Skip to main content

Part of the book series: Massive Computing ((MACO,volume 2))

Abstract

In this paper we develop data mining techniques to predict 3D contact potentials among protein residues (or amino acids) based on the hierarchical nucleation-propagation model of protein folding. We apply a hybrid approach, using a Hidden Markov Model to extract folding initiation sites, and then apply association mining to discover contact potentials. The new hybrid approach achieves accuracy results better than those reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–402, 1997.

    Article  Google Scholar 

  2. C. Bystroff and D. Baker. Prediction of local structure in proteins using a library of sequence- structure motifs. Journal of Molecular Biology, 281(3), 565–77, 1998.

    Article  Google Scholar 

  3. C. Bystroff, V. Thorsson, and D. Baker. HMMSTR: A hidden markov model for local sequence-structure correlations in proteins. Journal of Molecular Biology, (to appear), 2000.

    Google Scholar 

  4. S. Eddy. Profile hidden markov models. Bioinformatics, 14(9), 755–63, 1998.

    Article  Google Scholar 

  5. P. Fariselli and R. Casadio. A neural network based predictor of residue contacts in proteins. Protein Engineering, 12(1), 15–21, 1999.

    Article  Google Scholar 

  6. K. Han and D. Baker. Global properties of the mapping between local amino acid sequence and local structure in proteins. Proc. Natl Acad. Set USA, 93(12), 5814–5818, 1996.

    Article  Google Scholar 

  7. B. Honig. Protein folding: from the levinthal paradox to structure prediction. Journal of Molecular Biology, 293(2), 283–93, 1999.

    Article  Google Scholar 

  8. U. Hobohm and C. Sander. Enlarged representative set of protein structures. Protein Science, 3(3), 522–524, 1994.

    Article  Google Scholar 

  9. W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637, 1983.

    Article  Google Scholar 

  10. J. Moult, J.T. Pedersen, R. Judson, and K. Fidelis. A large-scale experiment to assess protein structure prediction methods. Proteins, 23(3), ii-v, 1995.

    Article  Google Scholar 

  11. O. Olmea and A. Valencia. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Folding & Design, 2, S25-S32, June 1997.

    Article  Google Scholar 

  12. L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257–86, 1989.

    Article  Google Scholar 

  13. L. Serrano, A. Matouschek, and A.R. Fersht. The folding of an enzyme. m. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. Journal of Molecular Biology, 224(3), 805–18, 1992.

    Article  Google Scholar 

  14. D. Thomas, G. Casari, and C. Sander. The prediction of protein contacts from multiple sequence aligments. Protein Engineering, 9(11):941–48, 1996.

    Article  Google Scholar 

  15. M. Vendruscolo, E. Kussell, and E. Domany. Recovery of protein structure from contact maps. Folding & Design, 2(5), 295–306, September 1997.

    Article  Google Scholar 

  16. J. Wootton and S. Federhen. Analysis of compositionally biased regions in sequence databases. Methods Enzymol., 266, 554–71, 1996.

    Article  Google Scholar 

  17. Y. I. Wolf, N. V. Grishin, and E. V. Koonin. Estimating the number of protein folds and families from complete genome data. Journal of Molecular Biology, 299(4), 897–905, 2000.

    Article  Google Scholar 

  18. Q. Yi, C. Bystroff, P. Rajagopal, R. E. Klevit, and D. Baker. Prediction and structural characterization of an independently folding substructure in the src sh3 domain. Journal of Molecular Biology, 283(1), 293–300, 1998.

    Article  Google Scholar 

  19. C. Zhao and S.-H. Kim. Environment-dependent residue contact energies for proteins. Proc. Natl Acad. Sci. USA, 97(6), 2550–5, 2000.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zaki, M.J., Bystroff, C. (2001). Mining Residue Contacts in Proteins. In: Grossman, R.L., Kamath, C., Kegelmeyer, P., Kumar, V., Namburu, R.R. (eds) Data Mining for Scientific and Engineering Applications. Massive Computing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1733-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1733-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0114-7

  • Online ISBN: 978-1-4615-1733-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics