Skip to main content

Molecular and Cellular Mechanisms of Traumatic Cerebral Vascular Injury

  • Chapter

Part of the book series: Molecular and Cellular Biology of Critical Care Medicine ((MCCM,volume 2))

Abstract

Traumatic brain injury (TBI) is a major health care problem resulting in 50,000 deaths and nearly 50 billion dollars in medical expenses and lost productivity annually in the United States alone (Sosin et al. 1995). The physiologic deficit most likely responsible for this higher mortality is inadequate cerebral blood flow (CBF). Cerebral ischemia is caused by complex interactions between reduced blood pressure, impaired cerebral vasodilatory responsiveness, cerebral swelling and elevated intracranial pressure (ICP). Prompt treatment of hypotension in head-injured patients is essential because even mild hypotension (systolic blood pressure 10–29 mm Hg below normal) has been associated with increased mortality (Chesnut et al. 1993). Although appropriate maintenance of cerebral perfusion pressure is critical for the effective treatment of head-injured patients, an important additional therapeutic strategy would be to restore the vasodilatory and vasoconstrictory properties of the cerebral vasculature that are intended to protect the brain by maintaining as constant and ideal an environment as possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alagarsamy S, DeWitt DS and Johnson KM (1998). Effects of moderate, central fluid percussion traumatic brain injury on nitric oxide synthase activity in rats. J Neurotrauma 15: 627–633.

    Article  PubMed  CAS  Google Scholar 

  2. Al-Turki A and Armstead WM (1998). Altered release of prostaglandins by opioids contributes to impaired cerebral hemodynamics following brain injury. Crit Care Med 26: 917–925.

    Article  PubMed  CAS  Google Scholar 

  3. Armstead WM (1996). Role of endothelin in pial artery vasoconstriction and altered responses to vasopressin after brain injury. J Neurosurg 85: 901–907.

    Article  PubMed  CAS  Google Scholar 

  4. Armstead WM (1997). Brain injury impairs ATP-sensitive K+ channel function in piglet cerebral arteries. Stroke 28: 2273–2279; discussion 2280.

    Article  PubMed  CAS  Google Scholar 

  5. Armstead WM (1998). Relationship among NO, the KATP channel, and opioids in hypoxic pial artery dilation. Am J Physiol 275: H988–994.

    PubMed  CAS  Google Scholar 

  6. Armstead WM (1999). Age-dependent impairment of K(ATP) channel function following brain injury. J Neurotrauma 16: 391–402.

    Article  PubMed  CAS  Google Scholar 

  7. Armstead WM (1999). Superoxide generation links protein kinase C activation to impaired ATP-sensitive K+ channel function after brain injury. Stroke 30: 153–159.

    Article  PubMed  CAS  Google Scholar 

  8. Armstead WM (2000). NOC/oFQ contributes to age-dependent impairment of NMDA-induced cerebrovasodilation after brain injury. Am J Physiol Heart Circ Physiol 279: H2188–2195.

    PubMed  CAS  Google Scholar 

  9. Armstead WM, Mirro R, Busija DW, et al. (1991). Opioids and the prostanoid system in the control of cerebral blood flow in hypotensive piglets. J Cereb Blood Flow Metab 11: 380–387.

    Article  PubMed  CAS  Google Scholar 

  10. Bareyre F, Wahl F, McIntosh TK, et al. (1997). Time course of cerebral edema after traumatic brain injury in rats: effects of riluzole and mannitol. J Neurotrauma 14: 839–849.

    Article  PubMed  CAS  Google Scholar 

  11. Baskaya MK, Rao AM, Dogan A, et al. (1997). The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226: 33–36.

    Article  PubMed  CAS  Google Scholar 

  12. Baskaya MK, Rao AM, Puckett L, et al. (1996). Effect of difluoromethylornithine treatment on regional ornithine decarboxylase activity and edema formation after experimental brain injury. J Neurotrauma 13: 85–92.

    Article  PubMed  CAS  Google Scholar 

  13. Beckman JS (1991). The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15: 53–59.

    PubMed  CAS  Google Scholar 

  14. Beckman JS, Beckman TW, Chen J, et al. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  15. Beckman JS, Chen J, Crow JP, et al. (1994). Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res 103: 371–380.

    Article  PubMed  CAS  Google Scholar 

  16. Beckman JS and Koppenol WH (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424–1437.

    PubMed  CAS  Google Scholar 

  17. Bell MJ, Kochanek PM, Doughty LA, et al. (1997). Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J Neurotrauma 14: 451–457.

    Article  PubMed  CAS  Google Scholar 

  18. Biagas KV, Uhl MW, Schiding JK, et al. (1992). Assessment of posttraumatic polymorphonuclear leukocyte accumulation in rat brain using tissue myeloperoxidase assay and vinblastine treatment. J Neurotrauma 9: 363–371.

    Article  PubMed  CAS  Google Scholar 

  19. Bolanos JP and Almeida A (1999). Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411: 415–436.

    Article  PubMed  CAS  Google Scholar 

  20. Bouma GJ and Muizelaar JP (1990). Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation. J Neurosurg 73: 368–374.

    Article  PubMed  CAS  Google Scholar 

  21. Bouma GJ, Muizelaar JP, Choi SC, et al. (1991). Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75: 685–693.

    Article  PubMed  CAS  Google Scholar 

  22. Bramlett HM, Dietrich WD and Green EJ (1999). Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. J Neurotrauma 16: 1035–1047.

    Article  PubMed  CAS  Google Scholar 

  23. Bryan RM, Jr., Cherian L and Robertson C (1995). Regional cerebral blood flow after controlled cortical impact injury in rats. Anesth Analg 80: 687–695.

    PubMed  Google Scholar 

  24. Brzezinska A, Chillian W and Elliott S (1998). Peroxynitrite inhibits K+ currents and causes freshly isolated cerebral artery smooth muscles to contract. FASEB J 12: A1001.

    Google Scholar 

  25. Bukoski RD, Wang SN, Bian K, et al. (1997). Traumatic brain injury does not alter cerebral artery contractility. Am J Physiol 272: H1406–1411.

    PubMed  CAS  Google Scholar 

  26. Bullock R, Chesnut R, Clifton G, et al. (2000). Role of antiseizure prophylaxis following head injury. J Neurotrauma 17: 549–553.

    Article  Google Scholar 

  27. Busija D (1993). Cerebral autoregulation. In: The Regulation of the Cerebral Circulation. Phillis JW. (ed). Boca Raton, CRC Press: 46–61.

    Google Scholar 

  28. Chabrier PE, Auguet M, Spinnewyn B, et al. (1999). BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: a promising neuroprotective strategy. Proc Natl Acad Sci U S A 96: 10824–10829.

    Article  PubMed  CAS  Google Scholar 

  29. Cherian L, Chacko G, Goodman JC, et al. (1999). Cerebral hemodynamic effects of phenylephrine and L-arginine after cortical impact injury. Crit Care Med 27: 2512–2517.

    Article  PubMed  CAS  Google Scholar 

  30. Cherian L, Goodman JC and Robertson CS (2000). Brain nitric oxide changes after controlled cortical impact injury in rats. J Neurophysiol 83: 2171–2178.

    PubMed  CAS  Google Scholar 

  31. Cherian L, Robertson CS, Contant CF, Jr., et al. (1994). Lateral cortical impact injury in rats: cerebrovascular effects of varying depth of cortical deformation and impact velocity. J Neurotrauma 11: 573–585.

    Article  PubMed  CAS  Google Scholar 

  32. Cherian L, Robertson CS and Goodman JC (1996). Secondary insults increase injury after controlled cortical impact in rats. J Neurotrauma 13: 371–383.

    Article  PubMed  CAS  Google Scholar 

  33. Chesnut RM, Marshall SB, Piek J, et al. (1993). Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl 59: 121–125.

    CAS  Google Scholar 

  34. Clark RS, Kochanek PM, Schwarz MA, et al. (1996). Inducible nitric oxide synthase expression in cerebrovascular smooth muscle and neutrophils after traumatic brain injury in immature rats. Pediatr Res 39: 784–790.

    Article  PubMed  CAS  Google Scholar 

  35. Clark RS, Kochanek PM, Watkins SC, et al. (2000). Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem 74: 740–753.

    Article  PubMed  CAS  Google Scholar 

  36. Dash PK, Mach SA and Moore AN (2000). Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J Neurotrauma 17: 69–81.

    Article  PubMed  CAS  Google Scholar 

  37. Dempsey RJ, Baskaya MK and Dogan A (2000). Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-D-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery 47: 399–404; discussion 404–396.

    Article  PubMed  Google Scholar 

  38. DeWitt D, Hayes R, Lyeth B, et al. (1988). Effects of traumatic brain injury on cerebral blood flow and metabolism: autoradiographic studies. Anesthesiology Review 15: 31–32.

    Google Scholar 

  39. DeWitt D, Mathew B and Prough D (2000). Peroxynitrite and traumatic brain injury reduce vasodilatory response in isolated rodent middle cerebral arteries. J Neurotrauma 17: 993.

    Google Scholar 

  40. Dewitt DS, Kong DL, Lyeth BG, et al. (1988). Experimental traumatic brain injury elevates brain prostaglandin E2 and thromboxane B2 levels in rats. J Neurotrauma 5: 303–313.

    Article  PubMed  CAS  Google Scholar 

  41. DeWitt DS, Mathew BP, Chaisson JM, et al. (2001). Peroxynitrite reduces vasodilatory responses to reduced intravascular pressure, calcitonin gene-related peptide, and cromakalim in isolated middle cerebral arteries. J Cereb Blood Flow Metab 21: 253–261.

    Article  PubMed  CAS  Google Scholar 

  42. DeWitt DS, Prough DS, Deal DD, et al. (1996). Hypertonic saline does not improve cerebral oxygen delivery after head injury and mild hemorrhage in cats. Crit Care Med 24: 109–117.

    Article  PubMed  CAS  Google Scholar 

  43. DeWitt DS, Prough DS, Taylor CL, et al. (1992). Regional cerebrovascular responses to progressive hypotension after traumatic brain injury in cats. Am J Physiol 263: H1276–1284.

    PubMed  CAS  Google Scholar 

  44. Dewitt DS, Prough DS, Uchida T, et al. (1997). Effects of nalmefene, CG3703, tirilazad, or dopamine on cerebral blood flow, oxygen delivery, and electroencephalographic activity after traumatic brain injury and hemorrhage. J Neurotrauma 14: 931–941.

    Article  PubMed  CAS  Google Scholar 

  45. DeWitt DS, Smith TG, Deyo DJ, et al. (1997). L-arginine and superoxide dismutase prevent or reverse cerebral hypoperfusion after fluid-percussion traumatic brain injury. J Neurotrauma 14: 223–233.

    Article  PubMed  CAS  Google Scholar 

  46. Dietrich WD, Alonso O and Halley M (1994). Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11: 289–301.

    Article  PubMed  CAS  Google Scholar 

  47. Edvinsson L, MacKenzie E and McCulloch J (1993). Cerebral Blood Flow and Metabolism. 1 Edn. New York: Raven Press.

    Google Scholar 

  48. Elliott SJ, Lacey DJ, Chilian WM, et al. (1998). Peroxynitrite is a contractile agonist of cerebral artery smooth muscle cells. Am J Physiol 275: H1585–1591.

    PubMed  CAS  Google Scholar 

  49. Ellis EF, Dodson LY and Police RJ (1991). Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J Neurosurg 75: 774–779.

    Article  PubMed  CAS  Google Scholar 

  50. Ellis EF, Wright KF, Wei EP, et al. (1981). Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. J Neurochem 37: 892–896.

    Article  PubMed  CAS  Google Scholar 

  51. Enevoldsen E and Jensen F (1978). Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 48: 689–703.

    Article  PubMed  CAS  Google Scholar 

  52. Engelborghs K, Haseldonckx M, Van Reempts J, et al. (2000). Impaired autoregulation of cerebral blood flow in an experimental model of traumatic brain injury. J Neurotrauma 17: 667–677.

    Article  PubMed  CAS  Google Scholar 

  53. Fabian R, DeWitt D and Kent T (1995). In vivo detection of superoxide anion production by the brain using a cytochrome C electrode. J Cereb Blood Flow Metab 15: 242–247.

    Article  PubMed  CAS  Google Scholar 

  54. Faden AI, Demediuk P, Panter SS, et al. (1989). The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244: 798–800.

    Article  PubMed  CAS  Google Scholar 

  55. Faraci F and Brian J, Jr. (1994). Nitric O\oxide and the cerebral circulation. Stroke 25: 692–703.

    Article  PubMed  CAS  Google Scholar 

  56. Faraci F and Sobey C (1998). Role of potassium channels in regulation of cerebral vascular tone. J Cereb Blood Flow Metab 18: 1047–1063.

    Article  PubMed  CAS  Google Scholar 

  57. Faraci FM and Breese KR (1993). Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ Res 72: 476–480.

    Article  PubMed  CAS  Google Scholar 

  58. Foda MA and Marmarou A (1994). A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg 80: 301–313.

    Article  PubMed  CAS  Google Scholar 

  59. Fog M (1937). Cerebral circulation. The reaction of the pial arteries to a fall in blood pressure. Arch Neurol Psychiatr 37: 351–364.

    Article  Google Scholar 

  60. Forbes ML, Hendrich KS, Kochanek PM, et al. (1997). Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats. J Cereb Blood Flow Metab 17: 865–874.

    Article  PubMed  CAS  Google Scholar 

  61. Fukuda K, Tanno H, Okimura Y, et al. (1995). The blood-brain barrier disruption to circulating proteins in the early period after fluid percussion brain injury in rats. J Neurotrauma 12: 315–324.

    Article  PubMed  CAS  Google Scholar 

  62. Gahm C, Holmin S and Mathiesen T (2000). Temporal profiles and cellular sources of three nitric oxide synthase isoforms in the brain after experimental contusion. Neurosurgery 46: 169–177.

    Article  PubMed  CAS  Google Scholar 

  63. Ghirnikar RS, Lee YL and Eng LF (1998). Inflammation in traumatic brain injury: role of cytokines and chemokines. Neurochem Res 23: 329–340.

    Article  PubMed  CAS  Google Scholar 

  64. Ginsberg MD, Zhao W, Alonso OF, et al. (1997). Uncoupling of local cerebral glucose metabolism and blood flow after acute fluid-percussion injury in rats. Am J Physiol 272: H2859–2868.

    PubMed  CAS  Google Scholar 

  65. Golding EM, Contant CF, Jr., Robertson CS, et al. (1998). Temporal effect of severe controlled cortical impact injury in the rat on the myogenic response of the middle cerebral artery. J Neurotrauma 15: 973–984.

    Article  PubMed  CAS  Google Scholar 

  66. Golding EM, Robertson CS and Bryan RM, Jr. (1999). The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review. Clin Exp Hypertens 21: 299–332.

    Article  PubMed  CAS  Google Scholar 

  67. Golding EM, Robertson CS and Bryan RM, Jr. (2000). L-arginine partially restores the diminished CO2 reactivity after mild controlled cortical impact injury in the adult rat. J Cereb Blood Flow Metab 20: 820–828.

    Article  PubMed  CAS  Google Scholar 

  68. Golding EM, Steenberg ML, Cherian L, et al. (1998). Endothelial-mediated dilations following severe controlled cortical impact injury in the rat middle cerebral artery. J Neurotrauma 15: 635–644.

    Article  PubMed  CAS  Google Scholar 

  69. Golding EM, Steenberg ML, Contant CF, Jr., et al. (1999). Cerebrovascular reactivity to CO(2) and hypotension after mild cortical impact injury. Am J Physiol 277: H1457–1466.

    PubMed  CAS  Google Scholar 

  70. Goodman JC, Robertson CS, Grossman RG, et al. (1990). Elevation of tumor necrosis factor in head injury. J Neuroimmunol 30: 213–217.

    Article  PubMed  CAS  Google Scholar 

  71. Graham DI, Ford I, Adams JH, et al. (1989). Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52: 346–350.

    Article  PubMed  CAS  Google Scholar 

  72. Hartl R, Medary MB, Ruge M, et al. (1997). Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation. J Cereb Blood Flow Metab 17: 1210–1220.

    Article  PubMed  CAS  Google Scholar 

  73. Hayes RL, Jenkins LW, Lyeth BG, et al. (1988). Pretreatment with phencyclidine, an N-methyl-D-aspartate antagonist, attenuates long-term behavioral deficits in the rat produced by traumatic brain injury. J Neurotrauma 5: 259–274.

    Article  PubMed  CAS  Google Scholar 

  74. Hayes RL, Lyeth BG, Jenkins LW, et al. (1990). Possible protective effect of endogenous opioids in traumatic brain injury. J Neurosurg 72: 252–261.

    Article  PubMed  CAS  Google Scholar 

  75. Hayes RL, Yang K, Raghupathi R, et al. (1995). Changes in gene expression following traumatic brain injury in the rat. J Neurotrauma 12: 779–790.

    Article  PubMed  CAS  Google Scholar 

  76. Hayes RL, Yang K, Whitson JS, et al. (1995). Cytoskeletal derangements following central nervous system injury: modulation by neurotrophic gene transfection. J Neurotrauma 12: 933–941.

    Article  PubMed  CAS  Google Scholar 

  77. Hudak ML, Jones MD, Jr., Popel AS, et al. (1989). Hemodilution causes size-dependent constriction of pial arterioles in the cat. Am J Physiol 257: H912–917.

    PubMed  CAS  Google Scholar 

  78. Hudak ML, Koehler RC, Rosenberg AA, et al. (1986). Effect of hematocrit on cerebral blood flow. Am J Physiol 251: H63–70.

    PubMed  CAS  Google Scholar 

  79. Hulsebosch CE, Hains BC, Waldrep K, et al. (2000). Bridging the gap: from discovery to clinical trials in spinal cord injury. J Neurotrauma 17: 1117–1128.

    Article  PubMed  CAS  Google Scholar 

  80. Iadecola C, Pelligrino DA, Moskowitz MA, et al. (1994). Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14: 175–192.

    Article  PubMed  CAS  Google Scholar 

  81. Kaczorowski SL, Schiding JK, Toth CA, et al. (1995). Effect of soluble complement receptor-1 on neutrophil accumulation after traumatic brain injury in rats. J Cereb Blood Flow Metab 15: 860–864.

    Article  PubMed  CAS  Google Scholar 

  82. Kochanek P, Clark R, Ruppel R, et al. (2000). Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med 1: 4–19.

    Article  PubMed  Google Scholar 

  83. Kontos HA, Raper AJ and Patterson JL (1977). Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke 8: 358–360.

    Article  PubMed  CAS  Google Scholar 

  84. Kontos HA and Wei EP (1986). Superoxide production in experimental brain injury. J Neurosurg 64: 803–807.

    Article  PubMed  CAS  Google Scholar 

  85. Kontos HA and Wei EP (1992). Endothelium-dependent responses after experimental brain injury. J Neurotrauma 9: 349–354.

    Article  PubMed  CAS  Google Scholar 

  86. Kontos HA, Wei EP, Ellis EF, et al. (1985). Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res 57: 142–151.

    Article  PubMed  CAS  Google Scholar 

  87. Kontos HA, Wei EP, Povlishock JT, et al. (1980). Cerebral arteriolar damage by arachidonic acid and prostaglandin G2. Science 209: 1242–1245.

    Article  PubMed  CAS  Google Scholar 

  88. Kontos HA, Wei EP, Raper AJ, et al. (1978). Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234: H582–591.

    PubMed  CAS  Google Scholar 

  89. Koppenol WH (1998). The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 25: 385–391.

    Article  PubMed  CAS  Google Scholar 

  90. Kossenjans W, Eis A, Sahay R, et al. (2000). Role of peroxynitrite in altered fetal-placental vascular reactivity in diabetes or preeclampsia. Am J Physiol (Heart Cir Physiol) 278:H1311–H1319.

    CAS  Google Scholar 

  91. Kulkarni M and Armstead WM (2000). Superoxide generation links nociceptin/orphanin FQ (NOC/oFQ) release to impaired N-methyl-D-aspartate cerebrovasodilation after brain injury. Stroke 31: 1990–1996.

    Article  PubMed  CAS  Google Scholar 

  92. Kuschinsky W (1982). Coupling between functional activity, metabolism and blood flow in the brain: state of the art. Microcirculation 2: 357–378.

    Google Scholar 

  93. Lassen N (1959). Cerebral blood flow and oxygen consumption in man. Physiol Rev 39: 183–237.

    PubMed  CAS  Google Scholar 

  94. Lassen NA (1966). The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet 2: 1113–1115.

    Article  PubMed  CAS  Google Scholar 

  95. Lewelt W, Jenkins LW and Miller JD (1980). Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain. J Neurosurg 53: 500–511.

    Article  PubMed  CAS  Google Scholar 

  96. Lewelt W, Jenkins LW and Miller JD (1982). Effects of experimental fluid-percussion injury of the brain on cerebrovascular reactivity of hypoxia and to hypercapnia. J Neurosurg 56: 332–338.

    Article  PubMed  CAS  Google Scholar 

  97. Liaudet L, Soriano FG and Szabo C (2000). Biology of nitric oxide signaling. Crit Care Med 28: N37–52.

    Article  PubMed  CAS  Google Scholar 

  98. Lu YC, Liu S, Gong QZ, et al. (1997). Inhibition of nitric oxide synthase potentiates hypertension and increases mortality in traumatically brain-injured rats. Mol Chem Neuropathol 30: 125–137.

    Article  PubMed  CAS  Google Scholar 

  99. Lyeth BG and Hayes RL (1992). Cholinergic and opioid mediation of traumatic brain injury. J Neurotrauma 9 Suppl 2: S463–474.

    PubMed  Google Scholar 

  100. Marshall LF, Maas AI, Marshall SB, et al. (1998). A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89: 519–525.

    Article  PubMed  CAS  Google Scholar 

  101. Mathew BP, DeWitt DS, Bryan RM, Jr., et al. (1999). Traumatic brain injury reduces myogenic responses in pressurized rodent middle cerebral arteries. J Neurotrauma 16: 1177–1186.

    Article  PubMed  CAS  Google Scholar 

  102. Mattson MP and Scheff SW (1994). Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma 11: 3–33.

    Article  PubMed  CAS  Google Scholar 

  103. Mayer B and Andrew P (1998). Nitric oxide synthases: catalytic function and progress towards selective inhibition. Naunyn Schmiedebergs Arch Pharmacol 358: 127–133.

    Article  PubMed  CAS  Google Scholar 

  104. McDowall D (1966). Interrelationships between blood oxygen tension and cerebral blood flow. In: Oxygen Measurements in Blood and Tissues. Payne, JP, Hill DW (eds). London, Churchill.: 205–214.

    Google Scholar 

  105. McIntosh TK (1994). Neurochemical sequelae of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6: 109–162.

    PubMed  CAS  Google Scholar 

  106. McIntosh TK, Hayes RL, DeWitt DS, et al. (1987). Endogenous opioids may mediate secondary damage after experimental brain injury. Am J Physiol 253: E565–574.

    PubMed  CAS  Google Scholar 

  107. McIntosh TK, Juhler M and Wieloch T (1998). Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 15: 731–769.

    Article  PubMed  CAS  Google Scholar 

  108. McIntosh TK, Thomas M, Smith D, et al. (1992). The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma 9: 33–46.

    Article  PubMed  CAS  Google Scholar 

  109. McIntosh TK, Vink R, Soares H, et al. (1989). Effects of the N-methyl-D-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. J Neurotrauma 6: 247–259.

    Article  PubMed  CAS  Google Scholar 

  110. Mesenge C, Verrecchia C, Allix M, et al. (1996). Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma 13: 209–214.

    Article  PubMed  CAS  Google Scholar 

  111. Mesenge C, Verrecchia C, Allix M, et al. (1996). Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma 13: 11–16.

    Article  PubMed  CAS  Google Scholar 

  112. Meunier JC (1997). Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 340: 1–15.

    Article  PubMed  CAS  Google Scholar 

  113. Muijsers RB, Folkerts G, Henricks PA, et al. (1997). Peroxynitrite: a two-faced metabolite of nitric oxide. Life Sci 60: 1833–1845.

    Article  PubMed  CAS  Google Scholar 

  114. Muir JK, Boerschel M and Ellis EF (1992). Continuous monitoring of posttraumatic cerebral blood flow using laser-Doppler flowmetry. J Neurotrauma 9: 355–362.

    Article  PubMed  CAS  Google Scholar 

  115. Muir JK, Tynan M, Caldwell R, et al. (1995). Superoxide dismutase improves posttraumatic cortical blood flow in rats. J Neurotrauma 12: 179–188.

    Article  PubMed  CAS  Google Scholar 

  116. Muizelaar JP, Bouma GJ, Levasseur JE, et al. (1992). Effect of hematocrit variations on cerebral blood flow and basilar artery diameter in vivo. Am J Physiol 262: H949–954.

    PubMed  CAS  Google Scholar 

  117. Nawashiro H, Shima K and Chigasaki H (1995). Immediate cerebrovascular responses to closed head injury in the rat. J Neurotrauma 12: 189–197.

    Article  PubMed  CAS  Google Scholar 

  118. Obrist WD, Langfitt TW, Jaggi JL, et al. (1984). Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg 61: 241-253.

    Article  PubMed  CAS  Google Scholar 

  119. O’Dell DM, Gibson CJ, Wilson MS, et al. (2000). Positive and negative modulation of the GABA(A) receptor and outcome after traumatic brain injury in rats. Brain Res 861: 325–332.

    Article  Google Scholar 

  120. Okiyama K, Smith DH, Gennarelli TA, et al. (1995). The sodium channel blocker and glutamate release inhibitor BW1003C87 and magnesium attenuate regional cerebral edema following experimental brain injury in the rat. J Neurochem 64: 802–809.

    Article  PubMed  CAS  Google Scholar 

  121. Okiyama K, Smith DH, White WF, et al. (1997). Effects of the novel NMDA antagonists CP-98,113, CP-101,581 and CP-101,606 on cognitive function and regional cerebral edema following experimental brain injury in the rat. J Neurotrauma 14: 211–222.

    Article  PubMed  CAS  Google Scholar 

  122. Overgaard J and Tweed WA (1974). Cerebral circulation after head injury. 1. Cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 41: 531–541.

    Article  PubMed  CAS  Google Scholar 

  123. Pelligrino DA (1993). Saying NO to cerebral ischemia. J Neurosurg Anesthesiol 5: 221–231.

    PubMed  CAS  Google Scholar 

  124. Pelligrino DA, Koenig HM and Albrecht RF (1993). Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat. J Cereb Blood Flow Metab 13: 80–87.

    Article  PubMed  CAS  Google Scholar 

  125. Peroutka SJ, Moskowitz MA, Reinhard JF, Jr., et al. (1980). Neurotransmitter receptor binding in bovine cerebral microvessels. Science 208: 610–612.

    Article  PubMed  CAS  Google Scholar 

  126. Pickard JD (1981). Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism. J Cereb Blood Flow Metab 1: 361–384.

    Article  PubMed  CAS  Google Scholar 

  127. Povlishock JT, Becker DP, Sullivan HG, et al. (1978). Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res 153: 223–239.

    Article  PubMed  CAS  Google Scholar 

  128. Povlishock JT and Jenkins LW (1995). Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol 5: 415–426.

    Article  PubMed  CAS  Google Scholar 

  129. Povlishock JT and Kontos HA (1985). Continuing axonal and vascular change following experimental brain trauma. Cent Nerv Syst Trauma 2: 285–298.

    PubMed  CAS  Google Scholar 

  130. Raghupathi R, Graham DI and McIntosh TK (2000). Apoptosis after traumatic brain injury. J Neurotrauma 17: 927–938.

    Article  PubMed  CAS  Google Scholar 

  131. Reinscheid RK, Nothacker HP, Bourson A, et al. (1995). Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270: 792–794.

    Article  PubMed  CAS  Google Scholar 

  132. Rosenblum WI (1971). Effects of reduced hematocrit on erythrocyte velocity and fluorescein transit time in the cerebral microcirculation of the mouse. Circ Res 29: 96–103.

    Article  PubMed  CAS  Google Scholar 

  133. Roy C and Sherrington M (1890). On the regulation of the blood-supply of the brain. J Physiol (London) 11: 85–108.

    CAS  Google Scholar 

  134. Schmidt RH and Grady MS (1993). Regional patterns of blood-brain barrier breakdown following central and lateral fluid percussion injury in rodents. J Neurotrauma 10: 415–430.

    Article  PubMed  CAS  Google Scholar 

  135. Schoettle RJ, Kochanek PM, Magargee MJ, et al. (1990). Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats. J Neurotrauma 7: 207–217.

    Article  PubMed  CAS  Google Scholar 

  136. Scremin OU, Li MG and Jenden DJ (1997). Cholinergic modulation of cerebral cortical blood flow changes induced by trauma. J Neurotrauma 14: 573–586.

    Article  PubMed  CAS  Google Scholar 

  137. Shapira Y, Yadid G, Cotev S, et al. (1990). Protective effect of MK801 in experimental brain injury. J Neurotrauma 7: 131–139.

    Article  PubMed  CAS  Google Scholar 

  138. Shohami E, Bass R, Wallach D, et al. (1996). Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 16: 378–384.

    Article  PubMed  CAS  Google Scholar 

  139. Shohami E, Gallily R, Mechoulam R, et al. (1997). Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 72: 169–177.

    Article  PubMed  CAS  Google Scholar 

  140. Shohami E, Novikov M, Bass R, et al. (1994). Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab 14: 615–619.

    Article  PubMed  CAS  Google Scholar 

  141. Shohami E, Shapira Y, Sidi A, et al. (1987). Head injury induces increased prostaglandin synthesis in rat brain. J Cereb Blood Flow Metab 7: 58–63.

    Article  PubMed  CAS  Google Scholar 

  142. Shohami E, Shapira Y, Yadid G, et al. (1989). Brain phospholipase A2 is activated after experimental closed head injury in the rat. J Neurochem 53: 1541–1546.

    Article  PubMed  CAS  Google Scholar 

  143. Smith SL, Andrus PK, Zhang JR, et al. (1994). Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11: 393–404.

    Article  PubMed  CAS  Google Scholar 

  144. Soares HD, Hicks RR, Smith D, et al. (1995). Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15: 8223–8233.

    PubMed  CAS  Google Scholar 

  145. Sosin DM, Sniezek JE and Waxweiler RJ (1995). Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. Jama 273: 1778–1780.

    Article  PubMed  CAS  Google Scholar 

  146. Stover JF, Dohse NK and Unterberg AW (2000). Significant reduction in brain swelling by administration of nonpeptide kinin B2 receptor antagonist LF 16-0687Ms after controlled cortical impact injury in rats. J Neurosurg 92: 853–859.

    Article  PubMed  CAS  Google Scholar 

  147. Sun FY and Faden AI (1995). Pretreatment with antisense oligodeoxynucleotides directed against the NMDA-R1 receptor enhances survival and behavioral recovery following traumatic brain injury in rats. Brain Res 693: 163–168.

    Article  PubMed  CAS  Google Scholar 

  148. Szabo C, Zingarelli B, O’Connor M, et al. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci U S A 93: 1753–1758.

    Article  PubMed  CAS  Google Scholar 

  149. Tanno H, Nockels RP, Pitts LH, et al. (1992). Breakdown of the blood-brain barrier after fluid percussive brain injury in the rat. Part 1: Distribution and time course of protein extravasation. J Neurotrauma 9: 21–32.

    Article  PubMed  CAS  Google Scholar 

  150. Thureson-Klein A, Kong JY and Klein RL (1989). Enkephalin and neuropeptide Y in large cerebral arteries of the pig after ischemia and reserpine. Blood Vessels 26: 177–184.

    PubMed  CAS  Google Scholar 

  151. Tomiyama Y, Brian JE, Jr. and Todd MM (2000). Plasma viscosity and cerebral blood flow. Am J Physiol Heart Circ Physiol 279: H1949–1954.

    PubMed  CAS  Google Scholar 

  152. Uhl MW, Biagas KV, Grundl PD, et al. (1994). Effects of neutropenia on edema, histology, and cerebral blood flow after traumatic brain injury in rats. J Neurotrauma 11: 303–315.

    Article  PubMed  CAS  Google Scholar 

  153. Ursino M, Ter Minassian A, Lodi CA, et al. (2000). Cerebral hemodynamics during arterial and CO(2) pressure changes: in vivo prediction by a mathematical model. Am J Physiol Heart Circ Physiol 279: H2439–2455.

    PubMed  CAS  Google Scholar 

  154. Vaz R, Sarmento A, Borges N, et al. (1998). Experimental traumatic cerebral contusion: morphological study of brain microvessels and characterization of the oedema. Acta Neurochir 140: 76–81.

    Article  CAS  Google Scholar 

  155. Wada K, Chatzipanteli K, Busto R, et al. (1998). Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg 89: 807–818.

    Article  PubMed  CAS  Google Scholar 

  156. Wada K, Chatzipanteli K, Busto R, et al. (1999). Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J Neurotrauma 16: 203–212.

    Article  PubMed  CAS  Google Scholar 

  157. Wada K, Chatzipanteli K, Kraydieh S, et al. (1998). Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery 43: 1427–1436.

    PubMed  CAS  Google Scholar 

  158. Wahl M (1985). Effects of enkephalins, morphine, and naloxone on pial arteries during perivascular microapplication. J Cereb Blood Flow Metab 5: 451–457.

    Article  PubMed  CAS  Google Scholar 

  159. Wang Q, Kjaer T, Jorgensen MB, et al. (1993). Nitric oxide does not act as a mediator coupling cerebral blood flow to neural activity following somatosensory stimuli in rats. Neurol Res 15: 33–36.

    PubMed  CAS  Google Scholar 

  160. Wei EP, Dietrich WD, Povlishock JT, et al. (1980). Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 46: 37–47.

    Article  PubMed  CAS  Google Scholar 

  161. Wei EP, Kontos HA and Beckman JS (1996). Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 271: H1262–1266.

    PubMed  CAS  Google Scholar 

  162. Wei EP, Kontos HA, Dietrich WD, et al. (1981). Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ Res 48: 95–103.

    Article  PubMed  CAS  Google Scholar 

  163. Wei EP, Kontos HA and Patterson JL, Jr. (1980). Dependence of pial arteriolar response to hypercapnia on vessel size. Am J Physiol 238: 697–703.

    PubMed  CAS  Google Scholar 

  164. Wei EP, Lamb RG and Kontos HA (1982). Increased phospholipase C activity after experimental brain injury. J Neurosurg 56: 695–698.

    Article  PubMed  CAS  Google Scholar 

  165. Whalen MJ, Carlos TM, Kochanek PM, et al. (1999). Neutrophils do not mediate blood-brain barrier permeability early after controlled cortical impact in rats. J Neurotrauma 16: 583–594.

    Article  PubMed  CAS  Google Scholar 

  166. Wolff H and Lennox W (1930). Cerebral circulation. XII. The effect on pial vessels of variations in the oxygen and carbon dioxide content of the blood. Neurol Psychiat 23: 1097–1120.

    Article  Google Scholar 

  167. Yamakami I and McIntosh TK (1989). Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J Cereb Blood Flow Metab 9: 117–124.

    Article  PubMed  CAS  Google Scholar 

  168. Young B, Runge JW, Waxman KS, et al. (1996). Effects of pegorgotein on neurologic outcome of patients with severe head injury. A multicenter, randomized controlled trial. Jama 276: 538–543.

    Article  PubMed  CAS  Google Scholar 

  169. Yuan XQ, Prough DS, Smith TL, et al. (1988). The effects of traumatic brain injury on regional cerebral blood flow in rats. J Neurotrauma 5: 289–301.

    Article  PubMed  CAS  Google Scholar 

  170. Yunoki M, Kawauchi M, Ukita N, et al. (1997). Effects of lecithinized superoxide dismutase on traumatic brain injury in rats. J Neurotrauma 14: 739–746.

    Article  PubMed  CAS  Google Scholar 

  171. Zhang R, Shohami E, Beit-Yannai E, et al. (1998). Mechanism of brain protection by nitroxide radicals in experimental model of closed-head injury. Free Radic Biol Med 24: 332–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

DeWitt, D.S., Prough, D.S. (2001). Molecular and Cellular Mechanisms of Traumatic Cerebral Vascular Injury. In: Clark, R.S.B., Kochanek, P. (eds) Brain Injury. Molecular and Cellular Biology of Critical Care Medicine, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1721-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1721-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5695-0

  • Online ISBN: 978-1-4615-1721-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics