Skip to main content

Part of the book series: Massive Computing ((MACO,volume 2))

Abstract

NASA has been involved with remote exploration of the solar system for over forty years and, as a result, has accumulated a vast archive of images. Continued improvements in acquisition and storage technology are yielding new image sets with data volumes measured in terabytes. Within these large image collections there is a wealth of scientific information, but getting from the data to knowledge is a difficult problem both due to the size of the datasets involved and the difficulty of automatically interpreting image data. This chapter provides an overview of our efforts to develop algorithms for mining useful information from large image collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Abu-Mostafa. Machines that learn from hints. Scientific American, 272(4):64–69, April 1995.

    Article  Google Scholar 

  2. L. Asker and R. Maclin. Achieving expert performance on real-world problems using machine learning. In Fourteenth International Conference on Machine Learning, 1997.

    Google Scholar 

  3. J.C. Aubele and E.N. Slyuta. “Small Domes on Venus: Characteristics and Origins”. Earth, Moon, and Planets, 50/51:493–532, 1990.

    Article  Google Scholar 

  4. P. Baldi, 1994. private communication.

    Google Scholar 

  5. M.C. Burl, L. Asker, P. Smyth, U. Fayyad, P. Perona, L. Crumpler, and J. Aubele. Learning to recognize volcanoes on Venus. Machine Learning, 30:165–194, 1998.

    Article  Google Scholar 

  6. M. Bennamoun and A. Bodnarova. Automated visual inspection and flaw detection in textile materials: Past, present, and future. In IEEE Int. Confi on Systems, Man, and Cybernetics, volume 5, pages 4340–4343, 1998.

    Google Scholar 

  7. A.C. Bovik, M. Clark, and W.S. Geisler. Multichannel texture analysis using localized spatial filters. IEEE Trans, on Pattern Analysis and Machine Intelligence (PAMI), 12(l):55–73, January 1990.

    Article  Google Scholar 

  8. M.C. Burl, U.M. Fayyad, P. Perona, P. Smyth, and M.P. Burl. Automating the hunt for volcanoes on Venus. In Proc. of the Computer Vision and Pattern Recognition Conference, pages 302–309, 1994.

    Google Scholar 

  9. M.C. Burl, U.M. Fayyad, P. Perona, and P. Smyth. Trainable cataloging for digital image libraries with applications to volcano detection. Technical report, Technical Report CNS-TR-96–01, California Institute of Technology, Dept. of CNS, 1996.

    Google Scholar 

  10. M.C. Burl, C. Fowlkes, and J. Roden. Mining for image content. In Systemics, Cybernetics, and Informatics/Information Systems: Analysis and Synthesis, July 1999.

    Google Scholar 

  11. M.C. Burl, C. Fowlkes, J. Roden, A. Stechert, and S. Mukhtar. Diamond Eye: A distributed architecture for image data mining. In SPIE Aerosense Symposium, Conf on Data Mining and Knowledge Discovery, 1999.

    Google Scholar 

  12. M.C. Burl and D. Lucchetti. Autonomous visual discovery. In SPIE Aerosense Symposium, Conf. on Data Mining and Knowledge Discovery, 2000.

    Google Scholar 

  13. M.C. Burl, T.K. Leung, and P. Perona. “Face Localization via Shape Statistics”. In Intl. Workshop on Automatic Face and Gesture Recognition, 1995.

    Google Scholar 

  14. M.C. Burl, T.K. Leung, and P. Perona. “Recognition of Planar Object Classes”. In Proc. IEEEComput. Soc. Conf. Comput. Vision and Pattern Recogn., 1996.

    Google Scholar 

  15. M.C. Burl, M. Weber, and P. Perona. A probabilistic approach to object recognition using local photometry and global geometry. In European Conf. on Computer Vision, 1998.

    Google Scholar 

  16. F.S. Cohen, Z. Fan, and S. Attali. Automated inspection of textile fabrics using textural models. IEEE Trans, on Pattern Analysis and Machine Intelligence (PAMI), 13(8):803–808, August 1991.

    Article  Google Scholar 

  17. K. Cherkauer, 1996. private communication.

    Google Scholar 

  18. D. DeCoste and M.C. Burl. Achieving distortion-invariant recognition via jittered queries. In Proc. of Computer Vision and Pattern Recognition Conf., 2000.

    Google Scholar 

  19. R.O. Duda and RE. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, Inc., 1973.

    MATH  Google Scholar 

  20. W. Freeman and E. Adelson. Steerable filters for early vision, image analysis and wavelet decomposition. In Third International Conference on Computer Vision, pages 406–415. IEEE Computer Society, 1990.

    Google Scholar 

  21. W. Freeman and E Adelson. The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell, 13:891–906, 1991.

    Article  Google Scholar 

  22. D. Forsyth, J. Malik, and R. Wilensky. Searching for digital pic- tures. Scientific American, pages 88–93, June 1997.

    Google Scholar 

  23. M. Flickner, H Sawhney, W Niblack, et al. “Query by Image and Video Content - The QBIC System”. Computer, 28(9):23–32, 1995.

    Article  Google Scholar 

  24. H. Greenspan, S. Belongie, P. Perona, R. Goodman, S. Rakshit, and C. Anderson. Overcomplete steerable pyramid filters and rotation invariance. In Proc. IEEE Comput. Soc. Conf Comput. Vision and Pattern Recogn., Seattle, June 1994.

    Google Scholar 

  25. Goldstein. False alarm regulation in Weibull and log-normal clutter. IEEE Trans, on Aerospace and Electronics Systems (AES), 9(l):84–92, January 1973.

    Article  Google Scholar 

  26. B.K.P. Horn. Robot Vision. MIT press, 1986.

    Google Scholar 

  27. D. Hubel and T. Wiesel. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol (Lond.), 148:574–591, 1959.

    Article  Google Scholar 

  28. D. Hubel and T. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol (Land), 160:106–154, 1962.

    Article  Google Scholar 

  29. L. Itti and C. Koch. Learning to detect salient objects in natural scenes using visual attention. In Image Understanding Workshop, 1999.

    Google Scholar 

  30. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans, on Pattern Analysis and Machine Intelligence (PAMI), 20(11):1254–1259, 1998.

    Article  Google Scholar 

  31. D. Jones and J. Malik. A computational framework for determining stereo correspondence from a set of linear spatial filters. In Proc. 2 nd Europ. Conf. Comput Vision, G. Sandini (Ed.), LNCS-Series Vol 588, Springer-Verlag, pages 395–410, 1992.

    Google Scholar 

  32. T.K. Leung, M.C. Burl, and P. Perona. “Finding Faces in Cluttered Scenes”. In Intl. Conf. on Computer Vision, Cambridge, MA, 1995.

    Google Scholar 

  33. T.K. Leung, M.C. Burl, and P. Perona. Probabilistic affine invari- ants for recognition. In Proc. of the Computer Vision and Pattern Recognition Conference, 1998.

    Google Scholar 

  34. Michael C. Malin and Kenneth S. Edgett. Evidence for recent groundwater seepage and surface runoff on mars. Science, 288:2330–2335, June 30, 2000.

    Article  Google Scholar 

  35. R. Manduchi and J. Portilla. ‘independent component analysis of textures. In Seventh Intl. Conf. on Computer Vision, pages 1054- 1060, 1999.

    Google Scholar 

  36. J.L. Mundy and A. Zisserman. Geometric Invariance in Computer Vision. Artificial Intelligence. The MIT Press, 1992.

    Google Scholar 

  37. L.M. Novak and M.C. Burl. Optimal speckle reduction in polarimetric sar imagery. IEEE Trans, on AES, 26(2):293–305, March, 1990.

    Google Scholar 

  38. L.M. Novak, M.C. Burl, and W.W. Irving. Optimal polarimetric processing for enhanced target detection. IEEE Trans, on AES, 29(l):234–244, January, 1993.

    Google Scholar 

  39. S. Nayar, S. Baker, and H. Murase. Parametric feature detection. In Proc. of the Computer Vision and Pattern Recognition Conference, pages 471–477, 1996.

    Google Scholar 

  40. B.A. Olshausen, C.H. Anderson, and D.C. Van Essen. A neuro-biological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neuroscience, 13(11):4700–4719, November 1993.

    Google Scholar 

  41. P. Perona. Deformable kernels for early vision. IEEE Trans. Pattern Anal Mack Intell, 17(5):488–499, 1995.

    Article  Google Scholar 

  42. G.H. Pettengill, P.G. Ford, W.T.K. Johnson, R.K. Raney, and L.A. Soderblom. “Magellan: Radar Performance and Data Products”. Science, 252:260–265, 1991.

    Article  Google Scholar 

  43. R.W. Picard and A.P. Pendand. Introduction to the special section on digital libraries: Representation and retrieval. IEEE Trans. Pattern Anal Mack Intell., 18(8):769–853, Aug 1996.

    Article  Google Scholar 

  44. I. Rigoutsos and R. Hummel. A bayesian approach to model-matching with geometric hashing. Computer Vision and Image Understanding, 62(l):11–26, 1995.

    Article  Google Scholar 

  45. Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326, December 22, 2000.

    Article  Google Scholar 

  46. Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feedback. J. of the American Society for Information Science, 4l(4):288–297, 1990.

    Article  Google Scholar 

  47. T. Stough and C. Brodley. Image feature reduction through spoiling: its application to multiple matched filters for focus of attention. In Proc. of the Third Annual Conference on Knowledge Discovery and Data Mining, pages 255–259, 1997.

    Google Scholar 

  48. R.S. Saunders, AJ. Spear, P.C. Allin, R.S. Austin, A.L. Berman, R.C. Chandlee, J. Clark, A.V. Decharon, and E.M. Dejong. Magellan mission summary. Journal of Geophysical Research Planets, 97(E8):13067–13090, 1992.

    Article  Google Scholar 

  49. H. Sari-Sarraf and J.S. Goddard Jr. Vision system for on-loom fabric inspection. IEEE Trans, on Industry Applications, 35(6): 1252–1259, 1999.

    Article  Google Scholar 

  50. P. Simard, Y.L. Cun, and J. Denker. Efficient pattern recognition using a new transformation distance. In Advances in Neural Information Processing Systems 5, pages 50–58, 1993.

    Google Scholar 

  51. M. Turmon, 1996. private communication.

    Google Scholar 

  52. Virage. Visual image retrieval engine. URL: http://206.169.1.82/market/vir.html.

    Google Scholar 

  53. H.J. Wolfson. Model-based object recognition by geometric hashing. In Proc. 1 st Europ. Conf. Comput. Vision, LNCS-Series Vol. 427, Springer-Verlag, pages 526–536, 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burl, M.C. (2001). Mining Large Image Collections. In: Grossman, R.L., Kamath, C., Kegelmeyer, P., Kumar, V., Namburu, R.R. (eds) Data Mining for Scientific and Engineering Applications. Massive Computing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1733-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1733-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0114-7

  • Online ISBN: 978-1-4615-1733-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics