Skip to main content

Prolactin Receptor Signal Transduction

  • Chapter
Prolactin

Part of the book series: Endocrine Updates ((ENDO,volume 12))

Abstract

The pleiotropic actions of prolactin (PRL) are mediated by ligand-induced dimerization of its receptor, the PRLR. Structural analysis of the PRLR has revealed significant homology to other members of the cytokine receptor family, including the receptors for growth hormone (GH), erythropoietin, granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukins 2-7 (1, 2). While the amino acid residues found within the extracellular domain of the PRLR are critical for its engagement of ligand, the structure of the PRLR intracellular domain also coordinates the interaction of several signaling networks, that orchestrate PRL induced gene expression (recent related overviews on this subject can be found in (3–6). It is the purpose of this chapter to examine the association and activation of these multimeric PRLR-associated signaling complexes at a molecular level. In doing so, several recently identified kinases, phosphatases, exchange factors, chaperones, isomerases, GTP-binding and adaptor/docking proteins will be overviewed. Finally, how these transduction networks act to mediate the specific signal initiated by PRL at both the genomic and non-genomic level will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan JF 1990 Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87:6934–6938

    Article  PubMed  CAS  Google Scholar 

  2. Bazan JF 1990 Haematopoietic receptors and helical cytokines. Immunol Today 11:350–354

    Article  PubMed  CAS  Google Scholar 

  3. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA 1998 Prolactin (PRL) and tis receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocrine Rev 19:225–268

    Article  CAS  Google Scholar 

  4. Clevenger CV, Plank TL 1997 Prolactin as an autocrine/paracrine growth factor in breast tissue. J Mammary Gland Biol Neoplasia 2:59–68

    Article  PubMed  CAS  Google Scholar 

  5. Clevenger CV, Freier DO, Kline JB 1998 Prolactin receptor signal transduction in cells of the immune system. Journal of Endocrinology 157:187–197

    Article  PubMed  CAS  Google Scholar 

  6. Yu-Lee L-Y, Luo G, Book ML, Morris SM 1998 Lactogenic hormone signal transduction. Biol Reprod 58:302–311

    Article  Google Scholar 

  7. Gertler A, Grosclaude J, Strasburger CJ, Nir S, Djiane J 1996 Real-time measurements of the interactions between lactogenic hormones and prolactin-receptor extracellular domains from several species support the model hormone-induced transient receptor dimerization. J Biol Chem 271:24482–24491

    Article  PubMed  CAS  Google Scholar 

  8. Horseman ND, Zhao W, Montecino-Rodriguiez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K 1997 Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 16:6926–6935

    Article  PubMed  CAS  Google Scholar 

  9. Riddle O, Bates RW, Dykshorn SW 1933 The preparation, identification and assay of prolactin - a hormone of the anterior pituitary. Am J Physiol 105:191–216

    CAS  Google Scholar 

  10. Kelly PA, Djiane J, Postel-Vinay MC, Edery M 1991 The ProlactinlGrowth Hormone Receptor Family. Endo Rev 12(3):235–251

    Article  CAS  Google Scholar 

  11. Goffin V, Kelly PA 1996 The prolactin/growth hormone receptor family: structure/function relationships. J of Mammary Gland Biol Neopl 2:7–17

    Article  Google Scholar 

  12. Postel-Vinay M-C 1996 Groth hormone-and prolactin-binding proteins: souluble forms of receptors. Horm Res 45:178–181

    Article  PubMed  CAS  Google Scholar 

  13. Anthony RV, Smith GW, Duong A, Pratt SL, Smith MF 1995 Two forms of the prolactin receptor messenger ribonucleic acid are present in ovine fetal liver and adult ovary. Endocrine 3:291–295

    Article  PubMed  CAS  Google Scholar 

  14. Davis JA, Linzer DIH 1989 Expression of multiple forms of the prolactin receptor in mouse liver. Mol Endocrinol 3:674–680

    Article  PubMed  CAS  Google Scholar 

  15. Nagano M, Chastre E, Choquet A, Bara J, Gespach C, Kelly PA 1995 Expression of prolactin and growth hormone receptor genes and their isoforms in the gastrointestinal tract. Am J Physiol 268:G431–G442

    PubMed  CAS  Google Scholar 

  16. Schuler LA, Nagel RJ, Gao J, Horseman ND, Kharbanda S 1997 Prolactin receptor heterogeneity in bovine fetal and maternal tissues. Endocrinology 138:3187–3194

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, Horseman ND 1994 Cloning, expression, and mutational analysis of th pigeon prolactin receptor. Endocrinology 135:269–176

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka M, Maeda K, Okubo T, Nakashima K 1992 Double antenna structure of chicken prolactin receptor deduced from the cDNA sequence. Biochem Biophys Res Commun 188:490–496

    Article  PubMed  CAS  Google Scholar 

  19. Mai JNC, Burnside J, Li L, Tang J, Davolos C, Cogburn LA 1999 Characterization of unique truncated prolactin receptor transcripts, corresponding to the intracellular domain, in the testis of the sexually mature chicken. Endocrinology 140:1165–1174

    Article  Google Scholar 

  20. Shirota M, Banville D, Ali S, Jolicouer C, Boutin JM, Edery M, Djiane J, Kelly PA 1990 Expression of two forms of prolactin receptor in rat ovary and liver. Mol Endocrinol 4:1136–1143

    Article  PubMed  CAS  Google Scholar 

  21. Boutin J-M, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, Banville D, Dusanter-Fourt I, Djiane J, Kelly PA 1988 Cloning and Expression of the Rat Prolactin Receptor, a Member of the Growth Hormone/Prolactin Receptor Gene Family. Cell 53:69–77

    Article  PubMed  CAS  Google Scholar 

  22. Ali S, Pellegrini I, Kelly PA 1991 A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor. J Biol Chem 266:20110–20117

    PubMed  CAS  Google Scholar 

  23. Boutin JM, Edery M, Shirota M, Jolicoeur C, Lesueur L, Ali S, Gould D, Djiane J, Kelly PA 1989 Identification of a cDNA encoding a long form of prolactin receptor in human hepatoma and breast cancer cells. Mol Endocrinol 3:1455–1461

    Article  PubMed  CAS  Google Scholar 

  24. Nagano M, Chastre E, Choquet A, Bara J, Gespach C, Kelly PA 1995 Expression of prolactin and growth hormone receptor genes and their isoforms in the gastrointestinal tract. Amer J Phys 268:G431–G442

    CAS  Google Scholar 

  25. Clevenger CV, Chang W-P, Ngo W, Pasha TLM, Montone KT, Tomaszewski JE 1995 Expression of prolactin and prolactin receptor in human breast carcinoma: Evidence for an autocrine/paracrine loop. Am J Pathol 146:1–11

    Google Scholar 

  26. Kline JB, Roehrs H, Clevenger CV 1999 Functional characterization of the intermediate isoform of the human prolactin receptor. J Biol Chem 274:35461–35468

    Article  PubMed  CAS  Google Scholar 

  27. Goujon L, Allevato G, Simonin G, Paquereau L, Le Cam A, Clark J, Nielsen JH, Djiane J, Postel-Vinay M-C, Edery M, Kelly PA 1994 Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction. Proc Natl Acad Sci USA 91:957–961

    Article  PubMed  CAS  Google Scholar 

  28. Sato N, Sakamaki K, Terada N, Arai K-I, Miyajima A 1993 Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. The EMBo Journal 12:4181–4189

    PubMed  CAS  Google Scholar 

  29. Venkitaraman AR, Cowling RJ 1992 Interleukin 7 receptor functions by recruiting tyrosine kinase p59fyn through a segment of its cytoplasmic tail. Proc Natl Acad Sci USA 89:12083–12087

    Article  PubMed  CAS  Google Scholar 

  30. Gilmour KC, Reich NC 1994 Receptor to nucleus signaling by prolactin and interleukin 2 via activation of latent DNA-binding factors. Proc Natl Acad Sci USA 91:6850–6854

    Article  PubMed  CAS  Google Scholar 

  31. Groner B, Altoik S, Meier V 1994 Hormonal regulation of transcription factor activity in mammary epithelial cells. Mol Cell Endocrinol 100:109–114

    Article  PubMed  CAS  Google Scholar 

  32. Buteau H, Pezet A, Ferrag F, Perrot-Applanat M, Kelly PA, Edery M 1998 Nglycosylation of the prolactin receptor is not required for activation of gene transcription but is crucial for its cell surface targeting. Mol Endocrinol 12:544–555

    Article  PubMed  CAS  Google Scholar 

  33. Chang W-P, Ye Y, Clevenger CV 1998 Stoichiometric structure/function analysis of the prolactin receptor signaling domains by receptor chimeras. Mol Cell Biol 18:896–905

    Google Scholar 

  34. Chen X, Horseman ND 1994 Cloning, expression, and mutational analysis of the pigeon prolactin receptor. Endocrinology 135:269–276

    Article  PubMed  CAS  Google Scholar 

  35. Kinet S, Bernichtein S, Kelly PA, Martial JA, Goffin V 1999 Biological properties of human prolactin analogs depend not only on global hormone affinity, but also on the relative affinities of both receptor binding sites. J Biol Chem 274:26033–26043

    Article  PubMed  CAS  Google Scholar 

  36. Nagano M, Kelly PA 1994 Tissue Distribution and Regulation of Rat Prolactin Receptor Gene Expression. J Biol Chem 269:13337–13345

    PubMed  CAS  Google Scholar 

  37. Clarke DL, Linzer DLH 1993 Changes in prolactin receptor expression during pregnancy in the mouse ovary. Endocrinology 133:224–232

    Article  PubMed  CAS  Google Scholar 

  38. Ihle JN 1995 Cytokine receptor signaling. Nature 377:591–594

    Article  PubMed  CAS  Google Scholar 

  39. Ihle JN, Kerr IM 1995 Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11:69–74

    Article  PubMed  CAS  Google Scholar 

  40. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN 1993 JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74:227–236

    Article  PubMed  CAS  Google Scholar 

  41. Argetsinger LS, Campbell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, Carter-Su C 1993 Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74:237–244

    Article  PubMed  CAS  Google Scholar 

  42. Campbell GS, Argetsinger LS, Ihle JN, Kelly PA, Rillema JA, Carter-Su C 1994 Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci USA 91:5232–5236

    Article  PubMed  CAS  Google Scholar 

  43. Rui H, Kirken RA, Farrar WL 1994 Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 269:5364–5368

    PubMed  CAS  Google Scholar 

  44. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine J-C, Teglund S, Vanin EF, Bodner S, Calamonici OR, van Deursen JM, Grosveld G, Ihle JN 1998 Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385–395

    Article  PubMed  CAS  Google Scholar 

  45. Zhao Y, Wagner F, Frank SJ, Kraft AS 1995 The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulated factor receptor be chain. J Biol Chem 270:13814–13818

    Article  PubMed  CAS  Google Scholar 

  46. Dusanter-Fourt I, Muller O, Ziemicki A, Mayeux P, Drucker B, Dijane J, Wilks A, Harpur AG, Fischer S, Gisselbrecht S 1994 Identification of JAK protein tyrosine kinases as signaling molecules for prolactin. Functional analysis of prolactin receptor and prolactin-erythropoietin receptor chimera expressed in lymphod cells. EMBO J 13:2583–2591

    PubMed  CAS  Google Scholar 

  47. Lebrun JJ, Ali S, Sofer L, Ullrich A, Kelly PA 1994 Prolactin-induced proliferation Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J Biol Chem 269:14021–14026

    PubMed  CAS  Google Scholar 

  48. Han Y, Watling D, Rogers NC, Stark GR 1997 JAK2 and STATS, but not JAKI and STAT1, are required for prolactin-induced b-lactoglobulin transcription. Mol Endocrinol 11:1180–1188

    Article  PubMed  CAS  Google Scholar 

  49. Kawahara A, Minami Y, Miyazaki T, Ihle JN, Taniguchi T 1995 Critical role of the interleukin 2 (IL2) receptor gamma-chain associated Jak3 in the IL-2 induced c-fos and cmyc but not bc1–2 gene, induction. Proc Natl Acad Sci USA 92:8724–8728

    Article  PubMed  CAS  Google Scholar 

  50. Muller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O, Harpur AG, Barbieri G, Witthuhn BA, Schindler C 1993 The protein tyrosine kinase Jak1 complements defects in interferon-alpha/beta and -gamma signaling. Nature 366:129–135

    Article  PubMed  CAS  Google Scholar 

  51. Chang W-P, Clevenger CV 1996 Modulation of growth factor receptor function by isoform heterodimerization. Proc Natl Acad Sci USA 93:5947–5952

    Article  PubMed  CAS  Google Scholar 

  52. Lebrun J-J, Ali S, Ullrich A, Kelly PA 1995 Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J Biol Chem 270:10664–10670

    Article  PubMed  CAS  Google Scholar 

  53. Pezet A, Buteau H, Kelly PA, Edery M 1997 The last proline of box 1 is essential for association with JAK2 and functional activation of the prolactin receptor. Mol Cell Endocrinol 129:199–208

    Article  PubMed  CAS  Google Scholar 

  54. Lebrun J-J, Ah S, Goffin V, Ullrich A, Kelly PA 1995 A single phosphotyrosine residue of the prolactin receptor is responsible for activation of gene transcription. Proc Natl Acad Sci USA 92:4031–4035

    Article  PubMed  CAS  Google Scholar 

  55. Goupille O, Daniel N, Bignon C, Jolivet J, Djiane J 1997 Prolactin signal transduction to milk protein genes: carboxy-terminal part of the prolactin receptor and its tyrosine phosphorylation are not obligatory for JAK2 and STATS activation. Mol Endocrinol 127:155–169

    Article  CAS  Google Scholar 

  56. Hackett RH, Wang Y-D, Lamer AC 1995 Mapping of the cytoplasmic domain of the human growth hormone receptor required for the activation of Jak2 and Stat proteins. J Biol Chem 270:21326–21330

    Article  PubMed  CAS  Google Scholar 

  57. Frank SJ, Gilliland G, Kraft AS, Arnold CS 1994 Interaction of the growth hormone receptor cytoplasmic domain with the JAK2 tyrosine kinase. Endocrinology 135:2228–2239

    Article  PubMed  CAS  Google Scholar 

  58. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN 1997 Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17:2497–2501

    PubMed  CAS  Google Scholar 

  59. Bignon C, Daniel N, Belair L, Djiane J 1999 In vitro expression of long and short ovine prolactin receptors: activation of Jak2JSTAT5 pathway is not sufficient to account for prolactin signal transduction to the ovine b-lactoglobulin promoter. J Mol Endocrinol 23:125–136

    Article  PubMed  CAS  Google Scholar 

  60. Fresno Vara JA, Carretero MV, Geronimo H, Ballmer-Hofer K, Martin-Perez J 2000 Stimulation of c-Src by prolactin is independent of Jak2. Biochem J 345:17–24

    Article  CAS  Google Scholar 

  61. Pezet A, Ferrag F, Kelly PA, Edery M 1997 Tyrosine docking sites of the rat prolactin receptor required for association and activation StatS. J Biol Chem 272:25043–25050

    Article  PubMed  CAS  Google Scholar 

  62. DaSilva L, Rui H, Erwin RA, Howard OMZ, Kirken RA, Malabarba MG, Hackett RH, Lamer AC, Farrar WL 1996 Prolactin recruits STAT1, STAT3 and STATS independent of conserved receptor tyrosines TYR402, TYR479, TYR515, and TYR580. Mol Cell Endocrinol 117:131–140

    Article  PubMed  CAS  Google Scholar 

  63. Ali S 1998 Prolactin receptor regulates StatS tyrosine phosphorylation and nuclear translocation by two separate pathways. J Biol Chem 273:7709–7716

    Article  PubMed  CAS  Google Scholar 

  64. Yin T, Shen R, Feng G-S, Yang Y-C 1997 Molecular characterization of specific interactions between SHP-2 phosphatase and Jak tyrosine kinases. J Biol Chem 272:1032–1037

    Article  PubMed  CAS  Google Scholar 

  65. Yamashita Y, Watanabe S, Miyazato A, Ohya K, Ikeda U, Shimada K, Komatsu N, Hatake K, Miura K, Ozawa K, Mano H 1998 Tec and Jak2 kinases cooperate to mediate cytokine-driven activation of c-fos transcription. Blood 91:1496–1507

    PubMed  CAS  Google Scholar 

  66. Stein-Gerlach M, Wallasch C, Ullrich A 1998 SHP-2, 5H2-containing protein tyrosine phosphatase-2. Internanational Journal of Biochemistry and Cell Biology 30:559–566

    Article  CAS  Google Scholar 

  67. Huyer G, Alexander DR 1999 Immune signalling: SHP-2 docks at multiple ports. Current Biol 9:R129–R132

    Article  CAS  Google Scholar 

  68. Ali S, Chen Z, Lebrun J-J, Vogel W, Karitonenkov A, Kelly PA, Ullrich A 1996 PTP1D is a positive regulator of the prolactin signal leading to b-casein promoter activation. EMBO J 15:135–142

    PubMed  CAS  Google Scholar 

  69. Berchtold S, Volarevic S, Moriggi R, Mercep M, Groner B 1998 Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 and induction of Stats-dependent transcription. Mol Endocrinol 12:556–567

    Article  PubMed  CAS  Google Scholar 

  70. Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, Tsuda M, Takada T, Kasuga M 1996 A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol 16:6887–6899

    PubMed  CAS  Google Scholar 

  71. Timms JF, Swanson KD, Marie-Cardine A, Raab M, Rudd CE, Schraven B, Neel BG 1999 SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Current Biol 9:927–939

    Article  CAS  Google Scholar 

  72. Stofega MR, Wang H, Ulrich A, Carter-Su C 1998 Growth hormone regulation of SIRP and SHP-2 tyrosyl phosphorylation and association. J Biol Chem 273:7112–7117

    Article  PubMed  CAS  Google Scholar 

  73. Naka T, Fujimoto M, Kishimoto T 1999 Negative regulation of cytokine signaling: STAT-induced Stat inhibitor. TIBS 24:394–398

    PubMed  CAS  Google Scholar 

  74. Starr R, Hilton DJ 1999 Negative regulation of the JAK/STAT pathway. Bioessays 21:47–52

    Article  PubMed  CAS  Google Scholar 

  75. Pezet A, Favre H, Kelly PA, Edery M 1999 Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. J Biol Chem 274:24497–24502

    Article  PubMed  CAS  Google Scholar 

  76. Starr R, Hilton DJ 1998 SOCS: suppressors of cytokine signaling. International Journal of Biochemistry and Cell Biology 30:1081–1085

    Article  PubMed  CAS  Google Scholar 

  77. Helmanm D, Sandowski Y, Cohen Y, Matsumoto A, Yoshimura A, Merchav S, Gertler A 1998 Cytokine-inducible SH2 protein (CIS3) and JAK2 binding protein (JAB) abolish prolactin receptor-mediated STAT5 signaling. FEBS Letters 441:287–291

    Article  Google Scholar 

  78. Ram PA, Waxman DJ 1999 SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274:35553–35561

    Article  PubMed  CAS  Google Scholar 

  79. Yasukawa H, Misawa H, Sakamoto H, Masahuara M, Sasaki A, Wakioka T, Ohtsuka S, Imaizumi T, Matsuda T, Ihle JN, Yoshimura A 1999 The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 18:1309–1320

    Article  PubMed  CAS  Google Scholar 

  80. Clevenger CV, Medaglia MV 1994 The protein tyrosine kinase p59fY° is associated with prolactin receptor and is activated by prolactin stimulation of T-lymphocytes. Mol Endocrinol 8:674–681

    Article  PubMed  CAS  Google Scholar 

  81. Kefalas P, Brown TP, Brickell PM 1995 Signalling by the pp60’-src family of protein-tyrosine kinases. International Journal of Biochemistry and Cell Biology 27:551–563

    Article  PubMed  CAS  Google Scholar 

  82. Courtneidge SA 1994 Protein tyrosine kinases, with emphasis on the Src family. Cancer Biology 5:239–246

    CAS  Google Scholar 

  83. Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE 1999 ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 274:17209–17218

    Article  PubMed  CAS  Google Scholar 

  84. Berlanga JJ, Fresno Vara JA, Martin-Perez J, Garcia-Ruiz JP 1995 Prolactin receptor is associated with c-Src in rat liver. Mol Endocrinol 9:1461–1467

    Article  PubMed  CAS  Google Scholar 

  85. Kazansky AB, Kabotyanski EB, Wyszomierski SL, Mancini MA, Rosen JM 1999 Differential effects of prolactin and src/abl kinases on the nuclear translocation of STAT5B and STAT5A. J Biol Chem 274:22484–22492

    Article  PubMed  CAS  Google Scholar 

  86. Heyeck SD, Wilcox HM, Bunnel SC, Berg LJ 1997 Lek phosphorylates the activaiton loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J Biol Chem 272:25401–25408

    Article  PubMed  CAS  Google Scholar 

  87. Michel F, Grimaud L, Tuosto L, Acuto 0 1998 Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J Biol Chem 273:31932–31938

    Article  PubMed  CAS  Google Scholar 

  88. Al-Sakkaf KA, Dobson PRM, Brown BL 1997 Prolactin induced tyrosine phosphorylation of p59fyn may mediate phosphatidylinositol 3-kinase activation in Nb2 cells. J Mol Endocrinol 19:347–3 50

    Google Scholar 

  89. Hunter S, Burton EA, Wu SC, Anderson SM 1999 Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J Biol Chem 274:2097–2106

    Article  PubMed  CAS  Google Scholar 

  90. Bolen JB 1995 Protein tyrosine kinases in the initiation of antigen receptor signaling.Curr Opin Immuno 17:306–311

    Article  Google Scholar 

  91. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M 1993 The PH domain: a common piece in the structural patchwork of signalling proteins. TIBS 18

    Google Scholar 

  92. Vihinen M, Nilsson L, Smith CI 1994 Tec homology (TH) adjacent to the PH domain. FEBS Lett 350:263–265

    Article  PubMed  CAS  Google Scholar 

  93. Mano H, Sato K, Yazuki Y, Hirai H 1994 Tec protein kinase directly associates with Lyn protein tyrosine kinase through its N-terminal unique domain. Oncogene 9:3205–3211

    PubMed  CAS  Google Scholar 

  94. Machide M, Mano H, Todokoro K 1995 Interleukin 3 and Erythropoietin Induce Association of Vav with Tec Kinase through Tec Homology Domain. Oncogene 11:625

    Google Scholar 

  95. Takahashi M, Hibi M, Fujitani M, Fukada T, Yamaguchi T, Hirano T 1997 Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through Jak. Oncogene 14:2273–2282

    Article  CAS  Google Scholar 

  96. Miyazato A, Yamashita Y, Hatake K, Miura Y, Ozawa K, Mano H 1996 Tec protein kinase is involved in the signaling mechanism of granulocyte colony-stimulating factor receptor. Cell Growth and Differentiation 7:1135–1139

    PubMed  CAS  Google Scholar 

  97. Da Silva AJ, Yamamoto M, Zalvan CH, Rudd CE 1992 Engagement of the Tcr/CD3 complex stimulates p59fyn activity: Detection of associated proteins at 72 and 120–130 KD. Mol Immuno129:1417–1425

    Article  Google Scholar 

  98. Mao J, Xie W, Yuan H, Simon M, Mano H, Wu D 1998 Tec/Bmx non-receptor tyrosine kinases are involved in regulation of Rho and serum response factor by Ga12/13. EMBO J 17:5638–5646

    Article  PubMed  CAS  Google Scholar 

  99. Clevenger CV, Ngo W, Sokol DL, Luger SM, Gewirtz AM 1995 Vav Is Necessary for Prolactin-Stimulated Proliferation and Is Translocated into the Nucleus of a T-cell Line. J Biol Chem 270(22):13246–13253

    Article  PubMed  CAS  Google Scholar 

  100. Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM, Fluckiger A-C, Witte ON, Kinet J-P 1996 Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 271:822–825

    Article  PubMed  CAS  Google Scholar 

  101. Ohya K-I, Kajigaya S, Yamashita Y, Miyazato A, Hatake K, Miura Y, Ikeda U, Shimada K, Ozawa K, Mano H 1997 SOCS-1/JAB/SSI-1 can bind to and suppress Tec protein-tyrosine kinase. J Biol Chem 272:27178–27182

    Article  PubMed  CAS  Google Scholar 

  102. Pezet A, Favre H, Kelly PA, Edery M 1999 Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. J Biol Chem 274:24497–24502

    Article  PubMed  CAS  Google Scholar 

  103. Clevenger CV, Ngo W, Luger SM, Gewirtz AM 1995 Vav is necessary for prolactinstimulated proliferation and is translocated into the nucleus of a T-cell line. J Biol Chem 270:13246–13253

    Article  PubMed  CAS  Google Scholar 

  104. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR 1997 Phosphotyrosinedependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172

    Article  PubMed  CAS  Google Scholar 

  105. Deckert M, Tartare-Deckert S, Couture C, Mustelin T, Altman A 1996 Functional and physical interactions of syk family kinases with the vav proto-oncogene product. Immunity 5:591–604

    Article  PubMed  CAS  Google Scholar 

  106. Fernandez JA, Keshvara LM, Peters JD, Furlong MT, Harrison ML, Geahlen RL 1999 Phosphorylation-and activation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J Biol Chem 274:1401–1406

    Article  PubMed  CAS  Google Scholar 

  107. Miranti CK, Leng L, Maschberger P, Brugge JS, Shattil SJ 1998 Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vavl. Current Biol 8:1289–1299

    Article  CAS  Google Scholar 

  108. Ami S, Senaldi G, Poincelet M, Hoessli DC 1993 Selective associateion of the p591“ tyrosine kinase with murine T lymphoma membrane phophoproteins. Oncogene 8:2485–2491

    Google Scholar 

  109. Han J, Das B, Wei W, Van Aelst L, Mosteller RD, Khosravi-Far R, Westwick JK, Der CJ, Broek D 1997 Lck regulates Vav activation of members of the Rho family of GTPases. Mol Cell Biol 17:1346–1353

    PubMed  CAS  Google Scholar 

  110. Bustelo XR, Rubin SD, Suen K-L, Carrasco D, Barbacid M 1993 Developmental expression of the vav protooncogene. Cell Growth and Differentiation 4:297–308

    PubMed  CAS  Google Scholar 

  111. Bustelo XR, Ledbetter JA, Barbacid M 1992 Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 356:68–71

    Article  PubMed  CAS  Google Scholar 

  112. Coppola J, Bryant S, Koda T, Conway D, Barbacid M 1991 Mechanism of activation of the vav protooncogene. Cell Growth and Differentiation 2:95–105

    PubMed  CAS  Google Scholar 

  113. Katzav S 1993 Single point mutation in the SH2 domain impair the transforming potential of vav and fail to activate proto-vay. Oncogene 8:1757–1763

    PubMed  CAS  Google Scholar 

  114. Katzav S, Martin-Zanca D, Barbacid M 1989 vav, a novel human oncogenc derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J 8:2283–2290

    PubMed  CAS  Google Scholar 

  115. Gulbins E, Coggeshall KM, Baier G, Katzav S, Bum P, Altman A 1993 Tyrosine-kinase stimulated guanine nucleotide exchange activity of vav in T cell activation. Science 260:822–825

    Article  PubMed  CAS  Google Scholar 

  116. Gulbins E, Langlet C, Baier G, Bonnefoy-Berard N, Herbert E, Altman A, Coggeshall EM 1994 Tyrosine phosphorylation and activation of vav GTP/GDP exchange activity in Antigen receptor-triggered B cells. J Immunol 152:2123–2129

    PubMed  CAS  Google Scholar 

  117. Margolis B, Hu P, Katzav S, Li W, Oliver JM, Ullrich A, Weiss A, Schlessinger J 1992 Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 356:71–74

    Article  PubMed  CAS  Google Scholar 

  118. Platanias LC, Sweet MC 1994 Interferon a induces rapid tyrosine phosphorylation of the vav proto-oncogene product in hematopoietic cells. J Biol Chem 269:3143–3146

    PubMed  CAS  Google Scholar 

  119. Alai M, Mui ALF, Cutler RL, Bustelo XR, Barbacid M, Krystal G 1992 Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hematopoietic cells. J Biol Chem 267:18021–18025

    PubMed  CAS  Google Scholar 

  120. Gulbins E, Coggeshall KM, Baier G, Telford D, Langlet C, Baier-Bitterlich G, Bonnefoy-Berard N, Bum P, Wittinghofer A, Altman A 1994 Direct stimulation of vav guanine nucleotide exchange activity for ras by phorbol esters and diglycerides. Mol Cell Biol 14:4749–4758

    PubMed  CAS  Google Scholar 

  121. Evans GA, Howard OZM, Erwin R, Farrar WL 1993 Interleukin-2 induces tyrosine phophorylation of the vav proto-oncogene product in human T cells: lack of requirement for the tyrosine kinase lck. Biochem J 294:339–342

    PubMed  CAS  Google Scholar 

  122. Zhang R, Alt FW, Davidson L, Orkin SH, Swat W 1995 Defective signalling through the T- and B- Cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374:470–473

    Article  PubMed  CAS  Google Scholar 

  123. Movilla N, Bustelo XR 1999 Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 19:7870–7885

    PubMed  CAS  Google Scholar 

  124. Schuebel KE, Movilla N, Rosa JL, Bustelo XR 1998 Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 17:6608–6621

    Article  PubMed  CAS  Google Scholar 

  125. Lopez-Lago M, Lee H, Cruz C, Movilla N, Bustelo XR 2000 Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vay. Mol Cell Biol 20:1678–1691

    Article  PubMed  CAS  Google Scholar 

  126. Abe K, Whitehead IP, O’Bryan JP, Der CJ 1999 Involvement of NHZ terminal sequences in the negative regulation of Vav signaling and transforming activity. J Biol Chem 274:30410–30418

    Article  PubMed  CAS  Google Scholar 

  127. Han J, Luby-Phelps K, Das B, Shiu X, Mosteller RD, Krishna UM, Falck JR, White MA, Broek D 1998 Role of substrates and products of PI 3-kinase in regulating activation of rac-related guanosine triphosphatases by Vay. Science 279:558–560

    Article  PubMed  CAS  Google Scholar 

  128. Nimnual AS, Yatsula BA, Bar-Sagi D 1998 Coupling of ras and rac guanosine triphosphatases through the ras exchanger Sos. Science 279:560–563

    Article  PubMed  CAS  Google Scholar 

  129. Downward J 1998 Role of phosphoinositide-3-OH kinase in ras signaling. Signal Transduction in Health and Disease 31:1–10

    Article  Google Scholar 

  130. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesbroek B, Gout I, Fry MJ, Waterfield MD, Downward J 1994 Phosphotidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532

    Article  PubMed  CAS  Google Scholar 

  131. Hall A 1998 Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  132. Henning SW, Cantrell DA 1998 GTPases in antigen receptor signalling. Current Opinion in Immunology 10:322–329

    Article  PubMed  CAS  Google Scholar 

  133. Aspenstrom P 1999 Effectors for the Rho GTPases. Curr Op Cell Biol 11:95–102

    Article  PubMed  CAS  Google Scholar 

  134. Fischer K-D, Kong YY, Nishina H, Tedford K, Marengere LEM, Kozieradzki I, Sasaki T, Starr M, Chan G, Gardener S, Ngheim MP, Bouchard D, Barbacid M, Bernstein A, Penninger JM 1998 Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Current Biol 8:554–562

    Article  CAS  Google Scholar 

  135. Holsinger LJ, Graef A, Swat W, Chi T, Bautista DM, Davidson L, Lewis RS, Alt FW, Crabtree GR 1998 Defects in actin-cap formation in Vav-defecient mice implicate an actin requirement for lymphocyte signal transduction. Current Biol 8:563–572

    Article  CAS  Google Scholar 

  136. Allen WE, Jones GE, Pollard JW, Ridley AJ 1997 Rho, rac, and cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 110:707–720

    PubMed  CAS  Google Scholar 

  137. Chrzanowska-Wodnicki M, Burridge K 1996 Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415

    Article  Google Scholar 

  138. Zigmond SH 1996 Signal transduction and actin filament organization. Current Biol 8:66–73

    CAS  Google Scholar 

  139. Keely P, Parise L, Juliano R 1998 Integrins and GTPases in tumour cell growth, motility and invasion. Trends in Cell Biology 8:101–106

    Article  PubMed  CAS  Google Scholar 

  140. Maus MV, Reilly SC, Clevenger CV 1999 Prolactin as a chemoattractant for human breast carcinoma. Endocrinology 140:5447–5450

    Article  PubMed  CAS  Google Scholar 

  141. Takayama S, Sato T, Krajewski S, Kochei K, Irie S, Milian JA, Reed JC 1995 Cloning and functional analysis of BAG-1: A novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    Article  PubMed  CAS  Google Scholar 

  142. Froesch BA, Takayama S, Reed JC 1998 Bag1L protein enhances androgen receptor function. J Biol Chem 273:11660–11666

    Article  PubMed  CAS  Google Scholar 

  143. Takayama S, Xie Z, Reed JC 1999 An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  PubMed  CAS  Google Scholar 

  144. Wang H-G, Takayama S, Rapp UR, Reed JC 1996 Bc1–2 interacting protein, Bag-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci USA 93:7063–7068

    Article  PubMed  CAS  Google Scholar 

  145. Clevenger CV, Thickman K, Ngo W, Chang W-P, Takayama S, Reed JC 1997 Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/ F3 and Nb2. Mol Endocrinol 11:608–618

    Article  PubMed  CAS  Google Scholar 

  146. Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C, Comoglio PM 1996 HGF receptor associates with the anti-apoptotic protein Bag-1 and prevents cell death. EMBO J 15:6205–6212

    PubMed  CAS  Google Scholar 

  147. Luders J, Demand J, Hohfeld J 2000 The ubiquitin-related Bag-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    Article  PubMed  CAS  Google Scholar 

  148. Vincent V, Goffin V, Rozakis-Adcock M, Mornon J-P, Kelly PA 1997 Identification of cytoplasmic motifs required for short prolactin receptor internalization. J Biol Chem 272:7062–7068

    Article  PubMed  CAS  Google Scholar 

  149. Krumenacker JS, Montgomery DW, Buckley DJ, Gout PW, Buckley AR 1998 Prolactin receptor signaling: Shared components with the T-cell antigen receptor in Nb2 lymphoma cells. Endocrine 9:313–320

    Article  PubMed  CAS  Google Scholar 

  150. Raab M, Da Silva AJ, Findell PR, Rudd CE 1997 Regulation of Vav-SLP binding by ZAP-70 and its relevance to TCRz /CD3 induction of interleukin-2. Immunity 6:155–164

    Article  PubMed  CAS  Google Scholar 

  151. Salojin KV, Zhang J, Delovitch TL 1999 TCR and CD28 are coupled via ZAP-70 to the activation fo the Vav/Rac-1/PAK-1/p38 MAPK signaling pathway. J Immunol 163:844–853

    PubMed  CAS  Google Scholar 

  152. Montgomery DW, Krumenacker JS, Buckley AR 1999 Prolactin stimulates phosphorylation of the human T-cell antigen receptor complex and ZAP-70 tyrosine kinase: A potential for immunomodulation. Endocrinology 139:811–814

    Article  Google Scholar 

  153. Clevenger CV, Torigoe T, Reed JC 1994 Prolactin induces rapid phosphorylation and activation of prolactin receptor associated Raf-1 kinase in a T-cell line. J Biol Chem 269:5559–5565

    PubMed  CAS  Google Scholar 

  154. Goupille O, Barnier J-V, Guibert B, Paly J, Djiane J 2000 Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol 159:133–146

    Article  PubMed  CAS  Google Scholar 

  155. Das R, Vonderhaar BK 1996 Involvement of SHC, GRB2, SOS, and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene 13:1139–1145

    PubMed  CAS  Google Scholar 

  156. Seth A, Gonzalez FA, Gupta S, Raden DL, Davis RJ 1992 Signal transduction within the nucleus by mitogen-activated protein kinase. J Biol Chem 267:24796–24804

    PubMed  CAS  Google Scholar 

  157. Chen R-H, Corbalan-Garcia S, Bar-Sagi D 1997 The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J 16:1351–1359

    Article  PubMed  CAS  Google Scholar 

  158. Lemmon MA, Ferguson KM, O’brien R, Sigler PB, Schlessinger J 1995 Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92:10472

    Article  PubMed  CAS  Google Scholar 

  159. Berlanga JJ, Gualillo O, Buteau H, Applanat M, Kelly PA, Edery M 1997 Prolactin activates tyrosyl phosphorylation of insulin receptor substrate 1 and phosphatidylinositol-3-OH kinase. J Biol Chem 272:2050–2052

    Article  PubMed  CAS  Google Scholar 

  160. Buckley AR, Crowe PD, Russell DH 1988 Rapid activation of protein kinase C in isolated rat liver nuclei by prolactin, a known hepatic mitogen. Proc Natl Acad Sci USA 85:8649–8653

    Article  PubMed  CAS  Google Scholar 

  161. Crowe PD, Buckley AR, Zorn NE, Rui H 1991 Prolactin activates protein kinase C and stimulates growth-related expression in rat liver. Mol Cell Endocrinol 79:29–35

    Article  PubMed  CAS  Google Scholar 

  162. Canbay E, Norman M, Kilic E, Goffin V, Zachary I 1997 Prolactin stimulates the JAK2 and focal adhesion kinase pathways in human breast carcinoma T47-D cells. Biochem J 324:231–236

    PubMed  CAS  Google Scholar 

  163. Buckley AR, Montgomery DW, Kibler R, Putnam CW, Zukoski CF, Gout PW, Beer CT, Russell DH 1986 Prolactin stimulation of ornithine decarboxylase and mitogensis in NB2 node lymphoma cells: The role of protein kinase C and calcium mobilization. Immunopharmacology 12:37–51

    Article  PubMed  CAS  Google Scholar 

  164. Murphy PR, DeMattia GE, Friesen HG 1988 Role of calcium in prolactin-stimulated cmyc gene expression and mitogenesis in NB2 lymphoma cells. Endocrinology 122:2476–2485

    Article  PubMed  CAS  Google Scholar 

  165. Olazabal I, Munoz J, Ogueta S, Obregon E, Garcia-Ruiz JP 2000 Prolactin (PRL)-PRL receptor system increases cell proliferation involving JNK and AP-1 activation: Inhibition by glucocorticoids. Mol En 14:564–575

    Article  CAS  Google Scholar 

  166. Gala RR 1991 Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exptl Biol Med 198:513–527

    CAS  Google Scholar 

  167. Yu-Lee L-Y 1997 Molecular actions of prolactin in the immune system. Proc Soc Exptl Biol Med 215:35–52

    CAS  Google Scholar 

  168. Kooijman R, Hooghe-Peters EL, Hooghe R 1996 Prolactin, growth hormone, and insulin-like growth factor-1 in the immune system. Adv Immunol 63:377–454

    Article  PubMed  CAS  Google Scholar 

  169. Prystowsky MB, Clevenger CV 1994 Prolactin as a second messenger for interleukin 2. Immunomethods 5:49–55

    Article  PubMed  CAS  Google Scholar 

  170. Kelly PA, Ali S, Rozakis M, Goujon L, Nagano M, Pellegrini I, Gould D, Djiane J, Edery M, Finidori J, Postel-Vinay MC 1993 The growth hormone/prolactin receptor family. Rec Prog Horm Res 48:123–164

    PubMed  CAS  Google Scholar 

  171. Shiu RPC, Murphy LC, Tsuyuki D, Myal Y, Lee-Wing M, Iwasiow B 1987 Biological actions of prolactin in human breast carcinoma. Rec Prog Horm Res 43:277–299

    PubMed  CAS  Google Scholar 

  172. Clevenger CV, Russell DH, Appasamy PM, Prystowsky MB 1990 Regulation of IL2driven T-lymphocyte proliferation by prolactin. Proc Natl Acad Sci USA 87:6460–6464

    Article  PubMed  CAS  Google Scholar 

  173. Clevenger CV, Siliman AL, Prystowsky MB 1990 Interleukin-2 driven nuclear translocation of prolactin in cloned T-lymphocytes. Endocrinology 127:3151–3159

    Article  PubMed  CAS  Google Scholar 

  174. Clevenger CV, Altmann SW, Prystowsky MB 1991 Requirement of nuclear prolactin for interleukin-2-stimulated proliferation of T lymphocytes. Science 253:77–79

    Article  PubMed  CAS  Google Scholar 

  175. Nolin JM 1978 Intracellular prolactin in rat corpus luteum and adrenal cortex. Endocrinology 102:402–406

    Article  PubMed  CAS  Google Scholar 

  176. Nolin JM 1980 Incorporation of regulatory peptide hormones by individual cells of the adrenal cortex: Prolactin-adrenocorticotropin differences. Peptides 1:249–255

    Article  PubMed  CAS  Google Scholar 

  177. Rakowicz-Szulczynska EM, Rodeck U, Herlyn M, Koprowski H 1986 Chromatin binding of epidermal growth factor, nerve growth factor, and platlet-derived growth factor in cells bearing the appropriate surface receptors. Proc Natl Acad Sci USA 83:3728–3732

    Article  PubMed  CAS  Google Scholar 

  178. Smith RM, Jarett L 1987 Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3–L1 adipocytes by an insulin-receptor mediated process. Proc Natl Acad Sci USA 84:459–463

    Article  PubMed  CAS  Google Scholar 

  179. Baldin V, Roman AM, Bosc-Bierne I, Amalric F, Bouche G 1990 Translocation of bFGF to the nucleus is G1 phase cell cycle specific in bovine aortic endothelial cells. EMBO J 9:1511–1517

    PubMed  CAS  Google Scholar 

  180. Jans DA, Briggs LJ, Gustin SE, Jans P, Ford S, Young IG 1997 The cytokine interleukin5 (IL-5) effects cotransport of its receptor subunits to the nucleus in vitro. FEBS Letters 410:368–372

    Article  PubMed  CAS  Google Scholar 

  181. Schreiber SL 1991 Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287

    Article  PubMed  CAS  Google Scholar 

  182. Allain F, Boutillon C, Mariller C, Spik G 1995 Selective assay for CyPA and CyPB in human blood using highly specific anti-peptide antibodies. J Immunol Meth 178:113–120

    Article  CAS  Google Scholar 

  183. Rycyzyn MA, Reilly SC, O’Malley K, Clevenger CV 2000 Role of cyclophilin B in PRL signal transduction and nuclear retrotranslocation. Mol Endocrinol In Press

    Google Scholar 

  184. Hazes B, Read RJ 1997 Accumulating evidence suggests that several AB toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051–11054

    Article  PubMed  CAS  Google Scholar 

  185. Johannes L, Goud B 1998 Surfing on a retrograde wave: How does Shiga toxin reach the endoplasmic reticulum. Trends in Cell Biology 8:158–162

    Article  PubMed  CAS  Google Scholar 

  186. Wiertz EJHJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapaport TA, Ploegh HL 1997 Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    Article  Google Scholar 

  187. Klappa R, Freedman RB, Zimmerman R 1995 Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation. Eur J Biochem 232:755–764

    Article  PubMed  CAS  Google Scholar 

  188. Leverson JD, Ness SA 1998 Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism. Molecular Cell 1:203–211

    Article  PubMed  CAS  Google Scholar 

  189. Razandi M, Peram A, Greene GL, Levin ER 1999 Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: Studies of ERa and ERb expressed in Chinese Hamster Ovary cells. Mol Endocrinol 13:307–319

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clevenger, C.V., Rycyzyn, M.A., Syed, F., Kline, J.B. (2001). Prolactin Receptor Signal Transduction. In: Horseman, N.D. (eds) Prolactin. Endocrine Updates, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1683-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1683-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5676-9

  • Online ISBN: 978-1-4615-1683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics