Skip to main content

Storage, Imbibition, and Germination

  • Chapter
Seeds

Abstract

Considerable controversy has surrounded the claims that seeds remain viable for many hundreds or even thousands of years. A list of some of the more spectacular claims is presented in Table 3.1, along with reasons for accepting or rejecting them. Perhaps the most persistent myth concerning seed longevity is that viable grains of wheat and barley were uncovered during archaeological excavations of ancient Egyptian buildings. Reports that “mummy” grains could germinate and produce seedlings were given considerable publicity and credence during the nineteenth and early twentieth centuries. But recent, scientifically rigorous studies show unequivocally that most ancient grains (particularly the embryos) have undergone severe morphological and physiological degradation (including carbonization) with accompanying total loss of viability. Some stored grains retain their original shape and even much of their cell fine structure, although upon hydration considerable disintegration occurs. It is worth reemphasizing, then, that there is no scientific proof for the retention of viability by ancient cereal grains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Useful Literature References

Section 3.1

  • Becquerel, M. P., 1934, Compt. Rend. Acad. Sci. (Paris) 199:1662–1664 (viability records).

    Google Scholar 

  • Egley, G. H., and Chandler, J. M., 1978, Weed Sci. 26:230–239 (50-year-buried-seed study).

    Google Scholar 

  • Godwin, H., and Willis, E. H., 1964, New Phytol. 63:410–412 (dating Indian lotus seeds)

    Article  Google Scholar 

  • Kivilaan, A., and Bandurski, R. S., 1981, Am. J. Bot. 68:1290–1292 (Beal’s 100-year burial experiment).

    Article  Google Scholar 

  • Lerman, J. C., and Cigliano, E. M., 1971, Nature 232:568–570 (600-year-old Canna seeds).

    Article  PubMed  CAS  Google Scholar 

  • Odum, S., 1965, Dansk. Bot. Arkiv. 24:2–70 (seeds in archaeological sites).

    Google Scholar 

  • Porsild, A. E., Harington, C. R., and Mulligan, G. A., 1967, Science 158:113–114 (arctic lupin longevity).

    Article  PubMed  CAS  Google Scholar 

Section 3.2

  • Barton, L. V., 1961, Seed Preservation and Longevity, Leonard Hill, London, pp. 215 (comprehensive review of earlier literature).

    Google Scholar 

  • Chin, H. F., and Roberts, E. H. (eds.), 1980, Recalcitrant Crop Seeds. Tropical Press, Malaysia (several review articles).

    Google Scholar 

  • Christensen, C. M., 1972, in: Viability of Seeds (E. H. Roberts, ed.). Chapman and Hall, London, pp. 59–93 (microflora and seed decay).

    Chapter  Google Scholar 

  • Ellis, R. H., and Roberts, E. H., 1980, Ann. Bot. 45:13–30 (seed longevity equations)

    Google Scholar 

  • Harrington, J. F., 1973, in: Seed Ecology (W. Heydecker, ed.), Butterworths, London, pp. 251–263 (viability: rules of thumb).

    Google Scholar 

  • James, E., Bass, L. N., and Clark, D. C., 1967, Froc. Am. Soc. Hort. Sci. 91:521–528 (varietal differences and longevity).

    Google Scholar 

  • Justice, O. L., and Bass, L. N., 1979, Principles and Practices of Seed Storage, Castle House, Beccles and London, U.K., pp. 289 (review book).

    Google Scholar 

  • King, M. W., and Roberts, E. H., 1979, The Storage of Recalcitrant Seeds, Report for the International Board for Genetic Resources Secretariat, Rome, pp. 96 (recalcitrant seed storage).

    Google Scholar 

  • Moore, R. P., 1972, in: Viability of Seeds (E. H. Roberts, ed.), Chapman and Hall, London, pp. 94–113 (mechanical injury and viability).

    Chapter  Google Scholar 

  • Roberts, E. H. (ed.), 1972, Viability of Seeds, Chapman and Hall, London (review book).

    Google Scholar 

  • Roberts, E. H., 1973, Seed Sci. Technol. 1:499–514 (predicting longevity in storage).

    Google Scholar 

  • Roberts, E. H., and Abdalla, F. H., 1968, Ann. Bot. 32:97–117 (storage in different atmospheres).

    Google Scholar 

  • Stanwood, P. C., and Bass, L. N., 1981, Seed Sci. Technol. 9:423–437 (liquid nitrogen storage).

    Google Scholar 

  • Thomson, J. R., 1979, An Introduction to Seed Technology, Wiley, New York, Toronto, pp. 252 (seed storage methods).

    Google Scholar 

  • Woodstock, L. W., Simkin, J., and Schroeder, E., 1976, Seed Sci. Technol. 4:301–311 (freeze-drying for storage).

    Google Scholar 

Section 3.3

  • Abdalla, F. H., and Roberts, E. H., 1968, Ann. Bot. 32:119–136 (storage conditions and chromosome damage).

    Google Scholar 

  • Abu-Shakra, S. S., and Ching, T. M., 1967, Crop Sci. 7:115–118 (mitochondrial activity).

    Article  CAS  Google Scholar 

  • Aspinall, D., and Paleg, L. G., 1971, J. Exp. Bot. 22:925–935 (differential aging of seed parts).

    Article  CAS  Google Scholar 

  • Blowers, L. E., Stormonth, D. A., and Bray, C. M., 1980, Planta 150:19–25 (mRNA integrity and vigor).

    Article  CAS  Google Scholar 

  • Bray, C. M., and Chow, T.-Y., 1976, Biochim. Biophys. Acta 442:1–13 (protein and RNA in nonviable peas).

    Article  PubMed  CAS  Google Scholar 

  • Brocklehurst, P. A., and Fraser, R. S. S., 1980, Planta 148:417–421 (rRNA integrity and vigor).

    CAS  Google Scholar 

  • Ching, T. M., and Danielson, R., 1972, Proc. Assoc. Official Seed Analysts 62:116–124 (ATP content and vigor).

    Google Scholar 

  • Conger, A. D., and Randolph, M. L., 1968, Radiat. Bot. 8:193–196 (free radicals in seeds).

    Article  Google Scholar 

  • Ellis, R. H., and Roberts, E. H., 1981, Seed Sci. Technol. 9:373–409 (quantification of aging and survival: review).

    Google Scholar 

  • Hallam, N. D., Roberts, B. E., and Osborne, D. J., 1973, Planta 110:279–290 (respiration in nonviable rye).

    Article  CAS  Google Scholar 

  • Harman, G. E., and Mattick, L. R., 1976, Nature 260:323–324 (lipid oxidation and seed aging).

    Article  CAS  Google Scholar 

  • Krasnook, N. P., Morgunova, E. A., Vishnyakova, I. A., and Povarova, R. I., 1976, Soviet Plant Physiol. 23:130–134 (rice enzymes and viability).

    Google Scholar 

  • Linko, P., and Milner, M., 1959, Plant Physiol. 34:392–396 (transaminases in aged wheat).

    Article  PubMed  CAS  Google Scholar 

  • Osborne, D. J., 1980, in: Senescence in Plants (K. V. Thimann, ed.), CRC Press, Boca Raton, Florida, pp. 13–37 (review of seed aging).

    Google Scholar 

  • Osborne, D. J., Sharon, R., and Ben-Ishai, R., 1980/81, Isr. J. Bot. 29:259–272 (DNA integrity and repair).

    Google Scholar 

  • Pammenter, N. W., Adamson, J. H., and Berjak, P., 1974, Science 186:1123–1124 (cathodic protection).

    Article  PubMed  CAS  Google Scholar 

  • Peumans, W. J., and Carlier, A. R., 1981, Biochem. Physiol Pflanzen 176:384–395 (cytoplasmic factors and aging).

    Google Scholar 

  • Priestley, D. A., McBride, M. B., and Leopold, C., 1980, Plant Physiol. 66:715–719 (lipid oxidation and aging in soybean).

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E. H., 1975, in: Crop Genetic Resources for Today and Tomorrow, Volume 2, I. B. P., Cambridge University Press, Cambridge, U.K., pp. 269–296 (storage and genetic changes).

    Google Scholar 

  • Sen, S., and Osborne, D. J., 1977, Biochem. J. 166:33–38 (RNA and protein synthesis in nonviable rye).

    PubMed  CAS  Google Scholar 

  • Styer, R. C., Cantliffe, D. J., and Hall, C. B., 1980, J. Am. Soc. Hort. Sci. 105:298–303 (noncorrelation between ATP and vigor).

    CAS  Google Scholar 

  • Throneberry, G. O., and Smith, F. G., 1955, Plant Physiol. 30:337–343 (respiration and vigor loss).

    Article  PubMed  CAS  Google Scholar 

  • Villiers, T. A., 1974, Plant Physiol. 53:875–878 (storage in hydrated state).

    Article  PubMed  CAS  Google Scholar 

Sections 3.4 and 3.5

  • Blacklow, W. M., 1972, Crop Sci. 12:643–646 (differential imbibition by corn).

    Article  Google Scholar 

  • Chen, S. S. C., 1978, in: Dry Biological Systems (J. H. Crowe and J. S. Clegg, eds.), Academic Press, New York, pp. 175–184 (dry oat grain metabolism).

    Google Scholar 

  • Collis-George, N., and Melville, M. D., 1978, Aust. J. Soil Res. 16:291–310 (seed surface-soil interactions).

    Article  CAS  Google Scholar 

  • Currie, J. A., 1973, in: Seed Ecology (W. Heydecker, ed.), Butterworths, London, pp. 463–480 (seed-soil system, review).

    Google Scholar 

  • Dasberg, S., 1971, J. Exp. Bot. 22:999–1008 (soil-water movement to seeds).

    Article  Google Scholar 

  • Edwards, M., 1976, Plant Physiol. 58:237–239 (dry charlock seed metabolism).

    Article  PubMed  CAS  Google Scholar 

  • Flentje, N. T., and Saksena, H. K., 1964, Aust. J. Biol. Sci. 17:665–675 (pathogen growth and leakage).

    Google Scholar 

  • Hadas, A., 1970, Isr. J. Agr. Res. 20:3–14 (soil moisture stress and germination).

    Google Scholar 

  • Hadas, A., 1977, J. Exp. Bot. 28:977–985 (soil moisture stress and germination).

    Article  Google Scholar 

  • Hagon, M. W., and Chan, C. W., 1977, Aust. J. Exp. Agric. Anim. Husb. 17:86–89 (soil moisture stress and germination).

    Article  Google Scholar 

  • Harper, J. L., and Benton, R. A., 1966, J. Ecol. 54:151–166 (seed-surface contact).

    Article  Google Scholar 

  • Hwang, D. L., Yang, W.-K., Foard, D. E., and Lin, K.-T.-D., 1978, Plant Physiol. 61:30–34 (protein leakage upon imbibition).

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B. D., and Stinson, R. H., 1980, Plant Physiol. 66:316–320 (membrane configuration during dehydration).

    Article  PubMed  CAS  Google Scholar 

  • Opik, H., 1980, New Phytol. 85:521–529 (dry seed structure).

    Article  Google Scholar 

  • Rogers, R. B., and Dubetz, S., 1980, Can Agric. Eng. 22:89–92 (seed-soil contact).

    Google Scholar 

  • Simon, E. W., 1978, in: Dry Biological Systems (J. H. Crowe and J. S. Clegg, eds.) Academic Press, New York, pp. 205–224 (membranes in dry and imbibing seeds).

    Google Scholar 

  • Simon, E. W., and Raja Harun, R. M., 1972, J. Exp. Bot. 23:1076–1085 (leakage during imbibition).

    Article  CAS  Google Scholar 

  • Stewart, R. R. C., and Bewley, J. D., 1981, Plant Physiol. 68:516–518 (soybean imbibitional chilling).

    Article  PubMed  CAS  Google Scholar 

  • Tully, R. E., Musgrave, M. E., and Leopold, A. C., 1981, Crop Sci. 21:312–317 (seed coats and imbibitional chilling).

    Article  Google Scholar 

  • Waggoner, P. E., and Parlange, J.-Y., 1976, Plant Physiol. 57:153–156 (water diffusivity and imbibition).

    Article  PubMed  CAS  Google Scholar 

Sections 3.6 and 3.7

  • Haber, A. H., and Luippold, H. J., 1960, Plant Physiol 35:168–173 (lettuce cell division and elongation).

    Article  PubMed  CAS  Google Scholar 

  • Haber, A. H., Carrier, W. L, and Foard, D. E., 1961, Am. J. Bot. 48:431–438 (gamma plantlets of wheat).

    Article  CAS  Google Scholar 

  • Hegarty, T. W., and Ross, H. A., 1978, Ann. Botany (London) 42:1003–1005 (water stress; germination and growth).

    Google Scholar 

  • Lado, P., Rasi-Caldogno, F., and Colombo, R., 1975, Physiol. Plant. 34:359–364 (fusicoccin and proton extrusion).

    Article  CAS  Google Scholar 

  • Rogan, P. G., and Simon, E. W., 1975, New Phytol. 74:273–275 (root elongation and mitosis).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bewley, J.D., Black, M. (1985). Storage, Imbibition, and Germination. In: Seeds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1747-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1747-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5703-2

  • Online ISBN: 978-1-4615-1747-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics