The Role of Chemo-orientation in Search Behavior

  • William J. Bell
  • Larry R. Kipp
  • Robert D. Collins


Chemo-orientation is a diverse topic, intersecting the disciplines of fluid dynamics, chemistry, physiology, cell biology, genetics, behavior, ecology, and evolution. Chemo-orientation is important for such diverse life processes as sperm orientation in fertilization, white blood cell orientation preceding phagocytosis in the autoimmune response, and locating resources such as food, mates, and oviposition sites. In this chapter, with a few exceptions, we limit the discussion to chemo-orientation processes involved in mate finding by insects. Not all insect mate-finding strategies require chemo-orientation processes, of course, and even in those instances where chemo-orientation is involved, insects often employ other sensory modalities (sequentially or contemporaneously) when locating mates.


Gypsy Moth Male Moth Pheromone Production Pheromone Concentration Synthetic Pheromone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, R.P. and Wood, D.L. (1989) Olfactory orientation responses by walking female Ips paraconfusus bark beetles II. In an anemotaxis assay. J. Chem. Ecol. 15: 1147–1159.Google Scholar
  2. Alexander, R.D. (1962) Evolutionary change in cricket acoustical communication. Evolution 16: 443–467.Google Scholar
  3. Bailey, J.B., McDonough, L.M., and Hoffmann, M.P. (1986) Western avocado leafroller, Amorbia cuneana (Walsingham), (Lepidoptera: Tortricidae), discovery of populations utilizing different ratios of sex pheromone components. J. Chem. Ecol. 12: 1239–1245.Google Scholar
  4. Baker, R.R. (1978) The Evolutionary Ecology of Animal Migration, Hodder & Stoughton, London.Google Scholar
  5. Baker, T.C. (1985) Chemical control of behaviour. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 9 (Kerkut, G.A. and Gilbert, L.I., eds.) pp. 621–672. Pergamon Press, New York.Google Scholar
  6. Baker, T.C. (1989) Sex pheromone communication in the Lepidoptera: New research progress. Experientia 45: 248–262.Google Scholar
  7. Baker, T.C. and Cardé, R.T. (1979) Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha molesta (Busck). J. Insect Physiol. 25: 943–950.Google Scholar
  8. Baker, T.C. and Haynes, K.F. (1987) Manoeuvres used by flying male oriental fruit moths to relocate a sex pheromone plume in an experimentally shifted wind-field. Physiol. Entomol. 12: 263–279.Google Scholar
  9. Baker, T.C. and Haynes, K.F. (1989) Field and laboratory electroantennographic measurements of pheromone plume structure correlate with oriental fruit moth behavior. Physiol. Entomol. 14: 1–12.Google Scholar
  10. Baker, T.C, Willis, M.A., and Phelan, P.L. (1984) Optomotor anemotaxis polarizes self-steered zigzagging in flying moths. Physiol. Entomol. 9: 365–376.Google Scholar
  11. Baker, T.C, Willis, M.A., Haynes, K.F., and Phelan, P.L. (1985) A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10: 257–265.Google Scholar
  12. Baker, T.C, Gaston, L.K., Pope, M.M., Kuenen, L.P.S., and Vetter, R.S. (1981) A high-efficiency collection device for quantifying sex pheromone volatilized from female glands and synthetic sources. J. Chem. Ecol. 7: 961–968.Google Scholar
  13. Bell, W.J. (1990) Searching behavior patterns of insects. Annu. Rev. Entomol. 35: 447–467.Google Scholar
  14. Bell, W.J. (1991) Searching Behaviour, The Behavioural Ecology of Finding Resources. Chapman & Hall, London.Google Scholar
  15. Bell, W.J. and Kramer, E. (1979) Search and anemotaxis in cockroaches. J. Insect Physiol. 25: 631–640.Google Scholar
  16. Bell, W.J. and Kramer, E. (1980) Sex pheromone stimulated orientation responses by the American cockroach on a servo-sphere apparatus. J. Chem. Ecol. 6: 287–295.Google Scholar
  17. Bell, W.J. and Tobin, T.R. (1981) Orientation to sex pheromone in the American cockroach: analysis of orientation mechanisms. J. Insect Physiol. 27: 501–508.Google Scholar
  18. Bell, W.J., Tobin T.R., and Sorensen, K.A. (1989) Orientation responses of individual larder beetles, Dermestes ater, to directional shifts in wind stimuli. J. Insect Behav. 2: 787–801.Google Scholar
  19. Bell, W.J., Vuturo, S.B., Silverman, J.M., Burgstahler, A.W., and Weigel, L.O. (1978) Factors involved in the responses of male German cockroaches to synthetic sex pheromone. J. Chem. Ecol. 4: 495–501.Google Scholar
  20. Bengtsson, B.O. and Löfstedt, C. (1990) No evidence for selection in a pheromonally polymorphic moth population. Am. Nat. 136: 722–726.Google Scholar
  21. Beroza, M. (1960) Insect attractants are taking hold. Acric. Chem. 15: 37–40.Google Scholar
  22. Bierl, B.A., Beroza, M., Staten, R.T., Sonnet, P.E., and Adler, V.E. (1974) The pink bollworm sex attractant. J. Econ. Entomol. 67: 211–216.PubMedGoogle Scholar
  23. Bjostad, L.B., Linn, C.E., Jr., Roelofs, W.L., and Du, J.-W. (1985) Identification of new sex pheromones in Trichoplusia ni and Argyrotaenia velutinana, predicted from biosynthetic precursors. In: Semiochemistry, Flavors and Pheromones (Acree, T.E., and Soderlund, D.M., eds.) pp. 223–237. Walter de Gruyter and Co., Berlin, New York.Google Scholar
  24. Boake, C.R. (1989) Repeatability: its role in evolutionary studies of mating behavior. Evol. Ecol. 3: 173–182.Google Scholar
  25. Boake, C.R.B. (1985) Genetic consequences of mate choice: a quantitative genetic method for testing sexual selection theory. Science 221: 1061–1063.Google Scholar
  26. Boake, C.R.B, and Wade, M.J. (1984) Populations of the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) differ in their sensitivity to aggregation pheromones. Environ. Entomol. 13: 1182–1183.Google Scholar
  27. Brady, J. (1970) Characteristics of spontaneous activity in tsetse flies. Nature 228: 286–287.PubMedGoogle Scholar
  28. Burseil, E. (1984) Observations on the orientation of tsetse flies (Glossina pallidipes) to wind-borne odours. Physiol. Entomol. 9: 133–137.Google Scholar
  29. Bursell, E. and Taylor, P. (1980) An energy budget for Glossina (Diptera, Glossinidae). Bull. Entomol. Res. 70: 187–196.Google Scholar
  30. Cardé, R.T. (1976) Utilization of pheromones in the population management of moth pests. Environ. Health Persp. 14: 133–144.Google Scholar
  31. Cardé, R.T. (1981a) Disruption of long-distance pheromone communication in the Oriental fruit moth, camouflaging the natural aerial trails from females. In: Management of Insect Pests with Semiochemicals (Mitchell, E.R., ed.) pp. 385–401. Plenum Press, New York.Google Scholar
  32. Cardé, R.T. (1981b) Precopulatory sexual behavior of the adult gypsy moth. In: The Gypsy Moth, Research Toward Integrated Pest Management (Doane, C.C. and McManus, M.L., eds.) pp. 572–587. U.S. Department of Agriculture, Washington, D.C.Google Scholar
  33. Cardé, R.T. and Baker, T.C. (1984) Sexual communication with pheromones. In: Chemical Ecology of Insects (Bell, W.J and Cardé, R.T., eds.) pp. 355–377. Chapman & Hall, London.Google Scholar
  34. Cardé, R.T. and Charlton, R.E. (1984) Olfactory sexual communication in Lepidoptera, strategy, sensitivity and selectivity. In: Insect Communication (Lewis, T., ed.) pp. 241–265. Academic Press, New York.Google Scholar
  35. Cardé, R.T. and Hagaman, T.E. (1979) Behavioral responses of the gypsy moth in a wind tunnel to air-borne enantiomers of disparlure. Environ. Entomol. 8: 475–484.Google Scholar
  36. Cardé, R.T. and Hagaman, T.E. (1984) Mate location strategies of gypsy moths in dense populations. J. Chem. Ecol. 10: 25–31.Google Scholar
  37. Cardé, R.T, Baker, T.C, and Roelofs, W.L. (1976) Sex attractant responses of male oriental fruit moths to a range of component ratios: pheromone polymorphism? Experientia 32: 1406–1407.PubMedGoogle Scholar
  38. Cardé, R.T., Comeau, A., Baker, T.C., and Roelofs, W.L. (1975) Moth mating periodicity: temperature regulates the circadian gate. Experientia 31: 46–48.PubMedGoogle Scholar
  39. Cardé, R.T., Kochansky, J., Stimmel, J.F., Wheeler, A.G., Jr., and Roelofs, W.L. (1975) Sex pheromone of the European corn borer (Ostrinia nubilalis): cis- and trans-responding males in Pennsylvania. Environ. Entomol. 4: 413–414.Google Scholar
  40. Cardé, R.T., Roelofs, W.L., Harrison, R.G., Vawter, A.T., Brussard, P.F., Mutuura, A., and Munroe, E. (1978) European corn borer: pheromone polymorphism or sibling species? Science 199: 555–556.PubMedGoogle Scholar
  41. Carmichael, L.M., Moore, J., and Bjostad, L.B. (1993) Parasitism and decreased response to sex pheromones in male Periplaneta americana. J. Insect Behav. 6: 25–32.Google Scholar
  42. Caro, T.M. and Bateson, P. (1986) Organization and ontogeny of alternative tactics. Anim. Behav. 34: 1483–1499.Google Scholar
  43. Castrovillo, P.J. and Cardé, R.T. (1980) Male codling moth (Laspeyresia pomonelld) orientation to visual cues in the presence of pheromone and sequences of courtship behaviors. Ann. Entomol. Soc. Am. 73: 100–105.Google Scholar
  44. Charlton, R. E., and Cardé, R.T. (1990) Orientation of male gypsy moths, Lymantria dispar (L.) to pheromone sources: the role of olfactory and visual cues. J. Insect Behav. 3: 443–469.Google Scholar
  45. Chase, R. and Croll, R.P. (1981) Tenticular function in snail olfactory orientation. J. Comp. Physiol. A 143: 357–362.Google Scholar
  46. Collins, R.D. and Cardé, R.T. (1985) Variation in and heritability of aspects of pheromone production in the pink boll worm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Ann. Entomol. Soc. Amer. 78: 229–234.Google Scholar
  47. Collins, R.D. and Cardé, R.T. (1989a) Heritable variation in pheromone response of the pink boll worm, Pectinophora gossypiella (Lepidoptera: Gelechiidae). J. Chem. Ecol. 15: 2647–2659.Google Scholar
  48. Collins, R.D. and Cardé, R.T. (1989b) Selection for altered pheromone-component ratios in the pink boll worm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). J. Insect Behav. 2: 609–621.Google Scholar
  49. Collins, R.D. and Cardé, R.T. (1989c) Wing fanning as a measure of pheromone response in the male pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae). J. Chem. Ecol. 15: 2635–2645.Google Scholar
  50. Collins, R.D. and Cardé, R.T. (1990) Selection for increased pheromone response in the male pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Behav. Genet. 20: 325–331.PubMedGoogle Scholar
  51. Collins, R.D., Rosenblum, S.L., and Cardé, R.T. (1990) Selection for increased pheromone titre in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Physiol. Entomol. 15: 141–147.Google Scholar
  52. Comeau, A., Cardé, R.T., and Roelofs, W.L. (1976) Relationship of ambient temperatures to diel periodicities of sex attraction in six species of Lepidoptera. Can. Entomol. 108: 415–418.Google Scholar
  53. Corbet, P.G. (1957) The life cycle of the emperor dragonfly Anax Imperator Leach (Odonata: Aeshnidae). J. Anim. Ecol. 26: 1–69.Google Scholar
  54. Corbet, P.G. (1960) Patterns of Orcadian rhythms in insects. Cold Spring Harbor Symp. Quant. Biol. 25: 357–360.PubMedGoogle Scholar
  55. Croft, B.A. and Hoyt, S.C. (1978) Considerations for the use of pyrethroid insecticides for deciduous fruit pest control in the U.S.A. Environ. Entomol. 7: 627–630.Google Scholar
  56. David, C.T. (1986) Mechanisms of directional flight in wind. In: Mechanisms in Insect Olfaction (Payne, T.L., Birch, M.C. and Kennedy, C.E.J., eds.) pp. 49–58. Oxford Press, Oxford, U.K.Google Scholar
  57. David, C.T., Kennedy, J.S., and Ludlow, A.R. (1983) Finding of a sex pheromone source by gypsy moths released in the field. Nature 303: 804–806.Google Scholar
  58. David, C.T., Kennedy, J.S., Ludlow, A.R., Perry, J.N., and Wall, C. (1982) A reappraisal of insect flight towards a distant point source of wind-borne odor. J. Chem. Ecol. 8: 1207–1215.Google Scholar
  59. Daykin, P.N., Kellogg, F.E., and Wright, R.H. (1965) Host-finding and repulsion of Aedes aegypti. Can. Entomol. 97: 239–263.Google Scholar
  60. Dethier, V.G. (1976) The Hungry Fly. Harvard University Press, Cambridge, Mass.Google Scholar
  61. Dindonis, L.L. and Miller, J.R. (1980) Host finding behavior of onion flies, Hylemya antiqua. Environ. Entomol. 9: 769–772.Google Scholar
  62. Doane, C.C. and Brooks, T.W. (1981) Research and development of pheromones for insect control with emphasis on the pink bollworm, Pectinophora gossypiella. In: Management of Insect Pests With Semiochemicals, Concepts and Practice (Mitchell, E.R., ed.) pp. 285–303. Plenum, New York.Google Scholar
  63. Dobesberger, E.J., Lim, K.P., and Raske, A.G. (1983) Spruce budworm moth flight from New Brunswick to Newfoundland. Can. Entomol. 115: 1641–1645.Google Scholar
  64. Domek, K.M., Tumlinson, J.H., and Johnson, D.T. (1990) Responses of male green June beetles Cotinis nitida (L.) (Coleoptera: Scarabaeidae) to female volatiles in a flight tunnel. J. Insect Behav. 3: 271–276.Google Scholar
  65. Douwes, P. 1968. Host selection and host finding in the egg laying female Cidaria albulata (Lep.: Geometridae). Opusc. Entomol. 33: 233–279.Google Scholar
  66. Du, J.-W., Linn, CE., Jr., and Roelofs, W.L. (1984) Artificial selection for new pheromone strains of red banded leafroller moths Argyrotaenia velutinana. Contr. Shanghai Inst. Entomol. 4: 21–30.Google Scholar
  67. Du, J-W, Löfstedt, C, and Löfqvist, J. (1987) Repeatability of pheromone emissions from individual female ermine moths, Yponomeuta padellus and Yponomeuta rorellus. J. Chem. Ecol. 13: 1431–1441.Google Scholar
  68. Dusenbery, D.B. (1992) Sensory Ecology. 558 pp. W.H. Freeman, Salt Lake City, Utah.Google Scholar
  69. Elkinton, J.S. and Cardé, R.T. (1983) Appetitive flight behavior of male gypsy moths (Lepidoptera, Lymantriidae). Environ. Entomol. 12: 1702–1707.Google Scholar
  70. Elkinton, J.S., Schal, C, Ono, T., and Cardé, R.T. (1987) Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12: 399–406.Google Scholar
  71. Falconer, D.S. (1981) Introduction to Quantitative Genetics, 2nd Ed. Longman, London.Google Scholar
  72. Farkas, S.R. and Shorey, H.H. (1972) Chemical trail-following by flying insects: a mechanism for orientation to a distant odor source. Science 178: 67–68.PubMedGoogle Scholar
  73. Flügge, C. (1934) Geruchliche raumorientierung von Drosophila melanogaster. Z. vergl. Physiol. 20: 463–500.Google Scholar
  74. Foster, S.P. and Harris, M.O. (1992) Factors influencing the landing of male Epiphyas postvittana (Walker) exhibiting pheromone-mediated flight (Lepidoptera: Tortricidae). J. Insect Behav. 5: 699–720.Google Scholar
  75. Foster, S.P., Muggleston, S.J., and Ball, R.D. (1991) Behavioral responses of male Epiphyas postvittana (Walker) to sex pheromone-baited delta trap in a wind tunnel. J. Chem. Ecol. 17: 1449–1468.Google Scholar
  76. Gewecke, M. (1974) The antennae of insects as air-current sense organs and their relationship to the control of flight. In: Experimental Analysis of Insect Behaviour (Barton-Browne, L., ed.) pp. 100–113. Springer, Berlin.Google Scholar
  77. Gewecke, M. and Philippen, J. (1978) Control of the horizontal flight-course by aircurrent sense organs in Locusta migratoria. Physiol. Entomol. 3: 43–52.Google Scholar
  78. Glover, T.J. and Roelofs, W.L. (1988) Genetics of lepidopteran sex pheromone systems. ISI Atlas Science, Plants & Animals. 1: 279–282.Google Scholar
  79. Glover, T., Campbell, M., Robbins, P., and Roelofs, W. (1990) Sex-linked control of sex pheromone behavioral responses in European corn borer moths (Ostrinia nubilalis) confirmed with TPI marker gene. Arch. Insect Biochem. Physiol. 15: 61–11.Google Scholar
  80. Glover, T.J., Robbins, P.S., Eckenrode, C.J., and Roelofs, W.L. (1992) Genetic control of voltinism characteristics in European corn borer races assessed with a marker gene. Arch. Insect Biochem. Physiol. 21: 107–117.Google Scholar
  81. Gould, J.L. (1982) Ethology, The Mechanisms and Evolution of Behavior, pp 298–307. Norton, New York.Google Scholar
  82. Grant, G.G., French, D., and Grisdale, D. (1975) Tussock moths, pheromone cross stimulation, calling behavior, and effect of hybridization. Ann. Entomol. Soc. Am. 68: 519–524.Google Scholar
  83. Greenbank, D.O. (1973) The dispersal process of spruce budworm moths. Maritimes For. Res. Can. Info Rep No M-X-39. pp. 1–25. Maritimes Forestry Agency, Fredericton, N.B., Canada.Google Scholar
  84. Greenbank, D.O., Schafer, T.W., and Rainey, R.C. (1980) Spruce budworm moth flight and dispersal, New understanding from canopy observations, radar, and aircraft. Mem. Entomol. Soc. Canada. No. 110.Google Scholar
  85. Grula, J.W. (1978) The inheritance of traits maintaining ethological isolation between two species of Colias butterflies. Ph.D. Dissertation, University of Kansas.Google Scholar
  86. Grula, J.W. and Taylor, O.R., Jr. (1979) The inheritance of pheromone production in the sulphur butterflies Colias eurytheme and C. philodice. Heredity 42: 359–371.Google Scholar
  87. Grula, J.W. and Taylor, O.R., Jr. (1980a) The effect of X-chromosome inheritance on mate-selection behavior in the sulfur butterflies, Colias eurytheme and C. philodice. Evolution 34: 688–695.Google Scholar
  88. Grula, J.W. and Taylor, O.R., Jr. (1980b) Some characteristics of hybrids derived from the sulfur butterflies, Colias eurytheme and C. philodice, phenotypic effects of the X-chromosome. Evolution 34: 673–687.Google Scholar
  89. Hansell, M. (1985) Ethology. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 9 (Kerkut, G.A. and Gilbert, L.I., eds.), pp. 1–94. Pergamon Press, New York.Google Scholar
  90. Hansson, B.S. and Löfstedt, C. (1987) Inheritance of olfactory response to sex pheromone components in Ostrinia nubilalis. Naturwissenschaften 74: 497–499.Google Scholar
  91. Hansson, B.S., Ljungberg, H., Hallberg, E. and Löfstedt, C. (1992) Functional specialization of olfactory glomeruli in a moth. Science 256: 1313–1315.PubMedGoogle Scholar
  92. Hansson, B.S., Toth, M., Löfstedt, C., Szocs, G., Subchev, M. and Löfqvist, J. (1990) Pheromone variation among eastern European and a western Asian population of the turnip moth Agrotis segetum. J. Chem. Ecol. 16: 1611–1622.Google Scholar
  93. Hawkes, C. and Coaker, T.H. (1979) Factors affecting the behavioural responses of the adult cabbage root fly, Delia brassicae. Entomol. exp. appl. 25: 45–58.Google Scholar
  94. Hawkins, W.A. and Rust, M.K. (1977) Factors influencing male sexual response in the American cockroach Periplaneta americana. J. Chem. Ecol. 3: 85–99.Google Scholar
  95. Haynes, K.F. and Baker, T.C. (1988) Potential for evolution of resistance to pheromones: worldwide and local variation in chemical communication system of pink bollworm moth, Pectinophora gossypiella. J. Chem. Ecol. 14: 1547–1560.Google Scholar
  96. Haynes, K.F. and Hunt, R.E. (1990a) A mutation in pheromonal communication system of cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 16: 1249–1257.Google Scholar
  97. Haynes, K.F. and Hunt, R.E. (1990b) Interpopulational variation in emitted pheromone blend of the cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 16: 509–519.Google Scholar
  98. Haynes, K.F., Potter, D.A., and Collins, J.T. (1992) Attraction of male beetles to grubs, evidence for evolution of a sex pheromone from larval odor. J. Chem. Ecol. 18: 1117–1124.Google Scholar
  99. Haynes, K.F, Gaston, L.K., Mistrot Pope, M., and Baker, T.C. (1984) Potential for evolution of resistance to pheromones: Interindividual and interpopulational variation in chemical communication system in pink bollworm moth. J. Chem. Ecol. 10: 1551–1565.Google Scholar
  100. Hummel, H.E., Gaston, L.K., Shorey, H.H., Kaae, R.S., Byrne, K.J., and Silverstein, R.M. (1973) Clarification of the chemical status of the pink bollworm sex pheromone. Science 181: 873–875.PubMedGoogle Scholar
  101. Hurd, H. and Parry, G. (1991) Metacestode-induced depression of the production of, and response to sex pheromone in the intermediate host Tenebrio molitor. J. Invert. Pathol. 58: 82–87.Google Scholar
  102. Jander, R. (1975) Ecological aspects of spatial orientation. Annu. Rev. Ecol. Sys. 6: 171–188.Google Scholar
  103. Kaae, R.S., Shorey, H.H., and Gaston, L.K. (1973) Pheromone concentration as a mechanism for reproductive isolation between two lepidopterous species. Science 179: 487–288.PubMedGoogle Scholar
  104. Kennedy, J.S. (1986) Some current issues in orientation to odour sources. In: Mechanisms in Insect Olfaction (Payne, T.L., Birch, M.C. and Kennedy, C.E.J., eds.) pp. 11–26. Oxford Press, Oxford, U.K.Google Scholar
  105. Kennedy, J.S. and Marsh, D. (1974) Pheromone-regulated anemotaxis in flying moths. Science 184: 999–1001.PubMedGoogle Scholar
  106. Kennedy, J.S., Ludlow, A.R., and Sanders, C.J. (1981) Guidance of flying male moths by wind-borne sex pheromone. Physiol. Entomol. 6: 395–412.Google Scholar
  107. Kipp, L.R. and Lonergan, G.C. (1990) Male spruce budworm moth mating periodicity. In: University of New Brunswick 1989 Spruce Budworm-related Research, Final Report (Kipp, L.R., Lonergan, G.C., and Seabrook, W.D., eds.). Minister of Natural Resources and Energy, Provence of New Brunswick, Canada.Google Scholar
  108. Kipp, L.R. and Lonergan, G.C. (1992) Comparison of topically applied rubidium chloride and florescent dye markers on survival and recovery of field-released male spruce budworm moths. Can. Entomol. 124: 325–333.Google Scholar
  109. Kipp, L.R., Ellison, R., and Seabrook, W.D. (1990) Copulatory mate guarding in the spruce budworm. J. Insect Behav. 3: 121–131.Google Scholar
  110. Kipp, L.R., Lonergan, G.C., and Bell, W.J. (1995) Population density-related shifts in male trapping periodicity and the timing of mating in the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Environ. Entomol. (in press).Google Scholar
  111. Klun, J.A., and Cooperators. (1975) Insect sex pheromones, intraspecific pheromonal variability of Ostrinia nubilalis in North America and Europe. Environ. Entomol. 4: 891–894.Google Scholar
  112. Klun, J.A. and Huettel, M.D. (1988) Genetic regulation of sex pheromone production and response: interaction of sympatric pheromonal types of European corn borer, Ostinia nubilalis (Lepidoptera, Pyralidae). J. Chem. Ecol. 14: 2047–2061.Google Scholar
  113. Klun, J.A. and Maini, S. (1979) Genetic basis of an insect chemical communication system: the European corn borer. Environ. Entomol. 8: 423–426.Google Scholar
  114. Klun, J.A., Chapman, D.L., Mattes, K.C., Wojtkowsky, P.W., Beroza, M., and Sonnet, P.E. (1973) Insect sex pheromones: minor amount of opposite geometrical isomer critical to attraction. Science 181: 661–663.PubMedGoogle Scholar
  115. Kochansky, J., Cardé, R.T., Liebherr, J., and Roelofs, W.L. (1975) Sex pheromone of the European corn borer, Ostrinia nubilalis (Lepidoptera, Pyralidae), in New York. J. Chem. Ecol. 1: 225–231.Google Scholar
  116. Kramer, E. (1975) Orientation of the male silkmoth to the sex attractant bombykol. In: Olfaction and Taste, Vol. 5 (Denton, D. and Coglan, J.D., eds.), pp. 329–335. Academic Press, New York.Google Scholar
  117. Kuenen, L.P.S. and Baker, T.C. (1982) The effects of pheromone concentration on the flight behaviour of the oriental fruit moth, Grapholitha molesta. Physiol. Entomol. 7: 423–434.Google Scholar
  118. Kuenen, L.P.S. and Baker, T.C. (1983) A non-anemotactic mechanism used in pheromone source location by flying moths. Physiol. Entomol. 8: 277–289.Google Scholar
  119. Kuenen, L.P.S. and Cardé, R.T. (1993) Effects of moth size on velocity and steering during upwind flight toward a sex pheromone source by Lymantria dispar (Lepidoptera: Lymantriidae) J. Insect Behav. 6: 177–193.Google Scholar
  120. Kyriacou, C.P. and Hall, J.C. (1986) Interspecific genetic control of courtship song production and reception in Drosophila. Science 232: 494–497.PubMedGoogle Scholar
  121. Lanier, G.N. (1970) Sex pheromones: abolition of specificity in hybrid bark beetles. Science 169: 71–72.PubMedGoogle Scholar
  122. Lanier, G.N., Birch, M.C., Schmitz, R.F., and Furniss, M.M. (1972) Pheromones of Ips pini (Coleoptera, Scolytidae): variation in response among three populations. Can. Entomol. 104: 1917–1923.Google Scholar
  123. Lanier, G.N., Classon, A., Stewart, T., Piston, J.J., and Silverstein, R.M. (1980) Ips pini: the basis for interpopulational differences in pheromone biology. J. Chem. Ecol. 6: 677–687.Google Scholar
  124. Lewontin, R. D. (1970) The units of selection. Annu. Rev. Ecol. Syst. 1: 1–18.Google Scholar
  125. Liang, D. and Schal, C. (1990) Effects of pheromone concentration and photoperiod on the behavioral response sequence to sex pheromone in the male brown-banded cockroach, Supella longipalpa. J. Insect Behav. 3: 211–224.Google Scholar
  126. Liebherr, J. and Roelofs, W. (1975) Laboratory hybridization and mating period studies using two pheromone strains of Ostrinia nubilalis. Ann. Entomol. Soc. Am. 68: 305–309.Google Scholar
  127. Linn, C.E., Jr., and Roelofs, W.L. (1985) Response specificity of male pink bollworm moths to different blends and dosages of sex pheromone. J. Chem. Ecol. 11: 1583–1590.Google Scholar
  128. Linn, C.E., Campbell, M.G., and Roelofs, W.L. (1988) Temperature modulation of behavioural thresholds controlling male moth sex pheromone response specificity. Physiol. Entomol. 13: 59–67.Google Scholar
  129. Linsenmair, K.E. (1968) Anemomenotaktische orientierung bei Skorpionen (Chelicerata, Scorpiones). Z. vergl. Physiol. 60: 445–449.Google Scholar
  130. Linsenmair, K.E. (1969) Anemomenotaktische orientierung bei tenebrioniden und mistakäfern (Insecta, Coleoptera). Z. vergl. Physiol. 64: 154–211.Google Scholar
  131. Liu, Y.-B. and Haynes, K.F. (1992) Filamentous nature of pheromone plumes protects integrity of signal from background chemical noise in cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 18: 299–307.Google Scholar
  132. Löfstedt, C. (1990) Population variation and genetic control of pheromone communication systems in moths. Entomol. exp. appl. 54: 199–218.Google Scholar
  133. Löfstedt, C. (1993) Moth pheromone genetics and evolution. Phil. Trans. R. Soc. Lond. B 340: 167–177.Google Scholar
  134. Löfstedt, C., Hansson, B.S., Roelofs, W., and Bengtsson, B.O. (1989) No linkage between genes controlling female pheromone production and male pheromone response in the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). Genetics 123: 553–556.PubMedGoogle Scholar
  135. Löfstedt, C., Lanne, B.S., Löfqvist, J., Appelgren, M., and Bergstrom, G. (1985) Individual variation in the pheromone of the turnip moth, Agrotis segetum. J. Chem. Ecol. 11: 1181–1196.Google Scholar
  136. Löfstedt, C., Löfqvist, J. Lanne, B.S., Van Der Pers, J.N.C., and Hansson, B.S. (1986) Pheromone dialects in European turnip moths Agrotis segetum. Oikos 46: 250–257.Google Scholar
  137. Löfstedt, C., Van Der Pers, J.N.C., Löfqvist, J., Lanne, B.S., Appelgren, M., Gergstrom, G., and Thelin, B. (1982) Sex pheromone components of the turnip moth, Agrotis segetum, chemical identification, electrophysiological evaluation and behavioural activity. J. Chem. Ecol. 8: 1305–1321.Google Scholar
  138. Mafra-Neto, A. and Cardé, R.T. (1994) Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369: 142–144.Google Scholar
  139. Martin, H. (1965) Osmotropotaxis in the honey bee. Nature 208: 59–63.Google Scholar
  140. McNeil, J.N. (1991) Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 36: 407–430.Google Scholar
  141. Miller, J.R. and Roelofs, W.L. (1980) Individual variation in sex pheromone component ratios in two populations of the redbanded leafroller moth, Argyrotaenia velutinana. Environ. Entomol. 9: 359–363.Google Scholar
  142. Murlis, J. and Jones, C.D. (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6: 71–86.Google Scholar
  143. Murlis, J., Elkinton, J.S., and Cardé, R.T. (1992) Odor plumes and how insects use them. Annu. Rev. Entomol. 37: 505–532.Google Scholar
  144. Mustaparta, H., Tommeras, B.A., and Lanier, G.N. (1985) Pheromone receptor cell specificity in interpopulational hybrids of Ips pini (Coleoptera, Scolytidae). J. Chem. Ecol. 11: 999–1007.Google Scholar
  145. Nielson, H.T. and Nielson, E.T. (1962) Swarming of mosquitoes. Entomol. exp. appl. 5: 14–32.Google Scholar
  146. O’Brien, W.J., Evans, B.I. and Howiek, G.L. (1989) A new view of the predation cycle of a planktivorous fish, white crappie (Pomoxis annularis). Can. J. Fish. Aquat. Sci. 43: 1894–1899.Google Scholar
  147. O’Donald, P. (1962) The theory of sexual selection. Heredity 17: 541–52.Google Scholar
  148. Peña, A, Arn, H., Buser, H.-R., Rauscher, S., Bigler, R., Brunetti, R., Maini, S., and Toth, M. (1988) Sex pheromone of European corn borer, Ostrinia nubilalis, polymorphism in various laboratory and field strains. J. Chem. Ecol. 14: 1359–1366.Google Scholar
  149. Pline, M. and Dusenbery, D.B. (1987) Responses of the plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J. Chem. Ecol. 13: 873–888.Google Scholar
  150. Rahalkar, G.W., Tamhankar, A.J., and Gothi K.K. (1985) Selective breeding for reduced male response to female sex pheromone in Trogoderma granarium Everts (Coleoptera: Dermestidae). J. Stored Prod. Res. 21: 123–126.Google Scholar
  151. Rakowski, G., Sorensen, K.A., and Bell, W.J. (1989) Responses of dermestid beetles Dermestes imaculatus to puffs of aggregation pheromone extract. Entomol. Generalis 14: 211–215.Google Scholar
  152. Roelofs, W.L. and Brown, R.L. (1982) Pheromones and evolutionary relationships of Tortricidae. Annu. Rev. Ecol. Syst. 13: 395–422.Google Scholar
  153. Roelofs, W.L. and Comeau, A. (1969) Sex attractant specificity, taxonomic and evolutionary aspects in Lepidoptera. Science 165: 398–400.PubMedGoogle Scholar
  154. Roelofs, W.L., Du, J.-W., Linn, C., Glover, T.J., and Bjostad, L.B. (1986) The potential for genetic manipulation of the redbanded leafroller moth sex pheromone blend. In: Evolutionary Genetics of Invertebrate Behavior, Progress and Prospects (Huettel, M.D., ed.), pp. 263–272. Plenum Press, New York.Google Scholar
  155. Roelofs, W.L., Du, J.-W., Tang, X.-H., Robbins, P.S., and Eckenrode, C.J. (1985) Three European corn borer populations in New York based on sex pheromones and voltinism. J. Chem. Ecol. 11: 829–836.Google Scholar
  156. Roelofs, W., Glover, T., Tang, X., Sreng, I., Robbins, P., Eckenrode, C, Löfstedt, C, Hansson, B.S., and Bengtsson, B.O. (1987) Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc. Natl. Acad. Sci. USA 84: 7585–7589.PubMedGoogle Scholar
  157. Roush, R.T. and Croft, B.A. (1986) Experimental population genetics and ecological studies of pesticide resistance in insects and mites. In: Pesticide Resistance, Strategies and Tactics for Management (Board of Agriculture, National Research Council). National Academy Press, Washington, D.C.Google Scholar
  158. Sabelis, M.W. and Dicke, M. (1985) Long-range dispersal and searching behaviour. In: Spider Mites. Their Biology, Natural Enemies and Control, Vol. 1B (Helle, H. and Sabelis, M.W., eds.), pp. 141–60. Elsevier, Amsterdam.Google Scholar
  159. Sabelis, M.W. and Schippers, P. (1984) Variable wind directions and anemotactic strategies of searching for an odour plume. Oecologia 63: 225–228.Google Scholar
  160. Sanders, C.J., Daterman, G.E., and Ennis, T.J. (1977) Sex pheromone responses of Choristoneura spp. and their hybrids (Lepidoptera: Tortricidae). Can. Entomol. 109: 1203–1220.Google Scholar
  161. Schal, C. (1982) Intraspecific vertical stratification as a mate-finding mechanism in tropical cockroaches. Science 215: 1405–1407.PubMedGoogle Scholar
  162. Schal, C. and Bell, W.J. (1986) Interspecific and intraspecific stratification of tropical cockroaches. Ecol. Entomol. 11: 411–423.Google Scholar
  163. Schal, C., Surber, J., Vogel, G., Tobin, T.R., Tourtellot, M.K., Leban, R., and W.J. Bell. (1983) Search strategy of sex pheromone stimulated male German cockroaches. J. Insect Physiol. 27: 575–579.Google Scholar
  164. Seabrook, W.D., Kipp, L.R., and Lonergan, G.C. (1989) University of New Brunswick Spruce Budworm Pheromone Project, 1988 Progress Report, Department of Natural Resources and Energy, Provence of New Brunswick, Fredericton, N.B., Canada.Google Scholar
  165. Seelinger, G. (1984) Sex-specific activity patterns in Periplaneta americana and their relation to mate-finding. Z. Tierpsychol. 65: 309–326.Google Scholar
  166. Shorey, H.H. and Gaston, L.K. (1970) Sex pheromones of noctuid moths. XX. Short-range visual orientation by pheromone-stimulated males of Trichoplusia ni. Ann. Entomol. Soc. Am. 63: 829–832.Google Scholar
  167. Silberglied, R.E. and Taylor, O.R. (1973) Ultraviolet differences between the sulfur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism. Nature 241: 406–408.Google Scholar
  168. Silberglied, R.E. and Taylor, O.R. (1978) Ultraviolet reflection and its behavioral role in the courtship of the sulfur butterflies, Colias eury theme and C. philodice (Lepidoptera: Pieridae). Behav. Ecol. Sociobiol. 3: 203–242.Google Scholar
  169. Silverman, J. M. and Bell, W.J. (1979) Role of strato and horizontal object orientation on mate finding and predator avoidance by the American cockroach. Anim. Behav. 27: 652–657.Google Scholar
  170. Sreng, I., Glover, T., and Roelofs, W. (1989) Canalization of the redbanded leafroller moth sex pheromone blend. Arch. Insect. Biochem. Physiol 10: 73–82.Google Scholar
  171. Tobin, T.R. (1981) Pheromone orientation: role of internal control mechanisms. Science 214: 1147–1149.PubMedGoogle Scholar
  172. Tobin, T.R. and Bell, W.J. (1981) Guidance system for pheromone orientation in moths. Nature 295: 203.Google Scholar
  173. Tobin, T.R. and Bell, W.J. (1986) Local search and anemotaxis in the beetle, Trogoderma variabile. J. Comp. Physiol A. 158: 729–739.Google Scholar
  174. Todd, J.L., Haynes, K.F., and Baker, T.C. (1992) Antennal neurones specific for redundant pheromone components in normal and mutant Trichoplusia ni males. Physiol. Entomol. 17: 183–192.Google Scholar
  175. Toth, M., Löfstedt, C., Blair, B.W., Cabello, T., Farag, A.I., Hansson, B.S., Kovalev, B.G., Maini, S., Nesterov, E.A., Pajor, I., Sazonov, A.P., Shamshev, I.V., Subchev, M., and Szocs, G. (1992) Attraction of male turnip moths Agrotis segetum (Lepidoptera: Noctuidae) to sex pheromone components and their mixtures at 11 sites in Europe, Asia, and Africa. J. Chem. Ecol. 18: 1337–1347.Google Scholar
  176. Turgeon, J. J., Mcneil, J.N., and Roelofs, W.L. (1983) Field testing of various parameters for the development of a pheromone-based monitoring system for the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera: Noctuidae). Environ. Entomol. 12: 891–894.Google Scholar
  177. Van Der Pers, J.N.C. and Löfstedt, C. (1986) Signal-response relationship in sex pheromone communication, In: Mechanisms in Insect Olfaction (Payne, T.L., Birch, M.C., and Kennedy, C., eds.), pp. 235–241. Oxford Press, Oxford, U.K.Google Scholar
  178. Vanderwel, D. and Oehlschlager, A.C. (1987) Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. In: Pheromone Biochemistry (Preswich, G.D. and Blomquist, G.J., eds.), pp. 175–215. Academic Press, Orlando, Fla.Google Scholar
  179. Willis, M.A. and Baker, T.C. (1984) Effect of intermittent and continuous pheromone stimulation on the flight behavior of the oriental fruit moth Grapholitha molesta. Physiol Entomol. 9: 341–358.Google Scholar
  180. Willis, M.A. and Cardé, R.T. (1990) Pheromone mediated optomotor response in male gypsy moths Lymantria dispar, upwind flight in different wind velocities. J. Comp Physiol A. 167: 699–706.Google Scholar
  181. Witzgall, P. and Priesner, E. (1984) Behavioral responses of Coleophora laricella male moths to synthetic sex attractant, (Z)-5-decenol, in the field. Z. Ang. Entomol. 98: 15–33.Google Scholar
  182. Zaggatti, P. and Renou, M. (1984) Les phéromones sexualles des zygènes III. Le comportement de Zygaenafilipendulae L. (Lepidoptera: Zyganidae). Ann. Soc. Entomol. Fran. (N.S.) 4: 439–454.Google Scholar
  183. Zanen, P.O., Sabelis, M.W., Buonaccorsi, J.P., and Cardé, R.T. (1994) Search strategies of fruit flies in steady and shifting winds in the absence of food odours. Physiol Entomol. 19: 335–341.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • William J. Bell
    • 1
  • Larry R. Kipp
    • 1
  • Robert D. Collins
    • 1
  1. 1.Department of EntomologyUniversity of KansasUSA

Personalised recommendations