Skip to main content

Soybean Improvements through Plant Breeding and Genetic Engineering

  • Chapter
Soybeans

Abstract

The soybean, even though known as a miracle crop, is far from perfect. Among the major problems with soybeans are their beany flavor, flatus-producing ability, oxidative and flavor instability, deficiency of sulfur-containing essential amino acids, presence of antinutritional factors, and proneness to attacks by such production hazards as diseases, insects, and weeds. Therefore, soybean improvements are always needed with respect to both agronomic performance and quality of end products. Improvements in agronomic performance would lead to increased productivity whereas improvements in quality would result in enhanced values of finished products as well as new ways of using soybeans. All of these improvements would help increase soybean use and enhance profitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adlercreutz, H., Mousave, Y., Clark, J., Höcherstedt, K., Hämäläinen, E., Wähälä, K., Mäkelä, T., and Hase, T. 1992. Dietary phytoestrogens and cancer: in vitro and in vivo studies. J. Steroid Biochem. Mol. Biol. 41:331–337.

    Article  CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D., (Ed.). 1989. The Molecular Biology of the Cell, 2nd ed., pp. 201–273. Garland Publishing, New York.

    Google Scholar 

  • Anonymous. 1994. News: Calgene developing super-high HEAR oil. INFORM 5(9):996.

    Google Scholar 

  • Anonymous. 1995. News: Transgenic oilseed harvests to begin in May. INFORM 6(2):152–157.

    Google Scholar 

  • Barry, G., Kishore, G., Padgette, S., Taylor, M., Kolacz, K., Weldon, M., Re, D., Eichholtz, D., Fincher, K., and Hallas, L. 1992. Inhibitors of amino acid biosynthesis: Strategies for imparting glyphosate tolerance to crop plants. In Biosynthesis and Molecular Regulation of Amino Acids in Plants, B.K. Singh, H.E. Flores, and J.C. Shannon (Ed.), p. 139–145. American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  • Bernard, R.L. and Hymowitz, T. 1986. Registration of L81–4590, L81–4871 and L83–4387 soybean germplasm lines lacking the Kunitz trypsin inhibitor. Crop Sci. 26:650–651.

    Article  Google Scholar 

  • Bressani, R. and Elias, L.G. 1968. Processed vegetable protein mixtures for human consumption in developing countries. Adv. Food Res. 16:1–103.

    Article  CAS  Google Scholar 

  • Briggs, F.N. and Knowles, P.F. (Ed.). 1967. Introduction to Plant Breeding. Reinhold Publishing Corporation, A subsidiary of Chapman-Reinhold, New York.

    Google Scholar 

  • Budziszewski, G.J., Croft, K.P.C., and Hildebrand, D.F. 1996 Use of biotechnology in modifying plant lipids. Lipids. 31(6):557–569.

    Article  CAS  Google Scholar 

  • Burton, J.W. 1985. Breeding soybeans for improved protein quantity and quality. In World Soybean Research Conference: Proceedings, R. Shibles (Ed.), pp. 361–367. Westview Press, Boulder, CO.

    Google Scholar 

  • Burton, J.W. 1987. Quantitative genetics: results relevant to soybean breeding. In Soybeans: Improvement, Production, and Uses, J.R. Wilcox (Ed.), pp.211–247. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Burton, J.W. and Brim, C.A. 1981. Recurrent selection of genetic variation for oil properties and agronomic characteristics of soybean. Crop Sci. 24:783–787.

    Google Scholar 

  • Burton, J.W., Wilson, R.F., Brim, C.A., and Rinne, R.W. 1989. Registration of soybean germplasm and with modified fatty acid composition in seed oil. Crop Sci. 29:1583.

    Article  Google Scholar 

  • Burton, J.W., Wilson, R.F., and Brim, C.A. 1994. Registration of N79–2077–12 and N872122–4: two soybean germplasm lines with reduced palmitic acid in seed oil. Crop Sci. 34:313.

    Google Scholar 

  • Cahoon, E.B., Shanklin, J., and Ohlrogge, J.B. 1992. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc. Nat. Acad. Sci. 89:11184

    Article  CAS  Google Scholar 

  • Casey, R., Downey, D., and Ellis, N. 1986. Legume storage proteins and their genes. Oxford Surveys of Plant Molecular and Cell Biology 3:1–95.

    CAS  Google Scholar 

  • Coon, C., Akavanichan, O., and Cheng, T. 1988. The effect of oligosaccharides on the nutritive value of soybean meal. In Proceeding of a Symposium on Soybean Utilization Alternatives, pp. 203–213. University of Minnesota, Minneapolis, MN. Feb. 16–18.

    Google Scholar 

  • Cregan, P.B. and Akkaya, M.S. 1994. Length polymorphisms of simple sequence repeat (SSR) DNA as molecular markers in plants. Ch. 5. In Plant Genome Analysis, P.M. Gresshoff (Ed.), pp. 47–56. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Daun, J.K. 1986. Erucic acid levels in Western Canadian canola and rapeseed. J. Am. Oil. Chem. Soc. 63:321.

    Article  CAS  Google Scholar 

  • Davies, C.S., and Nielsen, N.C. 1986 Genetic analysis of a null-allele for lipoxygenase-2 in soybean.Crop Sci.26:460–463.

    Article  Google Scholar 

  • Davies, C.S., Nielsen, S.S., and Nielsen, N.C. 1987. Flavor improvement of soybean preparations by genetic removal of lipoxygenase-2. J. Am. Oil. Chem. Soc. 64:1428–433.

    Article  CAS  Google Scholar 

  • Davies, H.M., Eriquat, C.A., and Hayes, T.R. 1994. Utilization of laurate by the Kennedy pathway in developing seeds of Brassica napus expressing a 12:0 ACP thioesterase gene. Presented at the 11th International Meeting on Plant Lipids. Paris. June 26-July 1.

    Google Scholar 

  • de Lumen, B.O. 1992. Molecular strategies to improve protein quality and reduce flatulence in legumes: a review. Food Structure 11:33–46.

    Google Scholar 

  • Dey, P.M. 1985. D-galactoside containing oligosaccharides. In Biochemistry of Storage Carbohydrates in Green Plants, P.M. Dey and R.A. Dixon (Ed.). pp. 53–129, Academic Press, New York.

    Google Scholar 

  • Duke, S.O. (Ed.). 1996. Herbicide Resistant Crops: Agricultural, Environmental, Eco- nomic,Regulatory, and Technical Aspects. CRC Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Erickson, W.A., Wilcox, J.R., and Cavins, J.F. 1988. Fatty acid composition of the oil in reciprocal crosses among soybean mutants. Crop Sci. 28:644–646.

    Article  CAS  Google Scholar 

  • Erickson, M.D. and Frey, N. 1994. Property-enhanced oils in food applications. Food Technol. 48(11)63–68.

    CAS  Google Scholar 

  • Fader G.M., Kinney, A.J., and Hitz, W.D. 1995. Using biotechnology to reduce unwanted traits. INFORM 6(2):167–169.

    Google Scholar 

  • Fehr, W.R. 1987. Breeding methods for cultivar development. Ch. 7. In Soybeans: Improvement, Production, and Uses. 2nd edition. J.R. Wilcox (Ed.). pp. 249–293. American Society of Agronomy. Madison, WI.

    Google Scholar 

  • Fick, G.W. 1983. Genetics and breeding of sunflower. J. Am. Oil. Chem. Soc. 60:1252.

    Article  Google Scholar 

  • Frankel, E.N., Warner, K., and Klein, B.P. 1987. Flavor and oxidative stability of oil processed from null lipoxygenase-1 soybeans. J. Am. Oil Chem. Soc. 65:147–150.

    Article  Google Scholar 

  • Gasser, C.S. and Fraley, R.T. 1992. Transgenic Crops. Scientific American, June issue. pp. 2–7.

    Google Scholar 

  • George, A.A. and de Lumen, B.O. 1991. A novel methionine-rich protein in soybean: identification, amino acid composition and N-terminus sequence. J. Agric. Food Chem. 39:224–227.

    Article  CAS  Google Scholar 

  • Glick, B.R. and Thompson, J.E. (Ed.). 1993. Methods in Plant Molecular Biology and Biotechnology. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Grabau, E.A., Hanlon, R., Hegeman, C., and Li, J. 1996. Improving phosphorus utilization in soybean meal through phytase gene engineering. Presented at 6th Biennial Conference on Molecular and Cellular Biology of the Soybean. Columbia, MS. August 12–14.

    Google Scholar 

  • Graef, G.L., Fehr, W.R., and Hammond, E.G. 1985. Inheritance of three stearic acid mutants of soybean. Crop Sci. 25:1076–1079.

    Article  Google Scholar 

  • Grant, D., Imsande, M., and Shoemaker, R.C. 1996. SoyBase, a database for soybean genome and genetic data. Presented at the 6th Biennial Conference on Molecular and Cellular Biology of the Soybean. Columbia, MS. August 12–14.

    Google Scholar 

  • Green, A.G. 1986. A mutant genotype of flax (Linum usitatissimum L.) containing very low levels of linolenic acid in its oil. Can. J. Plant Sci. 66:499.

    CAS  Google Scholar 

  • Gresshoff, P.M. (Ed.). 1994. Plant Genome Analysis. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Griffis, G. and Wiedermann, L. 1989. Marketing Food Quality Soybeans in Japan. American Soybean Association, St. Louis, MO.

    Google Scholar 

  • Guida, A.D. and Falco, S.C. 1996. Increasing lysine in transgenic soybean seeds. Presented at 6th Biennial Conference on Molecular and Cellular Biology of the Soybean. Columbia, MS. August 12–14.

    Google Scholar 

  • Hajika, M., Igita, K., and Kitamura, K. 1991. A line lacking all the seed lipoxygenase isozymes in soybeans [Glycine max (L.) Merrill] induced by gamma-ray irradiation. Jpn. J. Breed. 41:507–509.

    Google Scholar 

  • Hajika, M., Kitamura, K., Igita, K., and Nakazawa, Y. 1992. Genetic relationships among the genes for lipoxygenase-1, -2, and -3 isozymes in soybean [Glycine max (L.) Merrill] seed. Jpn. J. Breed. 42:787–792.

    Google Scholar 

  • Hammond, E.G. and Fehr W.R. 1983a. Registration of AS germplasm line of soybean. Crop Sci. 23:192.

    Google Scholar 

  • Hammond, E.G. and Fehr, W.R 1983b Registration of A6 germplasm line of soybean Crop Sci. 23:192–193.

    Google Scholar 

  • Harada, J.J., Barker, S.J., and Goldberg, R.D. 1989. Soybean [3-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell 1:414–425.

    Google Scholar 

  • Hildebrand, D.F. 1992. Altering fatty acid metabolism in plants. Food Technol. 46(4)71–74.

    CAS  Google Scholar 

  • Hildebrand, D.F., and Hymowitz, T. 1981. Two soybean genotypes lacking lipoxygenase1. J. Am. Oil. Chem. Soc. 58:583–586.

    Article  CAS  Google Scholar 

  • Hitz, W.D., Yadav, N., Reiter, R.S., Mauvais, C.J., and Kinney, A.J. 1994. Reducing polyunsaturation in oils of transgenic canola and soybean. In Plant Lipid Metabolism, P. Mazliak (Ed.), pp. 506–508. Academic Press. The Netherlands.

    Google Scholar 

  • Howell, R.W., Brim, C.A.. and Rinne, R.W. 1972. The plant geneticist’s contribution toward changing lipid and amino acid composition of soybean. J. Am. Oil Chem. Soc. 49:30–32.

    Article  CAS  Google Scholar 

  • Hughes, S. and Murphy, P.A. 1983. Varietal influence on the quantity of glycinin in soybeans. J. Agric. Food Chem. 31:376.

    Article  CAS  Google Scholar 

  • Imsande, M.R., Grant, D. and Shoemaker, R.C. 1996. SoyBase, a soybean genome database: storage proteins of soybean. Presented at 6th Biennial Conference on Molecular and Cellular Biology of the Soybean. Columbia, MS. August 12–14.

    Google Scholar 

  • lwabuchi, S. and Yamauchi, F. 1987. Determination of glycinin and ß-conglycinin in soybean proteins by immunological methods. J. Agrie. Food Chem. 35:200.

    Article  CAS  Google Scholar 

  • Kerr, P. 1996. Utilization and quality of identity preserved oilseed co-products. Presented at the Institute of Food Technologists 1996 Symposium: Identity Preserved Oils, New Orleans, LA, June 21–22.

    Google Scholar 

  • Kinney, A.J. 1996. Soybean biotechnology: improving soybean seed quality by genetic engineering. Paper No. 21-B, presented at 87th American Oil Chemists’ Society Annual Meeting and Expo, Indianapolis, IN, April 28-May 1.

    Google Scholar 

  • Kinney, A.J., Stecca, K., Schweiger, B., Ripp, K., Campbell, A.M., Knowlton, S., and Hitz, W.D. 1994. The manipulation of fatty acid metabolism in developing soybeans. In The 5th Biennial Conference Proceedings of Molecular and Cellular Biology of the Soybean. University of Georgia, Athens, Georgia. July 25–27.

    Google Scholar 

  • Kitamura, K. 1993. Breeding trials for improving the food processing quality of soybeans. Trends Food Sci. Technol. 4:64–67.

    Article  CAS  Google Scholar 

  • Kitamura, K. 1995. Genetic improvement of nutritional and food process quality in soybean. Jap. Agric. Res. Quant. 29:1–8.

    Google Scholar 

  • Kitamura, K., Davies, C.S., Kaizuma, N., and Nielsen, N.C. 1983. Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Sci. 23:924–927.

    Article  CAS  Google Scholar 

  • Kitamura, K., Kumagai, T., and Kikuchi, A. 1985. Inheritance of lipoxygenase-2 and genetic relationships among genes for lipoxygenase-1, -2 and -3 isozymes in soybean seeds. Jpn. J. Breed. 35:413–420.

    CAS  Google Scholar 

  • Knowlton, S., Ellis, S.K.B., and Kelly, E.F. 1996. Performance characteristics of high oleic soybean oil: an alternative to hydrogenated fats. Paper No. 29–0, presented at 87th American Oil Chemists’ Society Annual Meeting and Expo, Indianapolis, IN, April 28-May 1.

    Google Scholar 

  • Kobayashi, A., Tsuda, Y., Hirata, N., Kubota, K., and Kitamura, K. 1995. Aroma constituents of soybean (Glycine max (L.) Merrill) milk lacking lypoxygenase isozymes. J. Agric. Food Chem., 43:2449–2452.

    Article  CAS  Google Scholar 

  • Kohyama, K. and Nishinari, K. 1993. Rheological studies on the gelation process of soybean 7S and 11S proteins in the presence of glucono-S-lactone. J. Agric. Food Chem. 41:8–14.

    Article  CAS  Google Scholar 

  • Koshiyama, J. 1983. Storage protein in soybean. In Seed Proteins, Biochemistry, Genetics, and Nutritive Value, W. Gottschalk and H.P. Muller (Ed.), p. 427–450. Nijhoff/Junk, The Hague.

    Chapter  Google Scholar 

  • Kwanyuen, P. and Wilson, R.F. 1996. Unpublished data.

    Google Scholar 

  • Liener, I.E. 1994. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 34(1):31–67.

    Article  CAS  Google Scholar 

  • List, G.R., Mounts, T.L., Orthoefer, F., and Neff, W.E. 1996a. Potential margarine oils from genetically modified soybeans. J. Am. Oil Chem. Soc. 73(6):729–732.

    Article  CAS  Google Scholar 

  • List, G.R., Orthoefer, F., Mounts, T.L., and Neff, W.E. 1996b. Effect of interesterification on the structure and physical properties of genetically modified soybean oils. Paper No. 16D, presented at 87th American Oil Chemists’ Society Annual Meeting and Expo, Indianapolis, IN., April 28-May 1.

    Google Scholar 

  • Liu, K.S. and Brown, E.A. 1996. Enhancing vegetable oil quality through plant breeding and genetic engineering. Food Technol. 55(11):67–71.

    Google Scholar 

  • Liu, K.S., Orthoefer, F., and Brown, E.A. 1995a. Association of seed size with genotypic variation in the chemical constituents of soybeans. J. Am. Oil Chem. Soc. 72(2):189–192.

    Article  CAS  Google Scholar 

  • Liu, K.S., Orthoefer, F., and Thompson, K. 1995b. The case for food-grade soybean varieties. INFORM 6(5):593–599

    Google Scholar 

  • Malmberg, R.L. 1993. Production and analysis of plant mutants, emphasizing Arabidopsis thaliana. Ch. 2. In Methods in Plant Molecular Biology and Biotechnology, B.R. Glick and J.E. Thompson (Ed.), pp. 11–28. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Mensink, R.P. and Katan, M.B. 1990. Effect of dietary trans fatty acids on high-density and low density lipoprotein cholesterol levels in healthy subjects. N. Engl. J. Med. 323:439–445.

    Article  CAS  Google Scholar 

  • Miguel, M. and Browse, J. 1995. Molecular Biology of oilseed modification. INFORM 6(1):108–110.

    Google Scholar 

  • Mol, J.N.M., van der Krol, A.R., van Tunen, R., van Blokland, A., de Lange, P., and Stuitje, A.R. 1990. Regulation of plant gene expression by anti-sense RNA. FEBS 268:427–430.

    Article  CAS  Google Scholar 

  • Motoki, M. and Seguro, K. 1994. Trends in Japanese soy protein research. INFORM 5(3):308–313.

    Google Scholar 

  • Mounts, T.L., Warner, K., List, G.R., Neff, W.E., and Wilson, R.F. 1994. Low-linolenic acid soybean oils-alternatives to frying oils. J. Am. Oil Chem. Soc. 71:495–499.

    Article  CAS  Google Scholar 

  • Murphy, D.J. 1993. Plant lipids: their metabolism, function and utilization. Ch. 5. In Plant Biochemistry and Molecular Biology, P.J. Lea and R.C. Leegood (Ed.), pp. 113–128. John Wiley, New York.

    Google Scholar 

  • Murphy, D.J. 1994. Biogenesis, function and biotechnology of plant storage lipids. Prog. Lipids Res. 33:71.

    Article  CAS  Google Scholar 

  • Nakamura, T., Utsumi, S., Kitamura, K., Harada, K., and Mori, T. 1984. Cultivar differences in gelling characteristics of soybean glycinin. J. Agric. Food Chem. 32:647–651.

    Article  CAS  Google Scholar 

  • Nielsen, N.C., Dickinson, C.D., Cho, T.J., Thanh, V.H., Scallon, B.T., Fischer, R.L., Sims, T.L., Drews, G.N., and Goldberg, R.B. 1989. Characterization of the glycinin gene family in soybean. Plant Cell 1:313–328.

    CAS  Google Scholar 

  • Nielsen, N.C. 1985. The structure and complexity of the 1 l S polypeptides in soybeans. J. Am. Oil Chem. Soc. 62:1680–1686.

    Article  CAS  Google Scholar 

  • Nishiba, Y., Furut, S., Kajika, M., Igita, K., and Suda, I. 1995. Hexanal accumulation and DETBA value in homogenate of soybean seeds lacking two or three lipoxygenase isozymes. J. Agrie. Food Chem. 43:738–741.

    Article  CAS  Google Scholar 

  • Nordlee, J.A., Taylor, S.L., Townsend, J.A., Thomas, L.A., and Bush, R.K. 1996. Identification of a Brazil-nut allergen in transgenic soybeans. New Engl. J. Med. 334:688–692.

    CAS  Google Scholar 

  • Obata, A., Matsuura, M.. and Kitamura, K. 1996. Degradation of sulfhydryl groups in soymilk by lipoxygenases during soybean grinding. Biosci. Biotech. Biochem. 60(8):1229–1232.

    CAS  Google Scholar 

  • Ogawa, T., Tayama, E., Kitamura, K., and Kaizuma, N. 1989. Genetic improvement of seed storage proteins using three variant alleles of 7S globulin subunits in soybean (Glycine max. L.). Jpn. J. Breed. 39:137–147.

    CAS  Google Scholar 

  • Orf, J.H. 1988. Modifying soybean composition by plant breeding. In Proceedings of a Symposium on Soybean Utilization Alternatives, pp. 131–140. University of Minnesota, Minneapolis. Feb. 16–18.

    Google Scholar 

  • Orf, J.H. and Hymowitz, T. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19:107–109.

    Article  CAS  Google Scholar 

  • Padgette, S.R., Kolacz, K.H., Delannay, X., Re, D.B., LaVallee, B.J., Tinius, C.N., Rhodes, W.K., Otero, Y.I., Barry, G.F., Eichholtz, D.A. Peschke, V.M., Nida, D.L., Taylor, N.B., and Kishore, G.M. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 35:1451–1461.

    Article  CAS  Google Scholar 

  • Price, K.R., Lewis, J., Wyatt, G.M., and Fenwick, G.R. 1988. Flatulence: causes, relation to diet and remedies. Nahrung 32:609–626.

    Article  CAS  Google Scholar 

  • Rebetzke, G.J., Pantalone, V.R., Burton, J.W., Carver, B.F., and Wilson, R.F. 1996. Phenotypic variation for saturated fatty acid content in soybean. Euphytica. 91:289–295.

    Article  CAS  Google Scholar 

  • Revilleza, M.J., Galvez, A.F., Krenz, D.C., and de Lumen, B.O. 1996. An 8 kDa methioninerich protein from soybean (Glycine max) cotyledon: Identification, purification an N-terminal sequence. J. Agric. Food Chem. 44(9):2930–2935.

    Article  CAS  Google Scholar 

  • Saio, K., Kamiya, M., and Watanabe, T. 1969. Food processing characteristics of soybean 11S and 7S proteins. Part I. Effect of difference of protein component among soybean varieties on formation of tofu-gel. Agric. Biol Chem. 33:1301–1308.

    CAS  Google Scholar 

  • Shurtleff, W. 1994. Breeding and marketing soybeans for food uses: a blueprint for changing our seed company’s basic mission. A Symposium on Breeding Soybeans, Ottawa, Canada.

    Google Scholar 

  • Slabas, A.R., Simon, J.W., and Elborough, K.M. 1995. Information needed to create new oil crops. INFORM 6(2):159–166.

    Google Scholar 

  • Soya Bluebook, 1995–96. Soyatech, Inc. Bar Harbor, ME 04609.

    Google Scholar 

  • Stahlhut, R.W., and Hymowitz, T. 1983. Variation in low molecular weight proteinase inhibitors of soybeans. Crop Sci. 23:766–769.

    Article  CAS  Google Scholar 

  • Stewart, C.N. Jr., Adang, M.J., All, J.N., Boerma, H.R., and Parrott, W.A. 1994. Characterization of transgenic soybean for synthetic Bacillus thuringiensis cryia(C). Presented at the 5th Biennial Conference on Molecular and Cellular Biology of the Soybean, Proceedings, pp. 32–33. Athens, GA, July 25–27.

    Google Scholar 

  • Takahashi, K., Banba, H., Kikuchi, A., Ito, M., and Nakamura, S. 1994. An induced mutant line lacking a subunit of 13-conglycinin in soybean (Glycine max (L.) Merrill). Breeding Sci (formerly Jpn. J. Breed.) 44:65–66.

    CAS  Google Scholar 

  • Townsend, J.A., Thomas, L.A., Kulisek, E.S., Daywalt, M.J., Winter, K.R.K., and Altenbach, A.B. 1992. Improving the quality of seed proteins in soybean. Proceedings of the 4th Biennial Conference on Molecular and Cellular Biology of soybean, p. 4. Iowa State University, Ames, IA. July 27–29.

    Google Scholar 

  • USDA, 1994. United State Department of Agriculture Oil Crops Situation Outlook, July.

    Google Scholar 

  • Vessby, B. 1994. Implications of long-chain fatty acid studies. INFORM 5(2):182–185.

    Google Scholar 

  • Walden, R. 1993. Cell culture, transformation and gene technology. Ch. 12. In Plant Biochemistry and Molecular Biology, P.J. Lea and R.C. Leegood (Ed.), pp. 275–294. John Wiley and Sons, Chichester.

    Google Scholar 

  • Wang, H-J. and Murphy, P.A. 1994. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J. Agric. Food Chem. 42:1674–1677.

    Article  CAS  Google Scholar 

  • Wehrmann, V.K., Fehr, W.R., Cianzo, S.R., and Cavins, J.F. 1987. Transfer of hige seed protein to high-yielding soybean cultivars. Crop Sci. 27:927–931

    Article  Google Scholar 

  • Wilcox, J.R. (Ed.). 1987. Soybeans: Improvement, Production, and Uses. 2nd Edition. American Society of Agronomy. Madison, WI.

    Google Scholar 

  • Wilcox, J.R. 1989. Soybean protein and oil quality. In Proceedings of World Soybean Research Conference, A.J. Pascale (Ed.). pp. 28–39, Buenos Aires, Argentina, March 5–9.

    Google Scholar 

  • Wilcox, J.R. and Cavins, J.F. 1990. Registration of C1726 and C1727 soybean germplasm with altered levels of palmitic acid. Crop Sci. 30:240.

    Article  Google Scholar 

  • Wilcox, J.R., Burton, J.W., Rebetzke, G.J., and Wilson, R.F. 1994. Transgressive segregation for palmitic acid in seed oil of soybean. Crop Sci. 34:1248–1250.

    Article  CAS  Google Scholar 

  • Wilcox, J.R., Cavins, J.F., and Nielsen, N.C. 1984. Genetic alteration of soybean oil composition by a chemical mutagen. J. Am. Oil. Chem. Soc. 61:98–100.

    Article  Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acid Res. 18:6531.

    Article  CAS  Google Scholar 

  • Wilson, R.F. (Ed.). 1991. Designing Value-Added Soybeans for Markets of the Future. AOCS Press, Champaign, IL.

    Google Scholar 

  • Wilson, R.F. 1993. Practical biotechnological strategies for improving the quality and value of soybeans. INFORM 4:193–200.

    Google Scholar 

  • Wilson, R.F. 1996. Current research on oilseeds. Presented at the Institute of Food Technol-ogists 1996 symposium: Identity Preserved Oils, New Orleans, LA, June 21–22.

    Google Scholar 

  • Wilson, R.F., Burton, J.W., and Brim, C.A. 1981. Progress in the selection for altered fatty acid composition in soybeans. Crop. Sci. 21:788–791.

    Article  CAS  Google Scholar 

  • Wilson, L.A., Murphy, P.A., and Gallagher, P. 1992. Japanese Soyfoods: Markets and Processes, MATRIC, Iowa State University, Ames.

    Google Scholar 

  • Wolf, W.J. 1975. Lipoxygenase and flavor of soybean protein products. J. Agric. Food Chem. 23(2):136–141.

    Article  CAS  Google Scholar 

  • Wolter, F.P. 1993. Altering plant lipids by genetic engineering. INFORM 4(1):93–96.

    Google Scholar 

  • Wood, D.R. (Ed.). 1983. Crop Breeding. American Society Agronomy, Madison, WI.

    Google Scholar 

  • Zabeau, M. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Office, Pub. No. 0 534 858 Al.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, K. (1997). Soybean Improvements through Plant Breeding and Genetic Engineering. In: Soybeans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1763-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1763-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5711-7

  • Online ISBN: 978-1-4615-1763-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics