Skip to main content

Neurotransmitter and Growth Factor Alterations in Functional Deficits and Recovery Following Traumatic Brain Injury

  • Chapter
Brain Injury

Part of the book series: Molecular and Cellular Biology of Critical Care Medicine ((MCCM,volume 2))

Abstract

It is well established that traumatic brain injury (TBI), regardless of level of severity, may result in significant disability due to its attendant neurobehavioral deficits. Neuropsychological studies of outcome following TBI have indicated that the most enduring deficits include impaired learning and memory (Parker et al., 1976; Levin et al., 1979). Impairment in memory specifically involves reduced ability to learn new information, which is greater following severe TBI, although it is present even after mild TBI (Levin et al., 1987). This chapter will cover recent developments in the roles of neurotransmitter and growth factor alterations in long-term functional deficits and recovery following TBI. The neurotransmitter section will focus on the cholinergic, catecholaminergic, and serotonergic systems as prototypic neurotransmitter systems for memory and frontal lobe function. Neuronal survival and/or regeneration may be influenced by changes in growth factors following TBI. Therefore, this chapter will also review studies of growth factor responses to TBI and the therapeutic efficacy of exogeneously administered growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alessandri B, Tsuchida E, and Bullock RM (1999). The neuroprotective effect of a new serotonin receptor agonist, BAY X3702, upon focal ischemic brain damage caused by acute subdural hematoma in the rat. Brain Res 845:232–235.

    Article  PubMed  CAS  Google Scholar 

  2. Allen RM (1983). Role of amantadine in the management of neuroleptic-induced extrapyramidal syndromes: overview and pharmacology. Clin Neuropharmacol 6:S64–S73.

    Article  PubMed  Google Scholar 

  3. Amaral DG, and Kurz J (1985). An analysis of the origins of the cholinergic and non-cholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59.

    Article  PubMed  CAS  Google Scholar 

  4. Andrade R (1992). Electrophysiology of 5-HT1A receptors in the rat hippocampus and cortex. Drug Dev Res 26:275–286.

    Article  CAS  Google Scholar 

  5. Assaf SY, and Miller JJ (1977). Exicitatory action of the mesolimbic dopamine system on septal Neurons. Brain Res 129:353–360.

    Article  PubMed  CAS  Google Scholar 

  6. Bak IJ, Hassler R, Kim JS, and Kataoka K (1972). Amantadine actions on acetylcholine and GABA in striatum and substantia nigra of rat in relation to behavioral changes. J Neural Transm 33:45–61.

    Article  PubMed  CAS  Google Scholar 

  7. Barnes NM, and Sharp T (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152.

    Article  PubMed  CAS  Google Scholar 

  8. Bean A J, Elde R, Cao Y, et al., (1991). Expression of acidic and basic fibroblast growth factor in the substantia nigra of rat, monkey and human. Proc Natl Acad Sci USA 88:10237–10241.

    Article  PubMed  CAS  Google Scholar 

  9. Beck KD, Valverde J, Alexi T, et al., (1995). Mesencephalic dopaminergic Neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373:339–341.

    Article  PubMed  CAS  Google Scholar 

  10. Berkemeier LR, Winslow JW, Kaplan DR, et al., (1991). Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7:847–866.

    Article  Google Scholar 

  11. Blaha GR, Raghupathi R, Saatman KE, and McIntosh TK (2000). Brain-derived neurotrophic factor administration after traumatic brain injury in the rat does not protect against behavioral or histological deficits. Neuroscience 99:483–493.

    Article  PubMed  CAS  Google Scholar 

  12. Bornstein MB (1946). Presence and action of acetylcholine in experimental brain trauma. J Neurophysiol 9:349–366.

    PubMed  CAS  Google Scholar 

  13. Boyeson MG, and Harmon RL (1993). Effects of trazodone and desipramine on motor recovery in brain-injured rats. Am J Phys Med Rehabil 72:286–293.

    Article  PubMed  CAS  Google Scholar 

  14. Boyeson MG, Harmon RL, and Jones JL (1994). Comparative effects of floxetine, amitriptyline and serotonin on functional motor recovery after sensorimotor cortex injury. Am J Phys Med Rehabil 73:76–83.

    Article  PubMed  CAS  Google Scholar 

  15. Busto R, Dietrich WD, Globus MY.-T, et al., (1997). Extracellular release of serotonin following fluid-percussion brain injury in rats. J Neurotrauma 14:35–42.

    Article  PubMed  CAS  Google Scholar 

  16. Chen Y, Shohami E, Bass R, and Weinstock M (1998). Cerebro-protective effects of ENA713, a novel acetylcholinesterase inhibitor, in closed head injury in the rat. Brain Res 784:18–24.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng B, and Mattson MP (1994). NT-3 and BDNF protect CNS Neurons against metabolic/excitotoxic insults. Brain Res 640:56–67.

    Article  PubMed  CAS  Google Scholar 

  18. Ciallella JR, Yan HQ, Ma X, et al., (1998). Chronic effects of traumatic brain injury on hippocampal vesicular acetylcholine transporter and M2 muscarinic receptor protein in rats. Exp Neurol 142:11–19.

    Article  Google Scholar 

  19. Cintra A, Cao Y, Oellig C, et al., (1991). Basic FGF is present in dopaminergic Neurons of the ventral midbrain of the rat. Neuroreport 2:597–600.

    Article  PubMed  CAS  Google Scholar 

  20. Costa E, Panula P, Thomson HK, and Cheney DL (1983). The transsynaptic regulation of the septal hippocampal cholinergic Neurons. Life Sci 32:165–179.

    Article  PubMed  CAS  Google Scholar 

  21. Dam M, Tonin P, De Boni A, et al., (1996). Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke 27:1211–1214.

    Article  PubMed  CAS  Google Scholar 

  22. Datta SR, Brunet A, and Greenberg ME (1999). Cellular survival: a play in three AKTs. Genes Dev 13:2905–2927.

    Article  PubMed  CAS  Google Scholar 

  23. DeKosky ST, Goss JR, Miller PD, et al., (1994). Upregulation of nerve growth factor following cortical trauma. Exp Neurol 130:173–177.

    Article  PubMed  CAS  Google Scholar 

  24. Delahunty TM (1992). Traumatic brain injury enhances muscarnic receptor-linked inositol phosphate production in the rat. Brain Res 594:307–310.

    Article  PubMed  CAS  Google Scholar 

  25. de Sonneville LM, Njiokiktjien C, and Hilhorst RC (1991). Methylphenidate-induced changes in ADDH information processors. J Child Psychol Psychiatry 32:285–295.

    Article  PubMed  Google Scholar 

  26. De Vry J, Dietrich H, Glaser T, et al., (1997). BAY x 3702. Drugs of the Future 22:341–349.

    Google Scholar 

  27. De Vry J, and Jentzsch KR (1998). Discriminative stimulus properties of the 5-HT1A receptor agonist BAY x 3702 in the rat. Eur J Pharmacol 357:1–8.

    Article  PubMed  Google Scholar 

  28. De Vry J, Schohe-Loop R, Heine H-G, et al., (1998). Characterization of the aminomethylchroman derivative BAY x 3702 as a highly potent 5-hydroxytryptamine 1A receptor agonist. J Pharmacol Exp Ther 284:1082–1094.

    PubMed  Google Scholar 

  29. Dewar D, and Graham DI (1996). Depletion of choline acetyltransferase activity but preservation M1 and M2 muscarinic receptor binding sites in temporal cortex following head injury: a preliminary human postmortem study. J Neurotrauma 13:181–187.

    PubMed  CAS  Google Scholar 

  30. Dietrich WD, Alonso O, Busto R, and Finklestein SP (1996). Posttreatment with intravenous basic fibroblast growth factor reduces histopathological damage following fluid percussion brain injury in rat. J Neurotrauma 13:309–316.

    PubMed  CAS  Google Scholar 

  31. Dixon CE, Bao J, Long DA, and Hayes RL (1996). Reduced evoked release of acetylcholine in the rodent hippocampus following traumatic brain injury. Pharmacol Biochem Behav 53:579–686.

    Article  Google Scholar 

  32. Dixon CE, Flinn P, Bao J, et al., (1997a). Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats. Exp Neurol 146:479–490.

    Article  Google Scholar 

  33. Dixon CE, Hamm RJ, Taft WC, and Hayes RL (1994). Increased anticholinergic sensitivity following closed skull impact and controlled cortical impact traumatic brain injury in the rat. J Neurotrauma 11:275–287.

    Article  PubMed  CAS  Google Scholar 

  34. Dixon CE, Kochanek PM, Yan HQ, et al., (1999). One-year study of spatial memory performance, brain morphology and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16:109–122.

    Article  PubMed  CAS  Google Scholar 

  35. Dixon CE, Liu SJ, Jenkins LW, et al., (1995). Time course of increased vulnerability of cholinergic neurotransmission following traumatic brain injury in the rats. Behav Brain Res 70:125–131.

    Article  PubMed  CAS  Google Scholar 

  36. Dixon CE, Ma X, and Marion DW (1997b). Effects of CDP-choline treatment on neurobehavioral deficits after TBI and on hippocampal and neocortical acetylcholine release. J Neurotrauma 14:161–169.

    Article  Google Scholar 

  37. Dunn-Meynell A, Pan S, and Levin BE (1994). Focal traumatic brain injury causes widespread reductions in rat brain norepinephrine turnover from 6 to 24 h. Brain Res. 660:88–95.

    Article  PubMed  CAS  Google Scholar 

  38. Engele J, and Bohn M (1991). The neurotrophic effects of fibroblast growth factors on dopaminergic Neurons in vitro are mediated by mesencephalic glia. J Neurosci 11:3070–3078.

    PubMed  CAS  Google Scholar 

  39. Ernfors P, Lonnerberg P, Ayer-LeLievre C, and Persson H (1990). Developmental and regional expression of basic fibroblast growth factor mRNA in the rat central nervous system. J Neurosci Res 27:10–15.

    Article  PubMed  CAS  Google Scholar 

  40. Eves EM, Xiong BW, Kennedy SG, et al., (1998). AKT, a target of phosphatidylinositol 3 kinase, inhibits apoptosis in a differentiating Neuronal cell line. Mol Cell Biol 18:2143–2152.

    PubMed  CAS  Google Scholar 

  41. Feeney DM (1991). Pharmacologic modulation of recovery after brain injury: a reconsideration of diaschisis. J Neuro Rehab 5:113–128.

    Google Scholar 

  42. Feeney DM, Gonzalez A, and Law WA (1982). Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217:855–857.

    Article  PubMed  CAS  Google Scholar 

  43. Feeney DM, and Sutton RL (1987). Pharmacotherapy for recovery of function after brain injury. Crit Rev Neurobiol 3:135–197.

    PubMed  CAS  Google Scholar 

  44. Feeney DM, Weisend MP, and Kline AE (1993). Noradrenergic pharmacotherapy, intracerebral infusion and adrenal transplantation promote functional recovery after cortical damage. J Neural Transplant Plast 4:199–213.

    Article  PubMed  CAS  Google Scholar 

  45. Ferrari G, Toffano G, and Skaper SD (1991). Epidermal growth factor exerts Neuronotrophic effects on dopaminergic and GABAergic CNS Neurons: comparison with basic fibroblast growth factor. J Neurosci Res 30:493–497.

    Article  PubMed  CAS  Google Scholar 

  46. Finklestein SP, Fanning PJ, Caday CG, et al., (1990). Increased levels of basic fibroblast growth factor (bFGF) following focal brain injury. Restor Neurol Neurosci 1:387–394.

    PubMed  CAS  Google Scholar 

  47. Fitzsimonds RM, and Poo MM (1998). Retrograde signaling in the development and modification of synapses. Physiol Rev 78:143–170.

    PubMed  CAS  Google Scholar 

  48. Frank E, and Ragel B (1995). Cortical basic fibroblast factor expression after head injury: preliminary results. Neurol Res 17:129–131.

    PubMed  CAS  Google Scholar 

  49. Fujii T, Yoshizawa M, Nakai K, et al., (1997). Demonstration of the facilitatory role of 8-OH DPAT on cholinergic transmission in the rat hippocampus using in vivo microdialysis. Brain Res 761:244–249.

    Article  PubMed  CAS  Google Scholar 

  50. Gash DM, Zhang Z, Ovadia A, et al., (1996). Functional recovery in Parkinsonian monkeys treated with GDNF. Nature 380:252–255.

    Article  PubMed  CAS  Google Scholar 

  51. Gerlak RP, Clark R, Stump JM, and Vernier VG (1970). Amantadine-dopamine interaction: possible mode of action in Parkinsonism. Science 169:203–204.

    Article  Google Scholar 

  52. Gianutsos G, Chute S, and Dunn JP (1985). Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur J Pharmacol 110:357–361.

    Article  PubMed  CAS  Google Scholar 

  53. Goldstein LB, and Davis JN (1990). Post-lesion practice and amphetamine-facilitated recovery of beam-walking in the rat. Res Neurol Neurosci 1:311–314.

    CAS  Google Scholar 

  54. Gorman LK, Fu K, and Hovda DA (1989). Analysis of acetylcholine release following concussive brain injury in the rat. J Neurotrauma 6:203.

    Google Scholar 

  55. Gorman LK, Fu K, Hovda DA, et al., (1996). Effects of traumatic brain injury on the cholinergic system in the rat. J Neurotrauma 13:457–463.

    Article  PubMed  CAS  Google Scholar 

  56. Gospodarowics D, Cheng J, Lui G-M, et al., (1984). Isolation of brain fibroblast growth factor by heparin-sepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc Natl Acad Sci USA 81:6963–6967.

    Article  Google Scholar 

  57. Goss JR, O’Malley ME, Zou L, et al., (1998). Astrocytes are the major source of nerve growth factor upregulation following traumatic brain injury in the rat. Exp Neurol 149:301–309.

    Article  PubMed  CAS  Google Scholar 

  58. Grundy PL, Patel N, Harbuz MS, et al., (2000). Glucocorticoids modulate BDNF mRNA expression in the rat hippocampus after traumatic brain injury. Neuroreport 11:3381–3384.

    Article  PubMed  CAS  Google Scholar 

  59. Grundy PL, Patel N, Harbuz MS, et al., (2001). Glucocorticoids modulate the NGF mRNA response in the rat hippocampus after traumatic brain injury. Brain Res 892:386–390.

    Article  PubMed  CAS  Google Scholar 

  60. Gualtieri CT (1988). Pharmacotherapy and the neurobehavioural sequelae of traumatic brain injury. Brain Inj 2:101–129.

    Article  PubMed  CAS  Google Scholar 

  61. Gualtieri T, Chandler M, Coons TB, and Brown LT (1989). Amantadine: a new clinical profile for traumatic brain injury. Clin Neuropharmacol 12:258–270.

    Article  PubMed  CAS  Google Scholar 

  62. Guluma KZ, Saatman KE, Brown A, et al., (1999). Sequential pharmacotherapy with magnesium chloride and basic fibroblast growth factor after fluid percussion brain injury results in less neuromotor efficacy than that achieved with magnesium alone. J Neurotrauma 16:311–321.

    Article  PubMed  CAS  Google Scholar 

  63. Haber B, and Grossman RG (1980). Acetylcholine metabolism in intracranial and lumbar cerebrospinal fluid and in blood. In: Neurobiology and Cerebrospinal Fluid. Wood, J.H. (ed), Plenum Press, New York, 345–350.

    Chapter  Google Scholar 

  64. Henry JM, Talukder NK, Lee AB, and Walker ML (1997). Cerebral trauma-induced changes in corpus striatal dopamine receptor subtypes. J Invest Surg 10:218–286.

    Article  Google Scholar 

  65. Hepler DJ, Olton DS, Wenk GL, and Coyle JT (1985). Lesions in nucleus basalis magnocellularis and medial septal rea of rats produce qualitatively similar memory impairments. J Neurosci 5:866–873.

    PubMed  CAS  Google Scholar 

  66. Herman EC, Grabliks J, Engle C, and Perlman PL (1960). Antiviral activity of L-adamantanamine (amantadine). Proc Soc Exp Biol Med 103:625.

    Google Scholar 

  67. Hicks RR, Li C, Zhang L, et al., (1999a). Alterations in BDNF and trkB mRNA levels in the cerebral cortex following experimental brain trauma in rats. J Neurotrauma 16:501–510.

    Article  Google Scholar 

  68. Hicks RR, Martin VB, Zhang L, and Seroogy KB (1999b). Mild experimental brain injury differentially alters the expression of neurotrophin and neurotrophin receptor mRNAs in the hippocampus. Exp Neurol 160:469–478.

    Article  Google Scholar 

  69. Hoffer BJ, Hoffman A, Bowenkamp K, et al., (1994). Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic Neurons in vivo. Neurosci Lett 182:107–111.

    Article  PubMed  CAS  Google Scholar 

  70. Hohn A, Leibrock J, Bailey K, and Barde YA (1990). Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344:339–341.

    Article  PubMed  CAS  Google Scholar 

  71. Hovda DA, Sutton RL, and Feeney DM (1989). Amphetamine-induced recovery of visual cliff performance after bilateral visual cortex ablation in cats: measurements of depth perception thresholds. Behav Neurosci 103:574–584.

    Article  PubMed  CAS  Google Scholar 

  72. Hudson J, Granholm AC, Gerhardt GA, et al., (1995). Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36:425–432.

    Article  PubMed  CAS  Google Scholar 

  73. Ikeda K, Klinkosz B, Greene T, et al., (1995). Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor Neuron disease. Ann Neurol 37:505–511.

    Article  PubMed  CAS  Google Scholar 

  74. Ip NY, Mcclain J, Barrezueta NX, et al., (1993). The alpha component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron 10:89–102.

    Article  PubMed  CAS  Google Scholar 

  75. Ip NY, and Yancopoulos GD (1992). Ciliary neurotrophic factor and its receptor complex. Prog Growth Factor Res 4:139–155.

    Article  PubMed  CAS  Google Scholar 

  76. Iwamoto Y, Yamaki T, Murakami N, et al., (1994). Basic fibroblast growth factor messenger mRNA is expressed strongly at the acute stage of cerebral contusion. Life Sci 55:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  77. Kaplan DR, Martin ZD, and Parada LF (1991). Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350:158–160.

    Article  PubMed  CAS  Google Scholar 

  78. Kennedy SG, Wagner AJ, Conzen SD, et al., (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11:701–713.

    Article  PubMed  CAS  Google Scholar 

  79. Klein R, Jing SQ, Nanduri V, et al., (1991). The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65:189–197.

    Article  PubMed  CAS  Google Scholar 

  80. Kline AE, Chen MJ, Tso-Olivas DY, and Feeney DM (1994). Methylphenidate treatment following ablation-induced hemiplegia in rat: experience during drug action alters effects on recovery of function. Pharmacol Biochem Behav 48:773–779.

    Article  PubMed  CAS  Google Scholar 

  81. Kline AE, and Dixon CE (2001). Contemporary In Vivo Models of Brain Trauma and a Comparison of Injury Responses. In: Head Trauma: Basic, Preclinical and Clinical Directions. Miller, L. P. and Hayes, R.L. (eds), John Wiley & Sons, Inc., New York, NY: 65–84.

    Google Scholar 

  82. Kline AE, Jianyun Y, Horváth E, et al., (2001). The selective 5-HT1A receptor agonist repinotan attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience, in press.

    Google Scholar 

  83. Kline AE, Yan HQ, Bao J, et al., (2000). Chronic methylphenidate treatment enhances water maze performance following traumatic brain injury in rats. Neurosci Lett 280:163–166.

    Article  PubMed  CAS  Google Scholar 

  84. Knusel B, Michel PP, Schwaber JS, and Hefti F (1990). Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci 10:558–570.

    PubMed  CAS  Google Scholar 

  85. Korsching S (1993). The neurotrophic factor concept: a reexamination. J Neurosci 13:2739–2748.

    PubMed  CAS  Google Scholar 

  86. Koyama T, Nakajima Y, Fujii T, and Kawashima K (1999). Enhancement of cortical and hippocampal cholinergic neurotransmission through 5-HT1A receptor-mediated pathways by BAY x 3702 in freely moving rats. Neurosci Lett 265:33–36.

    Article  PubMed  CAS  Google Scholar 

  87. Kraus MF, and Maki PM (1997). Effect of amantadine hydrochloride on symptoms of frontal lobe dysfunction in brain injury: case studies and review. J Neuropsy Clin Neurosci 9:222–230.

    CAS  Google Scholar 

  88. Krieglstein K, Suter-Crazzolara C, Fischer WH, and Unsicker K (1995). TGF-beta superfamily members promote survival of midbrain dopaminergic Neurons and protect them against MPP+ toxicity. EMBO J 14:735–742.

    Google Scholar 

  89. Kromer LF (1987). Nerve growth factor treatment after brain injury prevents Neuronal death. Science 235:214–216.

    Article  PubMed  CAS  Google Scholar 

  90. Lamballe F, Klein R, and Barbacid M (1991). The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 22:153–170.

    PubMed  CAS  Google Scholar 

  91. Lee M-Y, Deller T, Kirsch M, et al., (1997). Differential regulation of cilary neurotrophic factor (CNTF) and CNTF receptor alpha expression in astrocytes and Neurons of the fascia dentata after entorhinal cortex lesion. J Neurosci 17:1137–1146.

    PubMed  CAS  Google Scholar 

  92. Leibrock J, Lottspeich F, Hohn A, et al., (1989). Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152.

    Article  PubMed  CAS  Google Scholar 

  93. Leonard JR, Maris DO, and Grady MS (1994). Fluid percussion injury causes loss of forebrain choline acetyltransferase and nerve growth factor receptor immunoreactive cells in the rat. J Neurotrauma 11:379–392.

    Article  PubMed  CAS  Google Scholar 

  94. Levin HS, Amparo E, Eisenbert HM, et al., (1987). Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. J Neurosurg 66:706–713.

    Article  PubMed  CAS  Google Scholar 

  95. Levin HS, Grossman RG, Rose JE, and Teasdale G (1979). Long term neuropsychological outcome of close head injury. J Neurosurg 50:412–422.

    Article  PubMed  CAS  Google Scholar 

  96. Lin LF, Doherty DH, Lile JD, et al., (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic Neurons. Science 260:1130–1132.

    Article  PubMed  CAS  Google Scholar 

  97. Lindvall O, and Stenevi U (1978). Dopamine and noradrenaline Neurons projecting to the septal area in the rat. Cell Tissue Res 19:383–405.

    Google Scholar 

  98. Louis JC, Magal E, Gerdes W, and Seifert W (1993). Survival-promoting and protein kinase C-regulating roles of basic FGF for hippocampal Neurons exposed to phorbol ester, glutamate and ischaemia-like conditions. Eur J Neurosci 5:1610–1621.

    Article  PubMed  CAS  Google Scholar 

  99. Lyeth BG, Dixon CE, Hamm RJ, et al., (1988). Effects of anticholinergic treatment on transient behavioral suppression and physiological responses following concussive brain injury to the rat. Brain Res 448:88–97.

    Article  PubMed  CAS  Google Scholar 

  100. Mahalick DM, Carmel PW, Greenberg JP, et al., (1998). Psychopharmacologic treatment of acquired attention disorders in children with brain injury. Pediatr Neurosurg 29:121–126.

    Article  PubMed  CAS  Google Scholar 

  101. Maisonpierre PC, Belluscio L, Squinto S, et al., (1990). Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247:1446–1451.

    Article  PubMed  CAS  Google Scholar 

  102. Matsuda S, Hiroshi S, and Nishiyama N (1990). Effects of basic fibroblast growth factor on Neurons cultured from various regions of postnatal rat brain. Brain Res 520:310–316.

    Article  PubMed  CAS  Google Scholar 

  103. Matsuyama S, Nei K, and Tanaka C (1996). Regulation of glutamate release via NMDA and 5-HT1A receptors in guinea pig dentate gyrus. Brain Res 728:175–180.

    Article  PubMed  CAS  Google Scholar 

  104. Mauler F, Fahrig T, Horváth E, and Jork R. (2001). Inhibition of evoked glutamate release by the neuroprotective 5-HT1A receptor agonist BAY x 3702 in vitro and in vivo. Brain Res 888:150–157.

    Article  PubMed  CAS  Google Scholar 

  105. McDermott KL, Raghupathi R, Fernandez SC, et al., (1997). Delayed administration of basic fibroblast growth factor (bFGF) attenuates cognitive dysfunction following parasagittal fluid percussion brain injury in rat. J Neurotrauma 14:191–200.

    Article  PubMed  CAS  Google Scholar 

  106. McIntosh TK, Yu T, and Gennarelli TA (1994). Alterations in regional brain catecholamine concentrations after experimental brain injury in the rat. J Neurochem 63:1426–1433.

    Article  PubMed  CAS  Google Scholar 

  107. Melena J, Chidlow G, and Osborne NN (2000). Blockade of voltage-sensitive Na+ channels by the 5-HT1A receptor agonist 8-OH-DPAT: possible significance for neuroprotection. Eur J Pharmacol 406:319–324.

    Article  PubMed  CAS  Google Scholar 

  108. Meneses A (1999). 5-HT system and cognition. Neurosci Biobehav Rev 2:1111–1125.

    Article  Google Scholar 

  109. Mesulam MM, Mufson EJ, Wainer BH, and Levey AI (1983). Central cholinergic pathway in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201.

    Article  PubMed  CAS  Google Scholar 

  110. Metz B (1971). Acetylcholine and experimental brain injury. J Neurosurg 35:523–528.

    Article  PubMed  CAS  Google Scholar 

  111. Miller VM, and Best PJ (1980). Spatial correlates of hippocampal unit activity are altered by lesions of the formix and entohinal cortex. Brain Res 194:311–323.

    Article  PubMed  CAS  Google Scholar 

  112. Molnar L, Hegedus K, and Fekete I (1991). Difference between the cerebrovascular effect of purinergic Co-ATP and that of the cholinesterase inhibitor, physostigmine, in vivo. Eur J Pharmacol 209:81–86.

    Article  PubMed  CAS  Google Scholar 

  113. Mooney GF, and Haas LJ (1993). Effect of methylphenidate on brain injury-related anger. Arch Phys Med Rehab 74:153–160.

    CAS  Google Scholar 

  114. Moore RY (1978). Catecholamine innervation of the basal forebrain. 1. The septal area. J Comp Neurol 177:665–684.

    Article  PubMed  CAS  Google Scholar 

  115. Morrison B 3rd, Meaney DF, Margulies SS, and McIntosh TK (2000). Dynamic mechanical stretch of organotypic brain slice cultures induces differential genomic expression: relationship to mechanical parameters. J Biomech Eng 122:224–30.

    Article  PubMed  Google Scholar 

  116. Murdoch I, Perry EK, Court JA, et al., (1998). Cortical cholinergic dysfunction after human head injury. J Neurotrauma 15:295–305.

    Article  PubMed  CAS  Google Scholar 

  117. Nedergaard S, Engberg I, and Flatman JA (1987). The modulation of excitatory amino acids responses by serotonin in the cat neocortex in vitro. Cell Mol Neurobiol 7:367–379.

    Article  PubMed  CAS  Google Scholar 

  118. Nilsson OG, Shapino ML, Gage FH, et al., (1987). Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal Neurons to the hippocampus. Exp Brain Res 67:195–215.

    Article  PubMed  CAS  Google Scholar 

  119. Nistri A, Bartolini A, Deffenu G, and Pepeu G (1972). Investigations into the release of acetylcholine from the cerebral cortex of the cat: effects of amphetamine, of scopolamine and of septal lesions. Neuropharmacology 11:665–674.

    Article  PubMed  CAS  Google Scholar 

  120. Nordqvist AC, Holmin S, Nilsson M, et al., (1997). MK-801 inhibits the cortical increase in IGF-1, IGFBP-2 and IGFBP-4 expression following trauma. Neuroreport 8:455–460.

    Article  PubMed  CAS  Google Scholar 

  121. Nunez G, del Peso L (1998). Linking extracellular survival signals and the apoptotic machinery. Curr Opin Neurobiol 8:613–618.

    Article  PubMed  CAS  Google Scholar 

  122. O’Dell DM, and Hamm RJ (1995). Chronic post injury administration of MDL 26,479 (suritozol) a negative modulator at the GABAA receptor, and cognitive impairment in rats following traumatic brain injury. J Neurosurg 83:878–883.

    Article  PubMed  Google Scholar 

  123. Ohkawa S, Fukatsu K, Miki S, et al., (1997). 5-Aminocoumarans: dual inhibitors of lipid peroxidation and dopamine release with protective effects against central nervous system trauma and ischemia. J Med Chem 40:559–573.

    Article  PubMed  CAS  Google Scholar 

  124. Otto D, and Unsicker K (1990). Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J Neurosci 10:1912–1921.

    PubMed  CAS  Google Scholar 

  125. Otto D, and Unsicker K (1993). FGF-2 mediated protection of cultured mesencephalic dopaminergic Neurons against MPTP and MPP+: specificity and impact of culture conditions, non-dopaminergic Neurons and astroglial cells. J Neurosci Res 34:382–393.

    Article  PubMed  CAS  Google Scholar 

  126. Oyesiku NM, Evans C-O, Houston S, et al., (1999). Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 833, 161–172.

    Article  PubMed  CAS  Google Scholar 

  127. Oyesiku NM, and Wigston DJ (1996). Ciliary neurotrophic factor stimulates neurite outgrowth from spinal cord Neurons. J Comp Neurol 364, 68–77.

    Article  PubMed  CAS  Google Scholar 

  128. Pappius HM (1981). Local cerebral glucose utilization in thermally traumatized rat brain. Ann Neurol 9, 484–491.

    Article  PubMed  CAS  Google Scholar 

  129. Pappius HM, and Dadoun R (1987). Effects of injury on the indoleamines in cerebral cortex. J Neurochem 49, 321–325.

    Article  PubMed  CAS  Google Scholar 

  130. Pappius HM, Dadoun R, and McHugh M (1988). The effect of p-chlorophenylalanine on cerebral metabolism and biogenic amine content of traumatized brain. J Cereb Blood Flow Metab 8:324–334.

    Article  PubMed  CAS  Google Scholar 

  131. Parker SA, and Serrats AF (1976). Memory recovery after traumatic coma. Acta Neurochir (Wein) 34:71–77.

    Article  CAS  Google Scholar 

  132. Petsche H, Stumpf CH, and Gogolak G (1962). The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. 1. the control of hippocampus arousal activity by the septum cells. Electroencephalogr Clin Neurophysiol 14:202–211.

    Article  PubMed  CAS  Google Scholar 

  133. Pike BR, and Hamm RJ (1995). Post injury administration of BIBN 99, a selective muscarinic M2 receptor antagonist, improves cognitive performance following traumatic brain injury in rats. Brain Res 686:37–43.

    Article  PubMed  CAS  Google Scholar 

  134. Plenger PM, Dixon CE, Castillo RM, et al., (1996). Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: a preliminary double-blind placebo-controlled study. Arch Phys Med Rehab 77:536–540.

    Article  CAS  Google Scholar 

  135. Prehn JH, Backhauss C, Karkoutly C, et al., (1991). Neuroprotective properties of 5-HT1A receptor agonists in rodent models of focal and global cerebral ischemia. Eur J Pharmacol 203:213–222.

    Article  PubMed  CAS  Google Scholar 

  136. Prehn JH, Welsch M, Backhauss C, et al., (1993). Effects of serotonergic drugs in experimental brain ischemia: evidence for a protective role of serotonin in cerebral ischemia. Brain Res 630:10–20.

    Article  PubMed  CAS  Google Scholar 

  137. Raiteri M, Maura G, and Barzizza A (1991). Activation of presynaptic 5-hydroxytryptaminel-like receptors on glutamatergic terminals inhibits N-methyl-D-aspartate-induced cyclic GMP production in rat cerebellar slices. J Pharmacol Exp Ther 257:1184–1188.

    PubMed  CAS  Google Scholar 

  138. Robinson SE (1986). 6-Hydroxydopamine lesion of the ventral noradrenergic bundle blocks the effect of amphetamine on hippocampal acetylcholine. Brain Res 397:181–184.

    Article  PubMed  CAS  Google Scholar 

  139. Robinson SE, Cheney DL, and Costa E (1978). Effect of nomifensine and other antidepressant drugs on acetylcholine turnover in various regions of rat brain. Nauyn Schmiedenbergs Arch Pharmacol 304:263–269.

    Article  CAS  Google Scholar 

  140. Robinson SE, Foxx SD, Posner MG, et al., (1990). The effect of M1 muscarinic blockade on behavior and physiological responses following traumatic brain injury in the rat. Brain Res 511:141–148.

    Article  PubMed  CAS  Google Scholar 

  141. Rockich KT, Hatton JC, Kryscio RJ, et al., (1999). Effect of recombinant human growth hormone and insulin-like growth factor-1 administration on IGF-1 and IGF-binding protein-3 levels in brain injury. Pharmacotherapy 12:1432–1436.

    Article  Google Scholar 

  142. Ruge D (1954). The use of cholinergic blocking agents in the treatment of craniocerebral injuries. J Neurosurg 11:77–83.

    Article  PubMed  CAS  Google Scholar 

  143. Saatman KE, Contreras PC, Smith DH, et al., (1997). Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147:418–427.

    Article  PubMed  CAS  Google Scholar 

  144. Sachs E (1957). Acetylcholine and serotonin in the spinal fluid. J Neurosurg 14:22–27.

    Article  PubMed  CAS  Google Scholar 

  145. Saija A, Hayes RL, and Lyeth BG (1988a). Effect of concussive head injury on central cholinergic Neurons. Brain Res 452:303–311.

    Article  Google Scholar 

  146. Saija A, Robinson SE, and Lyeth BG (1988b). Effect of scopolamine and traumatic brain injury on central cholinergic Neurons. J Neurotrauma 5:161–169.

    Article  Google Scholar 

  147. Sakaue M, Somboonthum P, Nishihara B, et al., (2000). Postsynaptic 5-hydroxytryptamine (1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 129:1029–1034.

    Article  Google Scholar 

  148. Schmidt RH, and Grady MS (1995). Loss of forebrain cholinergic Neurons following fluid-percussion injury: implications for cognitive impairment in closed head injury. J Neurosurg 3:496–502.

    Google Scholar 

  149. Schmidt RH, Scholten KJ, and Maughan PH (2000). Cognitive impairment and synaptosomal choline uptake in rats following impact acceleration injury. J Neurotrauma 17:1129–1139.

    Article  PubMed  CAS  Google Scholar 

  150. Schuman EM (1999). Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol 9:105–109.

    Article  PubMed  CAS  Google Scholar 

  151. Schwab RS, England AC, Poskanzer DC, and Young RR (1969). Amantadine in the treatment of Parkinson’s disease. JAMA 208:1168–1170.

    Article  PubMed  CAS  Google Scholar 

  152. Scremin OU (1991). Pharmacological control of the cerebral circulation. Ann Rev Pharmacol Toxicol 31:229–251.

    Article  CAS  Google Scholar 

  153. Scremin OU, Li MG, and Jenden DJ (1977). Cholinergic modulation of cerebral cortical blood flow changes induced by trauma. J Neurotrauma 14:573–586.

    Article  Google Scholar 

  154. Scremin OU, Rovere AA, Raynald AC, and Giardini A (1973). Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4:232–239.

    Article  CAS  Google Scholar 

  155. Semkova I, Wolz P, and Krieglstein J (1998). Neuroprotective effect of 5-HT1A receptor agonist, Bay x 3702, demonstrated in vitro and in vivo. Eur J Pharmacol 359:251–260.

    Article  PubMed  CAS  Google Scholar 

  156. Shao L, Ciallella JR, Yan HQ, et al., (1999). Differential effects of traumatic brain injury on vesicular acetylcholine transporter and M2 muscarinic receptor mRNA and protein in rat. J Neurotrauma 16:555–566.

    Article  PubMed  CAS  Google Scholar 

  157. Sinson G, Perri BR, Trojanowski JQ, et al., (1997). Improvement of cognitive deficits and decreased cholinergic Neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J Neurosurg 86:511–518.

    Article  PubMed  CAS  Google Scholar 

  158. Sinson G, Voddi M, and McIntosh TK (1995). Nerve growth factor administration attenuates cognitive but not neurobehavioral motor dysfunction or hippocampal cell loss following fluid-percussion brain injury in rats. J Neurosurg 65:2209–2216.

    CAS  Google Scholar 

  159. Skoglosa Y, Lewen A, Takei N, et al., (1999). Regulation of pituitary adenylate cyclase activating polypeptide and its receptor type 1 after traumatic brain injury: comparison with brain-derived neurotrophic factor and the induction of Neuronal cell death. Neuroscience 90:235–247.

    Article  PubMed  CAS  Google Scholar 

  160. Speech TJ, Rao SM, Osmon DC, and Sperry LT (1993). A double-blind control study of methylphenidate treatment in closed head injury. Brain Inj 7:333–338.

    Article  PubMed  CAS  Google Scholar 

  161. Sutherland RJ, Whishaw IQ, and Regehr JC (1982). Cholinergic receptor blockade impairs septal localization using distal cues in the rat. J Comp Physiol Psychol 96:563–573.

    Article  PubMed  CAS  Google Scholar 

  162. Sutton RL, and Feeney DM (1992). α-noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat. Restor Neurol Neurosci 4:1–11.

    PubMed  CAS  Google Scholar 

  163. Sutton RL, Hovda DA, and Feeney DM (1989). Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats. Behav Neurosci 103:837–841.

    Article  PubMed  CAS  Google Scholar 

  164. Swanson LW, and Cowan WM (1979). The connections of the septal region in the rat. J Comp Neurol 186:621–656.

    Article  PubMed  CAS  Google Scholar 

  165. Tang YP, Noda Y, and Nabeshima T (1997). Involvement of activation of dopaminergic Neuronal system in learning and memory deficits associated with experimental mild traumatic brain injury. Eur J Neurosci 9:1720–1727.

    Article  PubMed  CAS  Google Scholar 

  166. Tomac A, Widenfalk J, Lin LFH, et al., (1995). Retrograde axonal transport of GDNF in the adult nigrostriatal system supports a trophic role in the adult. Proc Natl Acad Sci 92:8274–8278.

    Article  PubMed  CAS  Google Scholar 

  167. Tower DB, and McEachern D (1949). Cholinesterase patterns and acetylcholine in the cerebrospinal fluids of patients with craniocerebral trauma. Canadian J Res 27:105–119.

    Article  CAS  Google Scholar 

  168. Vanderwolf CH (1988). Cerebral activity and behavior: control by central cholinergic and serotonergic system. Int Rev Neurobiol 30:225–340.

    Article  PubMed  CAS  Google Scholar 

  169. von Voigtlander PF, and Moore KE (1971). Dopamine: release from the brain in vivo by amantadine. Science 174:408–410.

    Article  Google Scholar 

  170. Wanaka A, Johnson EM, and Milbrandt J (1990). Localization of FGF receptor mRNA in the adult rat central nervous system by in situ hybridization. Neuron 5:267–281.

    Article  PubMed  CAS  Google Scholar 

  171. Ward A (1950). Atropine in the treatment of close head injury. J Neurosurg 7:398–402.

    Article  PubMed  Google Scholar 

  172. Whishaw IQ (1985). Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool. Behav Neurosci 99:979–1005.

    Article  PubMed  CAS  Google Scholar 

  173. Whyte J, Hart T, Schuster K, et al., (1997). Effects of methylphenidate on attentional function after traumatic brain injury, a randomized, placebo-controlled trial. Am J Phys Med Rehab 76:440–450.

    Article  CAS  Google Scholar 

  174. Williams EJ, and Doherty P (1999). Evidence for and against a pivotal role of PI 3-kinase in a Neuronal cell survival pathway. Mol Cell Neurosci 13:272–280.

    Article  PubMed  CAS  Google Scholar 

  175. Williams LR, Varon S, Peterson GM, et al., (1986). Continuous infusion of nerve growth factor prevents basal forebrain Neuronal death after fimbra fornix transection. Proc Natl Acad Sci USA 83:9231–9235.

    Article  PubMed  CAS  Google Scholar 

  176. Yang K, Perez-Polo JR, Mu XS, et al., (1996). Increased expression of brain-derived neurotrophic factor but not neurotrophin-3 mRNA in rat brain after cortical impact injury. J Neurosci Res 44:157–164.

    Article  PubMed  CAS  Google Scholar 

  177. Yang K, Taft WC, Dixon CE, et al., (1993). Alterations in protein kinase C in rat hippocampus following traumatic brain injury. J Neurotrauma 10:287–295.

    Article  PubMed  CAS  Google Scholar 

  178. Yan HQ, Kline AE, Ma X, Hooghe-Peters EL, Marion DW, and Dixon CE (2001). Tyrosine hydroxylase, but not dopamine beta-hydroxylase, is increased in rat frontal cortex after traumatic brain injury. (In Review).

    Google Scholar 

  179. Yan HQ, Yu J, Kline AE, et al., (2000). Evaluation of combined fibroblast growth factor-2 and moderate hypothermia therapy in traumatically brain injured rats. Brain Res 887:134–143.

    Article  PubMed  CAS  Google Scholar 

  180. Zhu J, Hamm RJ, Reeves TM, et al., (2000). Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury. Exp Neurol 166:136–152.

    Article  PubMed  CAS  Google Scholar 

  181. Zilles K, Werner L, Qu M, et al., (1991). Quantitative autoradiography of 11 different transmitter binding sites in the basal forebrain region of the rat: evidence of heterogeneity in distribution patterns. Neuroscience 42:473–481.

    Article  PubMed  CAS  Google Scholar 

  182. Zou L, Huang L, Hayes R, et al., (1999). Liposome-mediated NGF gene transfection following Neuronal injury: potential therapeutic applications. Gene Ther 6:994–1005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kline, A.E., Jenkins, L.W., Yan, H.Q., Dixon, C.E. (2001). Neurotransmitter and Growth Factor Alterations in Functional Deficits and Recovery Following Traumatic Brain Injury. In: Clark, R.S.B., Kochanek, P. (eds) Brain Injury. Molecular and Cellular Biology of Critical Care Medicine, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1721-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1721-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5695-0

  • Online ISBN: 978-1-4615-1721-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics