Skip to main content

Inactivation of Viruses, Bacteria, Protozoa, and Leukocytes in Labile Blood Components by Using Nucleic Acid Targeted Methods

  • Chapter
Transfusion Medicine: Quo Vadis? What Has Been Achieved, What Is to Be Expected

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 36))

  • 90 Accesses

Abstract

Substantial increments in the safety of blood transfusion have been achieved through continued improvements in donor testing, yet residual concern about the safety of blood components persists. To further reduce the risk of transfusion-associated infection, additional measures, such as nucleic acid testing for selected pathogens, are being introduced. Transfusion of cellular components has been implicated in transmission of viral, bacterial, and protozoan infections [1]. While it is commonly recognized that hepatitis B virus (HBV), hepatitis C virus (HCV), cytomegalovirus (CMV), and the retroviruses, such as human immunodeficiency virus (HIV) and the human lymphotrophic viruses (HTLV) can be transmitted through cellular components, other pathogens are emerging as potentially significant transfusion-associated infectious agents. For example, transmission of protozoan infections due to trypanosomes [2-4] and babesia have been reported [5]. In addition to viral and protozoal infectious agents, bacterial contamination of platelet and red cell concentrates continues to be reported [6,7], and may be an under reported transfusion complication [8]. More importantly, new infectious agents may periodically enter the donor population before they can be definitively identified and tested for to maintain consistent safety of the blood supply. The paradigm for this possibility is the HIV pandemic, which erupted in 1979. During the past decade a number of methods to inactivate infectious pathogens have been developed and have entered the advanced clinical trial phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dodd RY. Will blood products be free of infectious agents? In: Nance SJ, ed. Transfusion Medicine In The 1990’s. Arlington,VA: American Association of Blood Banks, 1990:223–51.

    Google Scholar 

  2. Schmunis GA. Trypanosoma cruzi, the etiologic agent of Chagas’ disease: status in the blood supply in endemic and nonendemic countries. Transfusion 1991;31:547–57.

    Article  CAS  PubMed  Google Scholar 

  3. Grant IH, Gold JMW, Wittner M, et al. Transfusion-associated acute Chagas disease acquired in the United States. Ann Intern Med 1989;111: 849–51.

    CAS  PubMed  Google Scholar 

  4. Nickerson P, On P, Schroeder ML, Sekla L, Johnston JB. Transfusion-associated Trypanosoma cruzi infection in a non-endemic area. Ann Intern Med 1989;111:85153.

    Google Scholar 

  5. Mintz ED, Anderson JF, Cable RG, Hadler IL. Transfusion-transmitted babesiosis: a case report from a new endemic area. Transfusion 1991;31:365–68.

    Article  CAS  PubMed  Google Scholar 

  6. Goldman M, Blajchman MA. Blood product-associated bacterial sepsis. Transfus Med Rev 1991;5:73–83.

    Article  CAS  PubMed  Google Scholar 

  7. Blajchman MA, Ali AM. Bacteria in the blood supply: an overlooked issue in transfusion medicine. In: Nance SJ, ed. Blood Safety: Current Challenges. Bethesda, MD: American Association of Blood Banks, 1992: 213–28.

    Google Scholar 

  8. Sazama K. Reports of 355 transfusion-associated deaths: 1976 through 1985. Transfusion 1990;30:583–90.

    Article  CAS  PubMed  Google Scholar 

  9. Schuttler GC, Caspari C, Jursch CA, WR WRW, Gerlich WH, Schaefer S. Hepatitis C virus transmission by a blood donation negative in nucleic acid amplification tests for viral RNA. Lancet 2000;355:41–42.

    Article  CAS  PubMed  Google Scholar 

  10. AuBuchon JP, Birkmeyer JD, Busch MP. Safety of the blood supply in the United States: opportunities and controversies. Ann Intern Med 1997;127:905–09.

    Google Scholar 

  11. Schreiber GB, Busch MP, Kleinman SH, Korelitz JJ. The risk of transfusion-transmitted viral infections. N Engl J Med 1996;334:1685–90.

    Article  CAS  PubMed  Google Scholar 

  12. Chan K. Blood Supply: FDA Oversight and Remaining Issues of Safety. In: U.S. General Accounting Office, 1997.

    Google Scholar 

  13. Roth VR, Arduino MJ, Nobiletti J, et al. Transfusion-related sepsis due to Serratia liquefaciens in the United States. Transfusion 2000;40:931–35.

    Article  CAS  PubMed  Google Scholar 

  14. Morrow JF, Braine HG, Kickler TS, Ness PM, Dick JD, Fuller AK. Septic reactions to platelet transfusions: a persistent problem. JAMA 1991;266:555–58.

    Article  CAS  PubMed  Google Scholar 

  15. Blajchman MA, Ali A, Lyn P, Bardossy L, Richardson H. Bacterial surveillance of platelet concentrates: quantitation of bacterial load. Transfusion 1997;37(Suppl):74s.

    Article  Google Scholar 

  16. Chiu EKW, Yuen KY, Lie AKW, et al. A prospective study of symptomatic bacteremia following platelet transfusion and of its management. Transfusion 1994;34: 95054.

    Article  Google Scholar 

  17. Wallace EL, Churchill WH, Surgenor DM. Collection and transfusion of blood components in the United States, 1992. Transfusion 1992;35:802–12.

    Article  Google Scholar 

  18. Seifried E, Roth WK. First statistical survey of HCV, HBV, HIV-1 NAT screening of blood donors in the Red Cross Blood Service Centers in Germany Vox Sang 2000; 78(Suppl 1):80.

    Google Scholar 

  19. Horowitz B, Wiebe ME, Lippin A, Stryker MH. Inactivation of viruses in labile blood derivatives I. Disruption of lipid-enveloped viruses by tri(n-butyl)phosphate detergent combinations. Transfusion 1985;25:516–22.

    Article  CAS  PubMed  Google Scholar 

  20. Heddle NM, Kalma L, Singer J, et al. The role of plasma from platelet concentrates in transfusion reactions. New Engl J Med 1994;331:625–28.

    Article  CAS  PubMed  Google Scholar 

  21. Ohto H, Anderson KC. Survey of transfusion-associated graft-versus-host disease in immunocompetent recipients. Transfus Med Rev 1996;10:31–43.

    Article  CAS  PubMed  Google Scholar 

  22. Goodrich RP. The use of riboflavin for the inactivation of pathogens in blood products. Vox Sang 2000;78(Suppl 2):211–15.

    CAS  PubMed  Google Scholar 

  23. Corash L. Photochemical decontamination of cellular blood components. Anaesth Pharmacol Rev 1995;3:138–49.

    CAS  Google Scholar 

  24. Edelson R, Berger C, Gasparro F, et al. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. N Engl J Med 1987;316:297–303.

    Article  CAS  PubMed  Google Scholar 

  25. McEvoy MT, Stern RS. Psoralens and related compounds in the treatment of psoriasis. Pharmac Ther 1987;34:75–97.

    Article  CAS  Google Scholar 

  26. Alter HJ, Morel PA, Dorman BP, et al. Photochemical decontamination of blood components containing hepatitis B and non-A, non-B virus. Lancet 1988;ii:1446–50.

    Article  Google Scholar 

  27. Lin L, Wiesehahn GP, Morel PA, Corash L. Use of 8-methoxypsoralen and long wavelength ultraviolet radiation for decontamination of platelet concentrates. Blood 1989;74:517–25.

    CAS  PubMed  Google Scholar 

  28. Dodd RY, Moroff G, Wagner S, et al. Inactivation of viruses in platelet suspensions that retain their in vitro characteristics: comparison of psoralen-ultraviolet A and merocyanine 540-visible light methods. Transfusion 1991;31:483–90.

    Article  CAS  PubMed  Google Scholar 

  29. Margolis-Nunno H, Bardossy L, Robinson R, Ben-Hur E, Horowitz B, Blajchman MA. Psoralen-mediated photochemical decontamination of platelet concentrates: inactivation of cell-free and cell-associated forms of human immunodeficiency virus and assessment of platelet function in vivo. Transfusion 1997;37:889–95.

    Article  CAS  PubMed  Google Scholar 

  30. Goodrich RP, Yerram NR, Tay GB, et al. Selective inactivation of viruses in the presence of human platelets: UV sensitization with psoralen derivatives. Proc Natl Acad Sci U S A 1994;91(12):5552–56.

    Article  CAS  PubMed  Google Scholar 

  31. Goodrich RP, Yerram NR, Crandall SL, Sowemimo-Coker SO. In vivo survival of platelets subjected to virus inactivation protocols using psoralen and coumarin photo-sensitizers. Blood 1995;86 (Supp11):354a.

    Google Scholar 

  32. Lin L, Cook DN, Wiesehahn GP, et al. Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light. Transfusion 1997;37:423–35.

    Article  CAS  PubMed  Google Scholar 

  33. Grass JA, Hei DJ, Metchette K, et al. Inactivation of leukocytes in platelet concentrates by psoralen plus UVA. Blood 1998;91:2180–88.

    CAS  PubMed  Google Scholar 

  34. Corash L, Behrman B, Rheinschmidt M, et al. Post-transfusion viability and tolerability of photochemically treated platelet concentrates (PC). Blood 1997;90(Supp11):267a.

    Google Scholar 

  35. Slichter SJ, Corash L, Grabowski M, et al. Viability and hemostatic function of photochemically treated (PCT) platelets in thrombocytopenic patients. Blood 1999; 94(Supp11):376a.

    Google Scholar 

  36. Rywkin S, Ben-Hur E, Reid ME, Oyen R, Ralph H, Horowitz B. Selective protection against IgG binding to red cells treated with phthalocyanines and red light for virus inactivation. Transfusion 1995;35:414–20.

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Hur E, Rywkin S, Rosenthal I, Geacintov NE, Horowitz B. Virus inactivation in red cell concentrates by photosensitization with phthalcyanines: protection of red cells but not of vesicular stomatitis virus with a water-soluble analogue of vitamin E. Transfusion 1995;35:401–06.

    Article  CAS  Google Scholar 

  38. Wagner SJ, Skirpchenko A, Robinette D, Mallory DA, Cincotta L. Preservation of red cell properties after virucidal phototreatment with dimethylmethylene blue. Transfusion 1998;38:729–37.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang QX, Edson C, Budowsky E, Purmal A. Inactine - a method for viral inactivation in red blood cell concentrate. Transfusion 1998;38(Suppl 1):75S.

    Article  Google Scholar 

  40. Edson CM, Purmal A, Brown F, Valeri CR, Budowsky E, Chapman JR. Viral inactivation of red blood cell concentrates by Inactine: mechanism of action and lack of effect on red cell physiology. Transfusion 1999;39(Suppl 1):108s.

    Article  Google Scholar 

  41. Cook D, Stassinopoulos A, Merritt J, et al. Inactivation of pathogens in packed red blood cell (PRBC) concentrates using S-303. Blood 1997;90(Suppl 1):409a.

    Google Scholar 

  42. Cook D, Stassinopoulos A, Wollowitz S, et al. In vivo analysis of packed red blood cells treated with S-303 to inactivate pathogens. Blood 1998;92(Suppl 1):503a.

    Google Scholar 

  43. Greenwalt TJ, Hambleton J, Wages D, et al. Viability of red blood cells treated with a novel pathogen inactivation system. Transfusion 1999;39 (Suppl 1):109s.

    Article  Google Scholar 

  44. Hambleton J, Greenwalt T, Viele M, et al. Post transfusion recovery after multiple exposures to red blood cell concentrates (RBCS) treated with a novel pathogen inactivation (P.I.) process. Blood 1999;94(Suppl 1):376a.

    Google Scholar 

  45. Londe H, Damonte P, Corash L, Lin L. Inactivation of human cytomegalovirus with psoralen and UVA in human platelet concentrates. Blood 1995;86 (Suppl 1):544a.

    Google Scholar 

  46. Lin L, Londe H, Hanson CV, et al. Photochemical inactivation of cell-associated human immunodeficiency virus in platelet concentrates. Blood 1993;82:292–97.

    CAS  PubMed  Google Scholar 

  47. Eble BE, Corash L. Photochemical inactivation of duck hepatitis B virus in human platelet concentrates: a model of surrogate human hepatitis B virus infectivity. Transfusion 1996;36:406–18.

    Article  CAS  PubMed  Google Scholar 

  48. Lin L, Londe H, Janda M, Hanson CV, Corash L. Photochemical inactivation of pathogenic bacteria in human platelet concentrates. Blood 1994;83:2698–706.

    CAS  PubMed  Google Scholar 

  49. Benade LE, Shumaker J, Xu Y, Dodd R. Inactivation of free and cell-associated HIV in platelet suspensions by aminomethyltrimethyl (AMT) psoralen and ultraviolet light. Transfusion 1992;32(Suppl 1):33S.

    Google Scholar 

  50. Margolis-Nunno M, Williams B, Rywkin S, Horowitz B. Photochemical virus sterilization in platelet concentrates with psoralen derivatives. Thromb Haemostas 1991; 65:1162(abstract).

    Google Scholar 

  51. Rai S, Kasturi C, Grayzar J, et al. Dramatic improvements in viral inactivation with brominated psoralens, napthalenes and anthracenes. Photochem Photobiol 1993;58 (1):59–65.

    Article  CAS  PubMed  Google Scholar 

  52. Yerram N, Forster P, Goodrich T, et al. Comparison of virucidal properties of brominated psoralen with 8-methoxy psoralen (8-MOP) and aminomethyl trimethyl psoralen (AMT) in platelet concentrates. Blood 1993;82 (Suppl 1):402a.

    Google Scholar 

  53. Prodouz KN, Fratantoni JC, Boone EJ, Bonner RF. Use of laser-UV for inactivation of virus in blood products. Blood 1987;70:589–92.

    CAS  PubMed  Google Scholar 

  54. Prodouz KN, Lytle CD, Keville EA, Budacz AP, Vargo S, Fratantoni JC. Inhibition by albumin of merocyanine 540-mediated photosensitization of platelets and viruses. Transfusion 1991;31:415–22.

    Article  CAS  PubMed  Google Scholar 

  55. Klein-Struckmeier A, Mohr H. Virus inactivation by methylene blue/light in thrombocyte concentrates. Vox Sang 1994;67 (Suppl 2):36.

    Google Scholar 

  56. Horowitz B, Rywkin S. Margolis-Nunno H, et al. Inactivation of viruses in red cell and platelet concentrates with aluminum phthalocyanine (AIPc) sulfonates. Blood Cells 1992:18:141–50.

    CAS  PubMed  Google Scholar 

  57. Matthews JL, Sogandres-Bernal F, Judy M. et al. Inactivation of viruses with photo-active compounds. Blood Cells 1992;18:75–89.

    CAS  PubMed  Google Scholar 

  58. North J. Neyndorff H. King D. Levy JG. Viral inactivation in blood and red cell concentrates with benzoporphyrin derivative. Blood Cells 1992:18:129–40.

    CAS  PubMed  Google Scholar 

  59. Sieber F. Krueger GJ, O’Brien JM, Schober SL, Sensenbrenner LI, Sharkis SJ. Inactivation of friend erythroleukemia virus and friend virus-transformed cells by merocyanine 540-mediated photosensitization. Blood 1989:73:345–50.

    CAS  PubMed  Google Scholar 

  60. O’Brien JM, Gaffney DK, Wang TP, Sieber F. Merocyanine 540-sensitized photoinactivation of enveloped viruses in blood products: site and mechanism of phototoxicity. Blood 1992;80:277–85.

    PubMed  Google Scholar 

  61. Smith OM, Dolan SA, Dvorak JA, Wellems TE. Sieber F. Merocyanine 540-sensitized photoinactivation of human erythrocytes parasitized by Plasmodium falciparum. Blood 1992:80:21–24.

    CAS  PubMed  Google Scholar 

  62. Wagner SJ, Storry JR, Mallory DA. Stromberg RR, Benade LE, Friedman LI. Red cell alterations associated with virucidal methylene blue phototreatment. Transfusion 1993:33:30–36.

    Article  CAS  PubMed  Google Scholar 

  63. Wagner SJ, Abe H, Benade L. Differential sensitivity to methylene blue (MB) photo-sensitization. Photochem Photobiol 1993;57(Suppl):67S.

    Article  Google Scholar 

  64. Horowitz B, Williams B, Rywkin S, et al. Inactivation of viruses in blood with aluminum phthalocyanine derivatives. Transfusion 1991;31:102–08.

    Article  CAS  PubMed  Google Scholar 

  65. Yerram N, Platz MS. Forster P, Goodrich ‘F, Goodrich R. Selective viral inactivation in RBC, platelets, and plasma using a novel psoralen derivative plus ultraviolet A (UVA) light. Transfusion 1993;33 (Suppl 1):50S.

    Google Scholar 

  66. Lavie G, Mazur Y, I,avie D, et al. Hypericin as an inactivator of infectious viruses in blood components. Transfusion 1995:35:392–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Corash, L.M. (2001). Inactivation of Viruses, Bacteria, Protozoa, and Leukocytes in Labile Blood Components by Using Nucleic Acid Targeted Methods. In: Sibinga, C.T.S., Cash, J.D. (eds) Transfusion Medicine: Quo Vadis? What Has Been Achieved, What Is to Be Expected. Developments in Hematology and Immunology, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1735-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1735-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5700-1

  • Online ISBN: 978-1-4615-1735-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics