité, J. P., and Kohnle, U. (1986) Dosage response to ethanol mediates host selection by ‘secondary’ bark beetles. Naturwissenschaften 73: 270–272.CrossRefGoogle Scholar
  154. Kohnle, U. (1985) Investigations of chemical communication systems in secondary bark beetles. Z. Angew. Entomol. 100: 197–218.CrossRefGoogle Scholar
  155. Kohnle, U. and Vité, J. P. (1984) Bark beetle predators: Strategies in the olfactory perception of prey species by clerid and trogositid beetles. Z. Angew. Entomol. 98: 504–508.CrossRefGoogle Scholar
  156. Langor, D. W., Spence, J. R., and Pohl, G. R. (1990) Host effects on fertility and reproductive success of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Evolution 44: 609–618.CrossRefGoogle Scholar
  157. Långström, B. (1983) Within tree development of Tomicus minor (Coleoptera: Scolytidae) in wind thrown scotch pine. Acta Entomol. Fenn. 42: 42–46.Google Scholar
  158. Långström, B. and Hellqvist, C. (1991) Shoot damage and growth losses following three years of Tomicus attacks in scots pine stands close to a timber storage site. Silva. Fenn. 25: 133–145.Google Scholar
  159. Lanier, G. N. (1983) Integration of visual stimuli, host odorants, and pheromones by bark beetles and weevils in locating and colonizing host trees. In: Herbivorous Insects: Host-Seeking Behavior and Mechanisms (Ahmad, S., ed.) pp. 161–171. Academic Press, New York.Google Scholar
  160. Lanier, G. N. and Bums, B. W. (1978) Barometric flux. Effects on the responsiveness of bark beetles to aggregation attractants. J. Chem. Ecol. 4: 139–147.CrossRefGoogle Scholar
  161. Lanier, G. N., Birch, M. C, Schmitz, R. F., and Fumiss, M. M. (1972) Pheromones of Ips pini (Coleoptera: Scolytidae): Variation in response among three populations. Can. Entomol. 104: 1917–1923.CrossRefGoogle Scholar
  162. Lanier, G. N., Classon, A., Stewart, T., Piston, J. J., and Silverstein, R. M. (1980) Ips pini: The basis for interpopulational differences in pheromone biology. J. Chem. Ecol. 6: 677–687.CrossRefGoogle Scholar
  163. Lanne, B. S., Schlyter, F., Byers, J. A., Löfqvist, J., Leufvén, A., Bergström, G., Van Der Pers, J. N. C., Unelius, R., Baeckström, P., and Norin, T. (1987) Differences in attraction to semiochemicals present in sympatric pine shoot beetles, Tomicus minor and T. piniperda. J. Chem. Ecol. 13: 1045–1067.CrossRefGoogle Scholar
  164. Lanne, B. S., Ivarsson, P., Johnsson, P., Bergström, G., and Wassgren, A. B. (1989) Biosynthesis of 2-methyl-3-buten-2-ol a pheromone component of Ips typographus (Coleoptera: Scolytidae). Insect. Biochem. 19: 163–168.CrossRefGoogle Scholar
  165. Lekander, B., Bejer-Petersen, B., Kangas, E., and Bakke, A. (1977) The distribution of bark beetles in the Nordic countries. Acta. Entomol. Fenn. 32: 1–37.Google Scholar
  166. Leufvén, A., Bergström, G., and Falsen, E. (1984) Interconversion of verbenols and verbenone by identified yeasts isolated from the spruce bark beetle Ips typographus. J. Chem. Ecol. 10: 1349–1361.CrossRefGoogle Scholar
  167. Leufvén, A., Bergström, G., and Falsen, E. (1988) Oxygenated monoterpenes produced by yeasts isolated from Ips typographus (Coleoptera: Scolytidae) and grown in phloem medium. J. Chem. Ecol. 14: 353–362.CrossRefGoogle Scholar
  168. Levieux, J., Cassier, P., Guillaumin, D., and Roques, A. (1991) Structures implicated in the transportation of pathogenic fungi by the european bark beetle Ips sexdentatus Boemer: Ultrastructure of a mycangium. Can. Entomol. 123: 245–254.CrossRefGoogle Scholar
  169. Light, D. M. and Birch, M. C. (1982) Bark beetle enantiomeric chemoreception: greater sensitivity to allomone than pheromone. Naturwissenschaften 69: 243–245.CrossRefGoogle Scholar
  170. Lindelöw, A. and Weslien, J. (1986) Sex-specific emergence of Ips typographus L. (Coleoptera: Scolytidae) and flight behavior in response to pheromone sources following hibernation. Can. Entomol. 118: 59–67.CrossRefGoogle Scholar
  171. Lindelöw, A., Risberg, B., and Sjodin, K. (1992) Attraction during flight of scolytids and other bark and wood-dwelling beetles to volatiles from fresh and stored spruce wood. Can. J. For. Res. 22: 224–228.CrossRefGoogle Scholar
  172. Lindgren, B. S., Borden, J. H., Chong, L., Friskie, L. M., and Orr, D. B. (1983) Factors influencing the efficiency of pheromone baited traps for three species of ambrosia beetles (Coleoptera: Scolytidae). Can. Entomol. 115: 303–314.CrossRefGoogle Scholar
  173. Lindström, M., Nonn, T., Birgersson, G., and Schlyter, F. (1989) Variation of enantiomeric composition of α-pinene in Norway spruce, Picea abies, and its influence on production of verbenol isomers by Ips typographus in the field. J. Chem. Ecol. 15: 541–548.CrossRefGoogle Scholar
  174. Lorio, Jr., P. L. (1986) Growth and differentiation balance: A basis for understanding southern pine beetle Dendroctonus frontalis and tree interactions. For. Ecol. Manage. 14: 259–274.CrossRefGoogle Scholar
  175. Löyttyniemi, K., Heliovaara, K., and Repo, S. (1988) No evidence of a population pheromone in Tomicus piniperda (Coleoptera: Scolytidae): A field experiment. Ann. Entomol. Fenn. 54: 93–95.Google Scholar
  176. Magema, N., Gaspar, C, and Séverin, M. (1982) Efficacité de l’éthanol dans le piégeage du scolyte Trypodendron lineatum (Olivier, 1795)(Coleoptera, Scolytidae) et role des constituants terpeniques de l’epicea. Ann. Soc. R. Zool. Belg. 112: 49–60.Google Scholar
  177. Mathre, D.E. (1964) Pathenogenicity of Ceratocystis ips and Ceratocystis minor to Pinus ponderosa. Contrib. Boyce Thompson Inst. 22: 363–388.Google Scholar
  178. McLean, J. A. and Borden, J. H. (1977) Attack by Gnathotrichus sulcatus (Coleoptera: Scolytidae) on stumps and felled trees baited with sulcatol and ethanol. Can. Entomol. 109: 675–686.CrossRefGoogle Scholar
  179. McMullen, L. H. and Atkins, M. D. (1962) On the flight and host selection of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). Can. Entomol. 94: 1309–1325.CrossRefGoogle Scholar
  180. Meyer, H. J. and Norris, D. M. (1967a) Behavioral responses by Scolytus multistriatus (Coleoptera: Scolytidae) to host- (Ulmus) and beetle-associated chemotactic stimuli. Ann. Entomol. Soc. Am. 60: 642–646.Google Scholar
  181. Meyer, H. J. and Norris, D. M. (1967b) Vanillin and syringaldehyde as attractants for Scolytus multistriatus (Coleoptera: Scolytidae). Ann. Entomol. Soc. Am. 60: 858–859.Google Scholar
  182. Meyer, H. J. and Norris, D. M. (1974) Lignin intermediates and simple phenolics as feeding stimulants for Scolytus multistriatus. J. Insect Physiol. 20: 2015–2021.PubMedCrossRefGoogle Scholar
  183. Miller, D. R. and Borden, J. H. (1990) β-Phellandrene: Kairomone for pine engraver Ips pini (Say)(Coleoptera: Scolytidae). J. Chem. Ecol. 16: 2519–2531.CrossRefGoogle Scholar
  184. Miller, D. R., Borden, J. H., and Slessor, K. N. (1989) Interpopulation and intrapopulation variation of the pheromone ipsdienol produced by male pine engravers Ips pini Say (Coleoptera: Scolytidae). J. Chem. Ecol. 15: 233–248.CrossRefGoogle Scholar
  185. Miller, J. R. and Strickler, K. L. (1984) Finding and accepting host plants. In: Chemical Ecology of Insects (Bell, W. J. and Cardé, R. T., eds.) pp. 127–157. Chapman and Hall, London.Google Scholar
  186. Mirov, N.T. (1961) Composition of gum turpentines of pines. USD A For. Ser. Tech. Bull. No. 1239, Washington, D.C.Google Scholar
  187. Moeck, H. A. (1970) Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). Can. Entomol. 102: 985–994.CrossRefGoogle Scholar
  188. Moeck, H. A. (1981) Ethanol induces attack on trees by spruce beetles Dendroctonus rufipennis (Coleoptera: Scolytidae). Can. Entomol. 113: 939–942.CrossRefGoogle Scholar
  189. Moeck, H. A., Wood, D. L., and Lindahl, Jr., K. Q. (1981) Host selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponder osa, with special emphasis on the western pine beetle, Dendroctonus brevicomis. J. Chem. Ecol. 7: 49–83.CrossRefGoogle Scholar
  190. Montgomery, M. E. and Wargo, P. M. (1983) Ethanol and other host derived volatiles as attractants to beetles that bore into hardwoods. J. Chem. Ecol. 9: 181–190.CrossRefGoogle Scholar
  191. Moser, J. C. and Browne, L. E. (1978) A nondestructive trap for Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). J. Chem. Ecol. 4: 1–7.CrossRefGoogle Scholar
  192. Mustaparta, H. (1984) Olfaction. In: Chemical Ecology of Insects (Bell, W. J. and Cardé, R. T., eds.) pp. 37–70. Chapman and Hall, London.Google Scholar
  193. Mustaparta, H., Angst, M. E., and Lanier, G. N. (1980) Receptor discrimination of enantiomers of the aggregation pheromone ipsdienol, in two species of Ips. J. Chem. Ecol. 6: 689–701.CrossRefGoogle Scholar
  194. Mustaparta, H., Tommerås, B. A., Baeckström, P., Bakke, J. M., and Ohloff, G. (1984) Ipsdienol-specific receptor cells in bark beetles: Structure activity relationships of various analogs and the deuterium-labeled ipsdienol. J. Comp. Physiol. A. 154: 591–596.CrossRefGoogle Scholar
  195. Namkoong, G., Roberds, J. H., Nunnally, L. B., and Thomas, H. A. (1979) Isozyme variations in populations of southern pine beetles. For. Sci. 25: 197–203.Google Scholar
  196. Nijholt, W. W. and Shönherr, J. (1976) Chemical response behavior of scolytids in West Germany and western Canada. Can. For. Serv. Bi-mon. Res. Notes 32: 31–32.Google Scholar
  197. Paine, T. D. (1984) Influence of the mycangial fungi of the western pine beetle Dendroctonus brevicomis on water conduction through ponderosa pine seedlings. Can. J. Bot. 62: 556–558.CrossRefGoogle Scholar
  198. Paine, T. D. and Stephen, F. M. (1987) Fungi associated with the southern pine beetle: Avoidance of induced defense response in loblolly pine. Oecologia 74: 377–379.CrossRefGoogle Scholar
  199. Paine, T. D. and Stephen, F. M. (1988) Induced defenses of loblolly pine, Pinus taeda: Potential impact on Dendroctonus frontalis within-tree mortality. Entomol. Exp. Appl. 46: 39–46.CrossRefGoogle Scholar
  200. Paine, T. D., Stephen, F. M. and Cates, R. G. (1988) Moisture stress, tree suitability, and southern pine beetle population dynamics. In: Integrated Control of Scolytid Bark Beetles (Payne, T. L. and Saarenmaa, H., eds.) pp. 85–103. Virginia Polytechnic Inst, and State Univ., Blacksburg, V.Google Scholar
  201. Paiva, M. R. and Kiesel, K. (1985) Field responses of Trypodendron spp. (Col., Scolytidae) to different concentrations of lineatin and α-pinene. Z. Angew. Entomol. 99: 442–448.CrossRefGoogle Scholar
  202. Payne, T. L. (1979) Pheromone and host odor perception in bark beetles. In: Neurotoxicology of Insecticides and Pheromones (Narahashi, T., ed.) pp. 27–57. Plenum Pub. Co., New York.CrossRefGoogle Scholar
  203. Payne, T. L. and Dickens, J. C. (1976) Adaptation to determine receptor system specificity in insect olfactory communication. J. Insect Physiol. 22: 1569–1572.CrossRefGoogle Scholar
  204. Payne, T. L., Moeck, H. A., Willson, C. D., Coulson, R. N., and Humphreys, W. J. (1973) Bark beetle olfaction -II. Antennal morphology of sixteen species of Scolytidae (Coleoptera). Int. J. Insect Mor. Emb. 2: 177–192.CrossRefGoogle Scholar
  205. Payne, T. L., Richerson, J. V., Dickens, J. C, West, J. R., Mori, K., Berisford, C. W., Hedden, R. L., Vité, J. P., and Blum, M. S. (1982) Southern pine beetle: olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone fron-talin. J. Chem. Ecol. 8: 873–881.CrossRefGoogle Scholar
  206. Payne, T. L., Klimetzek, D., Kohnle, U. and Mori, K. (1983) Electrophysiological and field responses of Trypodendron-spp to enantiomers of lineatin. Z. Angew. Entomol. 95: 272–276.CrossRefGoogle Scholar
  207. Pearce, G. T., Gore, W. E., Silverstein, R. M., Peacock, J. W., Cuthbert, R. A., Lanier, G. N., and Simeone, J. B. (1975) Chemical attractants for the smaller European elm bark beetle, Scolytus multistriatus (Coleoptera: Scolytidae). J. Chem. Ecol. 1: 115–124.CrossRefGoogle Scholar
  208. Phillips, T. W. (1990) Responses of Hylastes salebrosus to turpentine, ethanol and pheromones of Dendroctonus (Coleoptera: Scolytidae). Fla. Entomol. 73: 286–292.CrossRefGoogle Scholar
  209. Phillips, T. W., Wilkening, A. J., Atkinson, T. H., Nation, J. L., Wilkinson, R. C. and Foltz, J. L. (1988) Synergism of turpentine and ethanol as attractants for certain pine-infesting beetles (Coleoptera). Environ. Entomol. 17: 456–462.Google Scholar
  210. Pierce, Jr., H. D., Conn, J. E., Oehlschlager, A. C, and Borden, J. H. (1987) Monoter-pene metabolism in female mountain pine beetles, Dendroctonus ponderosae Hopkins attacking ponderosa pine. J. Chem. Ecol. 13: 1455–1480.CrossRefGoogle Scholar
  211. Pitman, G. B. (1969) Pheromone response in pine bark beetles: Influence of host volatiles. Science 166: 905–906.PubMedCrossRefGoogle Scholar
  212. Pitman, G. B. and Vité, J. P. (1969) Aggregation behavior of Dendroctonus ponderosae (Coleoptera: Scolytidae) in response to chemical messengers. Can. Entomol. 101: 143–149.CrossRefGoogle Scholar
  213. Pitman, G. B. and Vité, J. P. (1971) Predator-prey response to western pine beetle attractants. J. Econ. Entomol. 64: 402–404.Google Scholar
  214. Pitman, G. B. and Vité, J. P. (1974) Biosynthesis of methylcyclohexenone by male Douglas-fir beetle. Environ. Entomol. 3: 886–887.Google Scholar
  215. Pitman, G. B., Renwick, J. A. A., and Vité, J. P. (1966) Studies on the pheromone of Ips confusus (LeConte). IV. Isolation of the attractive substance by gas-liquid chromatography. Contrib. Boyce Thompson Inst. 23: 243–250.Google Scholar
  216. Pitman, G. B., Hedden, R. L., and Gara, R. I. (1975) Synergistic effects of ethyl alcohol on the aggregation of Dendroctonus pseudotsugae (Col., Scolytidae) in response to pheromones. Z. Angew. Entomol. 78: 203–208.CrossRefGoogle Scholar
  217. Raffa, K. F. and Berryman, A. A. (1979) Flight responses and host selection by bark beetles. In: Dispersal of Forest Insects: Evaluation, Theory and Management Implications (Berryman, A. A. and Safranyik, L., eds.) pp. 213–233. Proc. second IUFRO conf., Canad. and USDA Forest Service, Washington State Univ., Pullman, W.Google Scholar
  218. Raffa, K. F. and Berryman, A. A. (1982a) Accumulation of monoterpenes and associated volatiles following fungal inoculation of grand fir with a fungus vectored by the fir engraver Scolytus ventralis (Coleoptera: Scolytidae). Can. Entomol. 114: 797–810.CrossRefGoogle Scholar
  219. Raffa, K. F. and Berryman, A. A. (1982b) Gustatory cues in the orientation of Dendroctonus ponderosae (Coleoptera: Scolytidae) to host trees. Can. Entomol. 114: 97–104.CrossRefGoogle Scholar
  220. Raffa, K. F. and Berryman, A. A. (1982c) Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated microorganisms. Environ. Entomol. 11: 486–492.Google Scholar
  221. Raffa, K. F. and Berryman, A. A. (1983) Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Entomol. 115: 723–734.CrossRefGoogle Scholar
  222. Raffa, K. F. and Berryman, A. A. (1987) Interacting selective pressures in conifer-bark beetle systems: A basis for reciprocal adaptations? Am. Nat. 129: 234–262.CrossRefGoogle Scholar
  223. Raffa, K. F., Berryman, A. A., Simasko, J., Teal, W., and Wong, B. L. (1985) Effects of grand fir, Abies grandis monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae) and its symbiotic fungus. Environ. Entomol. 14: 552–556.Google Scholar
  224. Raffa, K. F., Phillips, T. W., and Salom, S. M. (1993) Strategies and mechanisms of host colonization by bark beetles. In: Beetle-Pathogen Interactions in Conifer Forests (Schowalter, T. D. and Filip, G. M., eds.) pp. 103–128. Academic Press, London.Google Scholar
  225. Ramisch, H. (1986) Host location by Trypodendron domesticum and Trypodendron lineatum (Coleoptera: Scolytidae). Z. Angew. Zool. 73: 159–198.Google Scholar
  226. Reed, A. N., Hanover, J. W., and Fumiss, M. M. (1986) Douglas-fir and western larch: chemical and physical properties in relation to Douglas-fir bark beetle attack. Tree Physiol. 1: 277–288.PubMedGoogle Scholar
  227. Reid, R. W., Whitney, H. S. and Watson, J. A. (1967) Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 45: 1115–1126.CrossRefGoogle Scholar
  228. Renwick, J. A. A. and Vité, J. P. (1968) Isolation of the population aggregating pheromone of the southern pine beetle. Contrib. Boyce Thompson Inst. 24: 65–68.Google Scholar
  229. Renwick, J. A. A. and Vité, J. P. (1969) Bark beetle attractants: Mechanisms of colonization by Dendroctonus frontalis. Nature 224: 1222–1223.CrossRefGoogle Scholar
  230. Renwick, J. A. A. and Vité, J. P. (1970) Systems of chemical communication in Dendroctonus. Contrib. Boyce Thompson Inst. 24: 283–292.Google Scholar
  231. Renwick, J. A. A., Hughes, P. R., and Krull, I. S. (1976) Selective production of cis-and trans-verbenol from (−)-and (+)-α-pinene by a bark beetle. Science 191: 199–201.PubMedCrossRefGoogle Scholar
  232. Rice, R. E. (1969) Response of some predators and parasites of Ips confusus (LeC.)(Coleoptera: Scolytidae) to olfactory attractants. Contrib. Boyce Thompson Inst. 24: 189–194.Google Scholar
  233. Richeson, J. S., Wilkinson, R. C, and Nation, J. L. (1970) Development of Ips calligraphus on foliage based diets. J. Econ. Entomol. 63: 1797–1799.Google Scholar
  234. Rose, W. F., Billings, R. F. and Vité, J. P. (1981) Southern pine bark beetles Ips calligraphus: Evaluation of nonsticky pheromone trap designs for survey and research. Southwest. Entomol. 6: 1–9.Google Scholar
  235. Rudinsky, J. A. (1966) Host selection and invasion by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, in coastal Douglas-fir forests. Can. Entomol. 98: 98–111.CrossRefGoogle Scholar
  236. Rudinsky, J. A., Novak, V., and Svihra, P. (1971) Attraction of the bark beetle Ips typographus L. to terpenes and a male-produced pheromone. Z. Angew. Entomol. 67: 179–188.CrossRefGoogle Scholar
  237. Rudinsky, J. A., Furniss, M. M., Kline, L. N., and Schmitz, R. F. (1972) Attraction and repression of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) by three synthetic pheromones in traps in Oregon and Idaho. Can. Entomol. 104: 815–822.CrossRefGoogle Scholar
  238. Rudinsky, J. A., Morgan, M. E., Libbey, L. M., and Putnam, T. B. (1974) Antiaggregative-rivalry pheromone of the mountain pine beetle, and a new arrestant of the southern pine beetle. Environ. Entomol. 3: 90–98.Google Scholar
  239. Rudinsky, J. A., Ryker, L. C., Michael, R. R., Libbey, L. M., and Morgan, M. E. (1976) Sound production in Scolytidae: Female sonic stimulus of male pheromone release in two Dendroctonus beetles. J. Insect Physiol. 22: 1675–1681.CrossRefGoogle Scholar
  240. Salom, S. M. and Mclean, J. A. (1989) Influence of wind on the spring flight of Trypodendron lineatum Olivier (Coleoptera: Scolytidae) in a second-growth coniferous forest. Can. Entomol. 121: 109–120.CrossRefGoogle Scholar
  241. Salom, S. M. and Mclean, J. A. (1991) Environmental influences on dispersal of Trypodendron lineatum (Coleoptera: Scolytidae). Environ. Entomol. 20: 565–576.Google Scholar
  242. Salonen, K. (1973) On the life cycle, especially on the reproduction biology of Blastophagus piniperda L. (Col., Scolytidae). Acta For. Fenn. 127: 1–72.Google Scholar
  243. Schlyter, F. and Löfqvist, J. (1986) Response of walking spruce bark beetles Ips typographus to pheromone produced in different attack phases. Entomol. exp. appl. 41: 219–230.CrossRefGoogle Scholar
  244. Schlyter, F., Birgersson, G., Byers, J. A., Löfqvist, J., and Bergström, G. (1987a) Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates. J. Chem. Ecol. 13: 701–716.CrossRefGoogle Scholar
  245. Schlyter, F., Byers, J. A., and Löfqvist, J. A. (1987b) Attraction to pheromone sources of different quantity, quality, and spacing: Density-regulation mechanisms in bark beetle Ips typographus. J. Chem. Ecol. 13: 1503–1523.CrossRefGoogle Scholar
  246. Schlyter, F., Löfqvist, J., and Byers, J. A. (1987c) Behavioural sequence in the attraction of the bark beetle Ips typographus to pheromone sources. Physiol. Entomol. 12: 185–196.CrossRefGoogle Scholar
  247. Schlyter, F., Birgersson, G., Byers, J. A. and Bakke, A. (1992) The aggregation pheromone of Ips duplicatus and its role in competitive interactions with I. typographus (Coleoptera: Scolytidae). Chemoecology 3: 103–112.CrossRefGoogle Scholar
  248. Schroeder, L. M. (1987) Attraction of the bark beetle Tomicus piniperda to Scots pine trees in relation to tree vigor and attack density. Entomol. exp. appl. 44: 53–58.CrossRefGoogle Scholar
  249. Schroeder, L. M. (1988) Attraction of the bark beetle Tomicus piniperda and some other bark- and wood-living beetles to the host volatiles α-pinene and ethanol. Entomol. exp. appl. 46: 203–210.CrossRefGoogle Scholar
  250. Schroeder, L. M. (1990) Duct resin flow in scots pine in relation to the attack of the bark beetle Tomicus piniperda L. (Coleoptera: Scolytidae). J. Appl. Entomol. 109: 105–112.CrossRefGoogle Scholar
  251. Schroeder, L. M. (1992) Olfactory recognition of nonhosts aspen and birch by conifer bark beetles Tomicus piniperda and Hylurgops palliatus. J. Chem. Ecol. 18: 1583–1593.CrossRefGoogle Scholar
  252. Schroeder, L. M. and Eidmann, H. H. (1987) Gallery initiation by Tomicus piniperda (Coleoptera: Scolytidae) on Scots pine trees baited with host volatiles. J. Chem. Ecol. 13: 1591–1599.CrossRefGoogle Scholar
  253. Schroeder, L. M. and Lindelöw, A. (1989) Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol. J. Chem. Ecol. 15: 807–818.CrossRefGoogle Scholar
  254. Schuh, B. A. and Benjamin, D. M. (1984) The chemical feeding ecology of Neodipron dubiosus Schedl, N. rugifrons Midd., and N. lecontei (Fitch) on Jack pine (Pinus banksiana Lamb.). J. Chem. Ecol. 10: 1071–1079.CrossRefGoogle Scholar
  255. Scriber, J. M. (1984) Host-plant suitability. In: Chemical Ecology of Insects (Bell, W. J. and Cardé, R. T., eds.) pp. 159–202. Chapman and Hall, London.Google Scholar
  256. Shain, L. (1967) Resistance of sapwood in stems of loblolly pine to infection by Fomes annosus. Phytopathology 57: 1034–1045.Google Scholar
  257. Shrimpton, D. M. (1973) Extractives associated with the wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Can. J. Bot. 51: 527–534.CrossRefGoogle Scholar
  258. Silverstein, R. M., Rodin, J. O., and Wood, D. L. (1966) Sex attractants in frass produced by male Ips confusus in ponderosae pine. Science 154: 509–510.CrossRefGoogle Scholar
  259. Silverstein, R. M., Rodin, J. O., and Wood, D. L. (1967) Methodology for isolation and identification of insect pheromones with reference to studies on California five-spined Ips. J. Econ. Entomol. 60: 944–949.Google Scholar
  260. Silverstein, R. M., Brownlee, R. G., Bellas, T. E., Wood, D. L., and Browne, L. E. (1968) Brevicomin: Principal sex attractant in the frass of the female western pine beetle. Science 159: 889–891.PubMedCrossRefGoogle Scholar
  261. Smith, L. V. and Zavarin, E. (1960) Free mono- and oligosaccharides of some California conifers. Tech. Assoc. Pulp Pap. Ind. 43: 218–221.Google Scholar
  262. Smith, M. T., Busch, G. R., Payne, T. L. and Dickens, J. C. (1988) Antennal olfactory responsiveness of three sympatric Ips species [Ips avulsus (Eichhoff), Ips calligraphus (Germar), Ips grandicollis (Eichhoff)], to intra- and interspecific behavioral chemicals. J. Chem. Ecol. 14: 1289–1304.CrossRefGoogle Scholar
  263. Smith, R. H. (1961) The fumigant toxicity of three pine resins to Dendroctonus brevicomis and D. jeffrei. J. Econ. Entomol. 54: 365–369.Google Scholar
  264. Smith, R. H. (1964) Variation in the monoterpenes of Pinus ponderosa Laws. Science 143: 1337–1338.PubMedCrossRefGoogle Scholar
  265. Smith, R. H. (1965a) A physiological difference among beetles of Dendroctonus ponderosae (=D. monticolae) and D. ponderosae (=D. jeffreyi). Ann. Entomol. Soc. Am. 58: 440–442.Google Scholar
  266. Smith, R. H. (1965b) Effect of monoterpene vapors on the western pine beetle. J. Econ. Entomol. 58: 509–510.Google Scholar
  267. Smith, R. H. (1966) The monoterpene composition of Pinus ponderosa xylem resin and of Dendroctonus brevicomis pitch tubes. For. Sci. 12: 63–68.Google Scholar
  268. Smith, R. H. (1967) Variations in the monoterpene composition of the wood resin of Jeffrey, Washoe, Coulter and lodgepole pines. For. Sci. 13: 246–252.Google Scholar
  269. Smith, R. H. (1968) Intratree measurements of the monoterpene composition of ponderosa pine xylem resin. For. Sci. 14: 418–419.Google Scholar
  270. Smith R. H. (1969) Local and regional variation in the monoterpenes of ponderosa pine xylem resin. USDA For. Ser. Res. Pap. PSW-56 p. 1–10, Berkeley, CA.Google Scholar
  271. Städler, E. (1984) Contact chemoreception. In: Chemical Ecology of Insects (Bell, W. J. and Cardé, R. T., eds.) pp. 3–35. Chapman and Hall, London.Google Scholar
  272. Stephen, F. M. and Paine, T. D. (1985) Seasonal patterns of host tree resistance to fungal associates of the southern pine beetle. Z. Angew. Entomol. 99: 113–122.CrossRefGoogle Scholar
  273. Stock, M. W. and Amman, G. D. (1980) Genetic differentiation among mountain pine beetle populations from lodgepole pine and ponderosa pine in northeast Utah. Ann. Entomol. Soc. Am. 73: 472–478.Google Scholar
  274. Stock, M. W., Pitman, G. B., and Guenther, J. D. (1979) Genetic differences between Douglas-fir beetles (Dendroctonus pseudotsugae) from Idaho and coastal Oregon. Ann. Entomol. Soc. Am. 72: 394–397.Google Scholar
  275. Struble, G. R. 1957. The fir engraver, a serious enemy of western true firs. U.S. Dep. Agric. Prod. Res. Rep. II., Washington, D. C.Google Scholar
  276. Sturgeon, K. B. (1979) Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution 33: 803–814.CrossRefGoogle Scholar
  277. Sturgeon, K. B. and Mitton, J. B. (1986) Allozyme and morphological differentiation of mountain pine beetles Dendroctonus ponderosae (Coleoptera: Scolytidae) associated with host tree. Evolution 40: 290–302.CrossRefGoogle Scholar
  278. Teale, S. A., Webster, F. X., Zhang, A., and Lanier, G. N. (1991) Lanierone: a new pheromone component from Ips pini (Coleoptera: Scolytidae) in New York. J. Chem. Ecol. 17: 1159–1176.CrossRefGoogle Scholar
  279. Thompson, S. N. and Bennett, R. B. (1971) Oxidation of fat during flight of male Douglas-fir beetles, Dendroctonus pseudotsugae. Insect Physiol. 17: 1555–1563.CrossRefGoogle Scholar
  280. Tilden, P. E., Bedard, W. D., Lindahl, Jr., K. Q., and Wood, D. L. (1983) Trapping Dendroctonus brevicomis: Changes in attractant release rate, dispersion of attractant, and silhouette. J. Chem. Ecol. 9: 311–321.CrossRefGoogle Scholar
  281. Tommerås, B. A. (1988) The clerid beetle Thanasimus formicarius is attracted to the pheromone of the ambrosia beetle Trypodendron lineatum. Experientia 44: 536–537.CrossRefGoogle Scholar
  282. Tommerås, B. A., Mustaparta, H., and Gregoire, J. C. (1984) Receptor cells in Ips typographus and Dendroctonus micans specific to pheromones of the reciprocal genus. J. Chem. Ecol. 10: 759–769.CrossRefGoogle Scholar
  283. Tuomi, J. and Augner, M. (1993) Synergistic selection of unpalatability in plants. Evolution 47: 668–672.CrossRefGoogle Scholar
  284. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251–1253.PubMedCrossRefGoogle Scholar
  285. Vanderwel, D. and Oehlschlager, A.C. (1987) Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. In: Pheromone Biochemistry (Prest-wich, G. D. and Blomquist, G. J., eds.) pp. 175–215. Academic Press, New York.Google Scholar
  286. Vité, J. P. (1961) The influence of water supply on oleoresin exudation pressure and resistance to bark beetle attack in Pinus ponderosa. Contrib. Boyce Thompson Inst. 21: 37–66.Google Scholar
  287. Vité, J. P. and Bakke, A. (1979) Synergism between chemical and physical stimuli in host selection by an ambrosia beetle. Naturwissenschaften 66, 528–529.CrossRefGoogle Scholar
  288. Vité, J. P. and Pitman, G. B. (1969) Insect and host odors in the aggregation of the western pine beetle. Can. Entomol. 101: 113–117.CrossRefGoogle Scholar
  289. Vité, J. P., Bakke, A., and Renwick, J. A. A. (1972) Pheromones in Ips (Coleoptera: Scolytidae): Occurrence and production. Can. Entomol. 104: 1967–1975.CrossRefGoogle Scholar
  290. Vité, J. P., Volz, H. A., Paiva, M. R., and Bakke, A. (1986) Semiochemicals in host selection and colonization of pine trees by the pine shoot beetle Tomicus piniperda. Naturwissenschaften 73: 39–40.CrossRefGoogle Scholar
  291. Volz, H.A. (1988) Monoterpenes governing host selection in the bark beetles Hylurgops palliatus and Tomicus piniperda. Entomol. exp. appl. 47: 31–36.CrossRefGoogle Scholar
  292. Wagner, M. R., Benjamin, D. M., Clancy, K. L., and Schuh, B. A. (1983) Influence of diterpene resin acids on feeding and growth of larch sawfly, Pristphora erichsonii (Hartig). J. Chem. Ecol. 9: 119–127.CrossRefGoogle Scholar
  293. Webb, J. L. (1906) The western pine destroying bark beetle. U.S. Dep. Agric. Bur. Entomol. Bul. 58, Pt. II, 30 pp., Washington, D.C.Google Scholar
  294. Webb, J. W. and Franklin, R. T. (1978) Influence of phloem moisture on brood development of the southern pine beetle (Coleoptera: Scolytidae). Environ. Entomol. 7: 405–410.Google Scholar
  295. White, J. D. (1981) A bioassay for tunneling responses of southern pine beetles to host extractives. J. Georgia Entomol. Soc. 16: 484–492.Google Scholar
  296. Whitehead, A. T. (1981) Ultrastructure of sensilla of the female mountain pine beetle Dendroctonus ponderosae (Coleoptera: Scolytidae). Int. J. Insect Morphol. Embryol. 10: 19–28.CrossRefGoogle Scholar
  297. Whitman, D. W. and Eller, F. (1990) Parasitic wasps orient to green leaf volatiles. Chemoecology 1: 69–75.CrossRefGoogle Scholar
  298. Whitney, H. S. (1982) Relationships between bark beetles and symbiotic organisms. In: Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology (Mitton, J. B. and Sturgeon, K. B., eds.) pp. 183–211. Univ. Texas Press, Austin, Tex.Google Scholar
  299. Whitney, H. S. and Spanier, O.J. (1982) An improved method for rearing axenic mountain pine beetles Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Entomol. 114: 1095–1100.CrossRefGoogle Scholar
  300. Whittaker, R. H. (1970) The biochemical ecology of higher plants. In; Chemical Ecology (Sondheimer, E. and Simeone, J. B., eds.) pp 43–70. Academic Press, New York.Google Scholar
  301. Williamson, D. L. (1971) Olfactory discernment of prey by Medetera bistriata (Diptera: Dolichopodidae). Ann. Entomol. Soc. Am. 64: 586–589.Google Scholar
  302. Witanachchi, J. P. and Morgan, F. D. (1981) Behavior of the bark beetle, Ips grandicollis, during host selection. Physiol. Entomol. 6: 219–223.CrossRefGoogle Scholar
  303. Wollerman, E. H. (1979) Dispersion and invasion by Scolytus multistriatus in response to pheromone. Environ. Entomol. 8: 1–5.Google Scholar
  304. Wong, B. L. and Berryman, A. A. (1977) Host resistance to the fir engraver beetle. 3. Lesion development and containment of infection by resistant Abies grandis inoculated with Trichosporium symbioticum. Can. J. Bot. 55: 2358–2365.CrossRefGoogle Scholar
  305. Wood, D. L. (1962) Experiments on the interrelationship between oleoresin exudation pressure in Pinus ponderosa and attack by Ips confusus (LeC.)(Coleoptera: Scolytidae). Can. Entomol. 94: 473–477.CrossRefGoogle Scholar
  306. Wood, D. L. (1982) The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu. Rev. Entomol. 27: 411–446.CrossRefGoogle Scholar
  307. Wood, D. L. and Vité, J. P. (1961) Studies on the host selection behavior of Ips confusus (LeConte)(Coleoptera: Scolytidae) attacking Pinus ponderosa. Contrib. Boyce Thompson Inst. 21: 79–96.Google Scholar
  308. Wood, D. L., Browne, L. E., Bedard, W. D., Tilden, P. E., Silverstein R. M., and Rodin, J. O. (1968) Response of Ips confusus to synthetic sex pheromones in nature. Science 159: 1373–1374.PubMedCrossRefGoogle Scholar
  309. Wood, S. L. (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, Brigham Young Univ., Provo, Utah.Google Scholar
  310. Wright, L. E., Berryman, A. A., and Gurusiddaiah, S. (1979) Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). 4. Effect of defoliation on wound monoterpenes and inner bark carbohydrate concentrations. Can. Entomol. 111: 1255–1261.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • John A. Byers

There are no affiliations available

Personalised recommendations