Skip to main content
Book cover

Prolactin pp 247–264Cite as

Prolactin Regulation of Cell Proliferation and Apoptosis

  • Chapter
  • 247 Accesses

Part of the book series: Endocrine Updates ((ENDO,volume 12))

Abstract

The idea that PRL may function as a stimulator of a trophic response in a broad spectrum of tissues is one that has evolved slowly since its initial discovery nearly 70 years ago. In large part, the comparative reluctance to embrace a role for PRL as a regulator of growth in tissues beyond those involved in reproduction and nurturing of the young, is due to its well characterized and extensively studied effects in the mammary gland in which it is essential for lactation and for which it was originally named (1). Indeed, itsF effect to stimulate proliferation in the crop-sac, together with the formation of crop-milk in pigeons and doves as well as to induce lactation in mammals led to identification of PRL as a new anterior pituitary hormone (2, 3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riddle O, Bates RW, Dykshorn SW. A new hormone of the anterior pituitary. Proc Soc Exper Biol Med 1932; 29:1211–1212.

    Google Scholar 

  2. Riddle O, Bates RW, Dykshorn SW. The preparation, identification and assay of prolactin - a hormone of the anterior pituitary. Am J Physiol 1933;105:191–216.

    CAS  Google Scholar 

  3. Riddle O. Prolactin in vertebrate function and organization. J Natl Cancer Inst 1968;31:1039–1110.

    Google Scholar 

  4. Gout PW, Beer CT, Noble RL. Prolactin-stimulated growth of cell cultures established from malignant Nb rat lymphomas. Cancer Res 1980;40:2433–2436.

    PubMed  CAS  Google Scholar 

  5. Dumont JN. Prolactin-induced cytologic changes in the mucosa of the pigeon crop during crop `milk’ formation. Z Zellforsch 1965;68:755–782.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson TR, Pitts DS, Nicoll CS. Prolactin’s mitogenic action on the pigeon crop-sac mucosal epithelium involves direct and indirect mechanisms. Gen Comp Endocrinol 1984;54:236–246.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-David M. A sensitive bioassay for prolactin based on [3H]methylthymidine uptake by the pigeon crop mucous epithelium. Proc Soc Exp Biol Med 1967;125:705–708.

    PubMed  CAS  Google Scholar 

  8. Nicoll CS. Bioassay of prolactin: analysis of the pigeon crop sac response to local prolactin injection by an objective and quantitative method. Endocrinology 1967;80:641–655.

    Article  PubMed  CAS  Google Scholar 

  9. Lewis UJ, Singh RNP, Lewis LL, Seavey BK, Sinha YN. Glycosylated ovine prolactin. Proc Natl Acad Sci USA 1984;81:385–389.

    Article  PubMed  CAS  Google Scholar 

  10. Clapp C, Sears PS, Russell DH, Richards J, Levay-Young BK, Nicoll CS. Biological and immunological characterization of cleaved and 16K forms of rat prolactin. Endocrinology 1988;122:2892–2898.

    Article  PubMed  CAS  Google Scholar 

  11. Nicoll C, Bern HA. Further analysis of the occurrence of pigeon crop sac-stimulating activity (prolactin) in the vertebrate adenohypophysis. Gen Comp Endocrinol 1968;11:5–16.

    Article  CAS  Google Scholar 

  12. Pukac LA, Horseman ND. Regulation of pigeon crop gene expression by prolactin. Endocrinology 1984;114:1718–1724.

    Article  PubMed  CAS  Google Scholar 

  13. Bani G, Sacchi TB, Bigazzi M. Response of the pigeon crop sac to mammotrophic hormones: comparison between relaxin and prolactin. Gen Comp Endocrinol 1990;80:16–23.

    Article  PubMed  CAS  Google Scholar 

  14. Chen X, Horseman ND. Cloning, expression, and mutational analysis of the pigeon prolactin receptor. Endocrinology 1994;135:269–276.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson TR, Mayer GL, Nicoll CS. Cyclic nucleotides and the control of epithelial cell proliferation: cyclic CMP may be a partial mediator of the response of the pigeon crop-sac to prolactin. J Cyclic Nucl Res 1981;7:225–233.

    CAS  Google Scholar 

  16. Pukac LA, Horseman ND. Regulation of cloned prolactin-inducible genes in pigeon crop. Mol Endocrinol 1987;1:188–194.

    Article  PubMed  CAS  Google Scholar 

  17. Horseman ND. A prolactin-inducible gene product which is a member of the calpactin/ lipocortin family. Mol Endocrinol 1989;3:773–779.

    Article  PubMed  CAS  Google Scholar 

  18. Xu YH, Horseman ND. Nuclear proteins and prolactin-induced annexin Icp35 gene transcription. Mol Endocrinol 1992;6:375–383.

    Article  PubMed  CAS  Google Scholar 

  19. Sidis Y, Horseman ND. Prolactin induces rapid p95/p70 tyrosine phosphorylation, and protein binding to GAS-like sites in the anx Icp35 and c-fos genes. Endocrinology 1994;134:1979–1985.

    Article  PubMed  CAS  Google Scholar 

  20. Emerman JT, Bissell MJ. Cultures of mammary epithelial cells: extracellular matrix and functional differentiation. Adv Cell Culture 1988;6:137–159.

    CAS  Google Scholar 

  21. Lyons WR, Li Ch, Johnson RE. The hormonal control of mammary growth and lactation. Recent Prog Horm Res 1958;14:219–250.

    PubMed  CAS  Google Scholar 

  22. Dilley WG, Nandi S. Rat mammary gland differentiationin vitroin the absence of steroids. Science 1968;161:59–60.

    Article  PubMed  CAS  Google Scholar 

  23. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 1980;60:1049–1106.

    PubMed  CAS  Google Scholar 

  24. Oka T, Yoshimura M, Lavandero S, Wada K, Ohba Y. Control of growth and differentiation of the mammary gland by growth factors. J Dairy Sci 1991;74:2788–2800.

    Article  PubMed  CAS  Google Scholar 

  25. Kleinberg DL. Early mammary gland development: growth hormone and IGF-1. J Mam Gland Biol Neoplasia 1997;2:49–57.

    Article  CAS  Google Scholar 

  26. Horseman ND. Prolactin and mammary gland development. J Mam Gland Biol Neoplasia 1999;4:79–88.

    Article  CAS  Google Scholar 

  27. Vonderhaar BK. Studies on the mechanisms by which thyroid hormones enhance alactalbumin activity in explants from mouse mammary glands. Endocrinology 1977;100:1423–1431.

    Article  PubMed  CAS  Google Scholar 

  28. Martin R, Glass M, Wilson G, Woods K. Human lactalbumin and hormonal factors in pregnancy and lactation. Clin Endocrinol 1973;13:323–330.

    Google Scholar 

  29. Hearn J. Pituitary inhibition of pregnancy. Nature 1973;241:207–208.

    Article  PubMed  CAS  Google Scholar 

  30. Brun F, del Re R, del Pozo E. Prolactin inhibition and suppression of puerperal lactation by a Br-ergocriptine (CD 154): a comparison with estrogen. Obstet Gynecol 1973;41:884–892.

    Google Scholar 

  31. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 1997;16:6926–6935.

    Article  PubMed  CAS  Google Scholar 

  32. Ormandy C, Camus JA, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babomet C, Binart N, Kelly PA. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997;11:167–178.

    Article  PubMed  CAS  Google Scholar 

  33. Darcy KM, Shoemaker SF, Lee P-P H, Vaughan MW, Black JD, Ip MM. Prolactin and epidermal growth factor regulation of proliferation, morphogenesis, and functional differentiation of normal rat mammary epithelial cells in three dimensional primary culture. J Cell Physiol 1995;163:346–364.

    Article  PubMed  CAS  Google Scholar 

  34. Moriggl R, Berchtold S, Friedrich K, Standke GJR, Kammer W, Heim M, Wissler M, Stocklin E, Gouilleux F, Groner B. Comparison of the transactivation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells. Mol Cell Biol 1997;17:3663–3678.

    PubMed  CAS  Google Scholar 

  35. Ali S, Ali S. Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J Biol Chem 1998;273:7709–7716.

    Article  PubMed  CAS  Google Scholar 

  36. Lebrun J-J, Ali S, Ullrich A, Kelly PA. Proline-rich sequence mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J Biol Chem 1995;270:10664–10670.

    Article  PubMed  CAS  Google Scholar 

  37. DaSilva L, Rui H, Erwin RA, Howard OM, Kirken RA, Malabarba M, Hackett RH, Lamer AC, Farrar WL. Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580.Mol Cell Endocrinol 1996;117:131–140.

    Article  CAS  Google Scholar 

  38. Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 1994;13:2182–2191.

    PubMed  CAS  Google Scholar 

  39. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 1995;92:8831–8835.

    Article  PubMed  CAS  Google Scholar 

  40. Gouilleux F, Wakao H, Mundt M, Groner B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 1994;13:4361–4369.

    PubMed  CAS  Google Scholar 

  41. Kane IM, Leder P. NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 1996;12:1781–1788.

    Google Scholar 

  42. Rothman P, Kreider B, Azam M, Levy D, Wegenka U, Eilers A, Decker T, Fom F, Kashieva H, Ihle J, Schindler C. XXX Cytokines and growth factors signal through tyrosine phosphorylation of a family of related transcription factors Immunity 1994;1:457–468.

    CAS  Google Scholar 

  43. Decker T, Lew DJ, Mirkovitch J, Darnell JE. Cytoplasmic activation of GAF, and IFNgamma-regulated DNA-binding factor. EMBO J 1991;10:927–932.

    PubMed  CAS  Google Scholar 

  44. Barash I. Prolactin and insulin synergize to regulate the translation modulator PHAS-I via mitogen-activated protein kinase-independent by wortmannin-and rapamycinsensitive pathway. Mol Cell Endocrinol 1999;155:37–49.

    Article  PubMed  CAS  Google Scholar 

  45. Vonderhaar BK. Prolactin and its receptors in human breast cancer. In: Manni A, ed. Endocrinology of Breast Cancer. Totowa, New Jersey: Humana Press, 1999:261–279.

    Google Scholar 

  46. Das R, Vonderhaar BK. Involvement of SHC, Grb2, Sos, and Ras in prolactin signal transduction in mammary epithelial cells. Oncogene 1996;13:1139–1145.

    PubMed  CAS  Google Scholar 

  47. Das R, Vonderhaar BK. Prolactin as a mitogen in mammary cells. J Mam Gland Biol Neoplasia 1997;2:29–39.

    Article  CAS  Google Scholar 

  48. Reynolds C, Montone KT, Powell CM, Tomaszewski JE, Clevenger CV. Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 1997;138:5555–5560.

    Article  PubMed  CAS  Google Scholar 

  49. Maus MV, Reilly SC, Clevenger CV. Prolactin as a chemoattractant for human breast carcinoma. Endocrinology 1999;140:5447–5450.

    Article  PubMed  CAS  Google Scholar 

  50. Berczi, I, Nagy, E, Kovacs, K, Horvath, E. Regulation of humoral immunity in rats by pituitary hormones. Acta Endocrinol (Copenh) 1981;98:506–513.

    CAS  Google Scholar 

  51. Nagy, E, Berczi, I. Prolactin and contact sensitivity. Allergy 1981;36:429–432.

    Article  PubMed  CAS  Google Scholar 

  52. Berczi, I, Nagy, E, Asa, SL, Kovacs. The influence of pituitary hormones on adjuvant arthritis Rheum 1984;27:682–688.

    CAS  Google Scholar 

  53. Matera, L, Casano, A, Bellone, G, Oberholtzer, E. Modulatory effect of prolactin on the resting and mitogen-induced activity of T, B, and NK lymphocytes. Brain Behav Immun 1992;6:409–417.

    Article  PubMed  CAS  Google Scholar 

  54. Athreya, BH, Pletcher, J, Zulian, F, Weiner, DB, Williams, WV. Subset-specific effects of sex hormones and pituitary gonadotropins on human lymphocyte proliferationin vitro.Clin Immunol Immunopathol 1993;66:201–211.

    Article  PubMed  CAS  Google Scholar 

  55. Clevenger CV, Russell DH, Appasamy PM, Prystowsky MB. Regulation of IL2-driven T-lymphocyte proliferation by prolactin. Proc Natl Acad Sci USA 1990;87:6460–6464.

    Article  PubMed  CAS  Google Scholar 

  56. Hartmann DP, Holoday JW, Bernton EW. Inhibition of lymphocyte proliferation by antibodies to prolactin. FASEB J 1989:3:2194–2202.

    PubMed  CAS  Google Scholar 

  57. Montgomery, DW, Zukoski, CF, Shah, GN, Buckley, AR, Pacholecyzk, T, Russell, DH. Concanavalin A stimulated murine splenocytes produce a factor with prolactin-like bioactivity and immunoreactivity. Biochem Biophys Res Commun 1987;145:692–698.

    Article  PubMed  CAS  Google Scholar 

  58. O’Neal, KD, Montgomery, DW, Truong, TM, Yu-Lee, L-Y. Prolactin gene expression in human thymocytes. Mol Cell Endocrinol 1992;87:R19–R23.

    Article  PubMed  Google Scholar 

  59. Montgomery, DW, Shen, GK, Ulrich, ED, Steiner, LL, Parish, PR, Zukoski, CF. Human, thymocytes express a prolactin-like messenger ribonucleic acid and synthesize bioactive prolactin-like proteins. Endocrinology 1992;131:3019–3026.

    Article  PubMed  CAS  Google Scholar 

  60. Sabharwal, P, Glaser, R, Lafuse, W, Varma, S, Lia, Q, Arkins, S, Kooijman, R, Kutz, L, Kelley, KW, Malarkey, WB. Prolactin synthesized and secreted by human peripheral blood mononuclear cells: an autocrine growth factor for lymphoproliferation. Proc Natl Acad Sci USA 1992;89:7713–7716.

    Article  PubMed  CAS  Google Scholar 

  61. Pellegrini, I, Labrun, JJ, Ali, S, Kelly, PA. Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol 1992;6:1023–1031.

    Article  PubMed  CAS  Google Scholar 

  62. Russell, DH, Kibler, R, Matrisian, L, Larson, DF, Poulos, B, Magun, BE. Prolactin receptors on human T and B lymphocytes: antagonism of prolactin binding by cyclosporine. J Immunol 1985;134:3027–3031.

    PubMed  CAS  Google Scholar 

  63. Gagnerault, M-C, Tourine, P, Savino, W, Kelly, PA, Dardenne, M. Expression of prolactin receptors in murine lymphoid cells in normal and autoimmune situations. J Immunol 1993;150:5673–5681.

    PubMed  CAS  Google Scholar 

  64. Ali, S, Pellegrini, I, Kelly, PA. A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor. J Biol Chem 1991;266:20110–20117.

    PubMed  CAS  Google Scholar 

  65. Bouchard B, Ormandy CJ, DiSanto JP, Kelly PA. Immune system development and function in prolactin receptor-deficient mice. J Immunol 1999;163:576–582.

    PubMed  CAS  Google Scholar 

  66. Dorshkind K, Horseman N., The roles of prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocrine Rev, in press.

    Google Scholar 

  67. Postel-Vinay M-C, de Mello Coelho V, Gagnerault M-C, Dardenne M. Growth hormone stimulates the proliferation of activated mouse T-lymphocytes. Endocrinology 1997;138:1816–1820.

    Article  PubMed  CAS  Google Scholar 

  68. Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997:29:301–307.

    Article  PubMed  CAS  Google Scholar 

  69. Brelje TC, Allaire P, Hegre O, Sorenson RL. Effect of prolactin versus growth hormone on islet function and the importance of using homologous mammsosmatotropic hormones. Endocrinology 1989;125:2392–2399.

    Article  PubMed  CAS  Google Scholar 

  70. Brelje TC, Sorenson RL. Role of prolactin versus growth hormone on islet B-cell proliferation in vitro: implications for pregnancy. Endocrinology 1991;128:45–57.

    Article  PubMed  CAS  Google Scholar 

  71. Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M, Friesen HG, Sorenson RL. Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 1993;132:879–887.

    Article  PubMed  CAS  Google Scholar 

  72. Brelje TC, Parsons JA, Sorenson RL. Regulation of islet B-cell proliferation by prolactin in rat islets. Diabetes 1994;43:263–273.

    Article  PubMed  CAS  Google Scholar 

  73. Fleenor D, Petryk A, Driscoll P, Freemark M. Constitutive expression of placental lactogen in pancreatic beta cells: effects on cell morphology, growth, and gene expression. Pediatr Res 2000;47:136–142.

    Article  PubMed  CAS  Google Scholar 

  74. Sorenson RL, Stout LE. Prolactin receptors and Jak2 in Islets of Langerhans: an immunohistochemical analysis. Endocrinology 1995;136:4092–4098.

    Article  PubMed  CAS  Google Scholar 

  75. Galsgaard ED, Nielson JH, Moldrup A. Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. J Biol Chem 1999;274:18686–18692.

    Article  PubMed  CAS  Google Scholar 

  76. Stout LE, Svensson AM, Sorenson RL. Prolactin regulation of islet-derived INS-1 cells: characteristics and immunocytochemical analysis of STAT5 translocation. Endocrinology 1997;138:1592–1603.

    Article  PubMed  CAS  Google Scholar 

  77. Holstad M, Sandler S. Prolactin protects against diabetes induced by multiple low doses of streptozotocin in mice. J Endocrinol 1999;163:229–234.

    Article  PubMed  CAS  Google Scholar 

  78. Davalli AM, Scaglia L, Brevi M, Sanvito F, Freschi M, Cavallaro U, Parlow AF, Pontiroli AE. Pituitary cotransplantation significantly improves the performance, insulin content, and vascularization of renal subcapsular islet grafts. Diabetes 1999;48:59–65.

    Article  PubMed  CAS  Google Scholar 

  79. DeVito WJ, Avakian C, Stone S, Okulicz WC. Prolactin-stimulated mitogenesis of cultured astrocytes is mediated by a protein kinase C-dependent mechanism. J Neurochem 1993;60:835–842.

    Article  CAS  Google Scholar 

  80. DeVito WJ, Stone S, Shamgochian M. Prolactin induced expression of glial fibrillary acidic protein and tumor necrosis factor-alpha at a wound site in the rat brain. Mol Cell Endocrinol 1995;108:125–130.

    Article  PubMed  CAS  Google Scholar 

  81. Girolomoni G, Phillips JT, Bergstresser PR. Prolactin stimulates proliferation of cultured human keratinocytes. J Invest Dermatol 1993;101:275–279.

    Article  PubMed  CAS  Google Scholar 

  82. Poumay Y, Jolivet G, Pittelkow MR, Herphelin F, DePotter IY, Mitev V, Houdebine LM., Human epidermal keratinocytes upregulate expression of the prolactin receptor after the onset of terminal differentiation, but do not respond to prolactin. Arch Biochem Biophys 1999;364:247–253.

    Article  PubMed  CAS  Google Scholar 

  83. White BA, Nicoll CS. Hormonal control of amphibian metamorphosis. In: Gilbert LI, Frieden E, eds. Metamorphosis. A problem in developmental biology. New York: Plenum Press, 1981:363–396.

    Google Scholar 

  84. Ray LB, Dent JN. Observations on the interaction of prolactin and thyroxine in the tail of the bullfrog tadpole. Gen Comp Endocrinol 1986;64:36–43.

    Article  PubMed  CAS  Google Scholar 

  85. Russell DH, Buckley AR, Montgomery DW, Putnam CW, Zukoski CF.,Antiproliferative properties of corticosteroids and the cyclopeptides, cyclosporine and didemnin B, involve inhibition of prolactin receptor binding in rat Nb2 node lymphoma cells. J Cell Biochem 1987;11A:39 (abst).

    Google Scholar 

  86. Tata JR. Hormonal regulation of programmed cell death during amphibian metamorphosis. Biochem Cell Biol 1994;72:581–588.

    Article  PubMed  CAS  Google Scholar 

  87. Fletcher-Chiappini SE, Comptom MM, LaVoie HA, Day EB, Witorsch RJ. Glucocorticoid-prolactin interactions in Nb2 lymphoma cells: antiproliferative versus anticytolytic effects. Proc Soc Exp Biol Med 1993;202:345–352

    PubMed  CAS  Google Scholar 

  88. Gout PW. Transient requirement for prolactin as a growth initiator following treatment of autonomous Nb2 node rat lymphoma cell cultures with butyrate. Cancer Res 1987;47:1751–1755.

    PubMed  CAS  Google Scholar 

  89. Witorsch RJ, Day EB, LaVoie HA, Hashemi N, Taylor JK. Comparison of glucocorticoid-induced effects in prolactin-dependent and autonomous rat Nb2 lymphoma cells. Proc Soc Exp Biol Med 1993;203:454–460.

    PubMed  CAS  Google Scholar 

  90. Buckley AR, Krumenacker JS, Buckley DJ, Leff MA, Magnuson NS, Reed JC, Miyashita T, de Jong G, Gout PW. Butyrate-induced reversal of dexamethasone resistance in autonomous rat Nb2 lymphoma cells. Apoptosis 1997;2:518–528.

    Article  PubMed  CAS  Google Scholar 

  91. Buckley AR, Leff MA, Buckley DJ, Magnuson NS, de Jong G, Gout PW. Alterations in pim-1 and c-myc expression associated with sodium butyrate-induced growth factor dependency in autonomous rat Nb2 lymphoma cells. Cell Growth Diff 1996;7:1713–1721.

    PubMed  CAS  Google Scholar 

  92. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bc1–2 heterodimerizesin vivowith a conserved homolog, Box, that accelerates programmed cell death. Cell 1993;74:609–619.

    Article  PubMed  CAS  Google Scholar 

  93. Ohta K, Iwai K, Kasahara Y, Taniguchi N, Krajeeski S, Reed JC, Miyawaki, T. Immunoblot analysis of cellular expression of Bcl-2 family proteins, Bcl-2, Bax, Bel-X and Mc1–1, in human peripheral blood and lymphoid tissues. Int Immunol 1995;7:1817–1825.

    Article  PubMed  CAS  Google Scholar 

  94. Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994;369:321–323.

    Article  PubMed  CAS  Google Scholar 

  95. Zha H, Aime-sempe C, Sato T, Reed J.C. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996;271:7440–7444.

    Article  PubMed  CAS  Google Scholar 

  96. Bakhshi A, Jensen JP, Goldman P, Wright JJ, Mcbride OW, Epstein AL, Korsmeyer SJ. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985;41 899–906.

    Article  PubMed  CAS  Google Scholar 

  97. Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 1985;82:7439–7443.

    Article  PubMed  CAS  Google Scholar 

  98. Leff MA, Buckley DJ, Krumenacker JS, Reed JC, Miyashita T, Buckley AR. Rapid modulation of the apoptosis regulatory genes, bcl-2 and bax by prolactin in rat Nb2 lymphoma cells. Endocrinology 1996;137:5456–5462.

    Article  PubMed  CAS  Google Scholar 

  99. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Feslk SW, Fill M, Thompson CB. Bc1-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997;385:353–357.

    Article  PubMed  CAS  Google Scholar 

  100. Vanderheiden MG, Chandel NS, Williamson EK, Schumaker PT, Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997;91:627–637.

    Article  CAS  Google Scholar 

  101. Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC. Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J Biol Chem 1997;272:30299–30305.

    Article  PubMed  CAS  Google Scholar 

  102. Chinnalyan AM, O’Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 1997;275:1122–1126.

    Article  Google Scholar 

  103. Hoover D, Friedman M, Reeves R, Magnuson NS. Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J Biol Chem 1991;266:14018–14022.

    PubMed  CAS  Google Scholar 

  104. Dautry F, Weil D, Yu J, Dautry-Versat A. Regulation of pim-1 and myb mRNA accumulation by interleukin-2 and interleukin-3 in murine hematopoietic cell lines. J Biol Chem 1988; 263:17615–17620.

    PubMed  CAS  Google Scholar 

  105. Lilly M, Kraft A. Enforced expression of the Mr 33,000 Pim-1 kinase enhances factor-independent survival and inhibits apoptosis in murine myeloid cells. Cancer Res 1997;57:5348–5355.

    PubMed  CAS  Google Scholar 

  106. Yu-Lee L-Y, Hrachovy JA, Stevens AM, Schwarz LA. Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol Cell Biol 1990;10:3087–3084.

    PubMed  CAS  Google Scholar 

  107. Murphy PR, Dimattia GE, Freisen HG. Role of calcium in prolactinstimulated c-myc gene expression and mitogenesis in Nb2 lymphoma cells. Endocrinology 1988;122:2476–2485.

    Article  PubMed  CAS  Google Scholar 

  108. Krumenacker JS, Buckley DJ, Leff MA, Mccormack JT, De Jong G, Gout PW, Reed JC, Miyashita T, Magnuson NS, Buckley AR. Prolactin-regulated apoptosis of Nb2 lymphoma cells: pim-1, bel-2, and bax expression. Endocrine 1998;9:163–170.

    Article  PubMed  CAS  Google Scholar 

  109. Buckley AR, Buckley DJ, Leff MA, Hoover DS, Magnuson NS. Rapid induction of pim-1 expression by prolactin and interleukin-2 in rat Nb2 lymphoma cells. Endocrinology 1995;136:5252–5259.

    Article  PubMed  CAS  Google Scholar 

  110. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gillian MC, Shiels H, Hardwick JM, Thompson CB. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 1996:15:2685–2694.

    PubMed  CAS  Google Scholar 

  111. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388:300–304.

    Article  PubMed  CAS  Google Scholar 

  112. Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A. Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two STAT5 homologs. J Leuk Biol 1995;57: 799–803.

    CAS  Google Scholar 

  113. Rui H, Xu J, Mehta S, fang H, Williams J, Dong F, Grimley PM. Activation of the Jak2Stat5 signaling pathway in Nb2 lymphoma cells by an anti-apoptotic agent, aurintricarboxylic acid. J Biol Chem 1998;273:28–32.

    Article  PubMed  CAS  Google Scholar 

  114. Borg KE, Zhang M, Hegge D, Stephen RL, Buckley DJ, Magnuson NS, Buckley AR. Prolactin regulation of pim-1 expression: positive and negative promoter elements. Endocrinology 1999:140:5659–5668.

    Article  PubMed  CAS  Google Scholar 

  115. Clevenger CV, Thickman K, Ngo W, Chang W-P, Takayama S, Reed JC. Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 and Nb2. Mol Endocrinol 1997;11: 608–618.

    Article  PubMed  CAS  Google Scholar 

  116. Barber MC, Travers MT, Finley E, Flint DJ, Vernon RG. Growth-hormone-prolactin interactions in the regulation of mammary and adipose tissue acetyl-CoA carboxylase activity and gene expression in lactating rats. Biochem J 1992;285:469–475.

    PubMed  CAS  Google Scholar 

  117. Flint DJ, Gardner M. Evidence that growth hormone stimulates milk synthesis by direct action on the mammary gland and that prolactin exerts effects on milk secretion by maintenance of mammary deoxyribonucleic acid content and tight junction status. Endocrinology 1994;135:1119–1124.

    Article  PubMed  CAS  Google Scholar 

  118. Travers MT, Barber MC, Tonner E, Quarrie L, Wilde CJ, Flint DJ. The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival: relationships to milk synthesis and secretion. Endocrinology 1996;137:1530–1539.

    Article  PubMed  CAS  Google Scholar 

  119. Chen WY, Ramamoorthy P, Chen N-Y, Sticca R, Wagner TE. A human prolactin antagonist, hPRL-G129R, inhibits breast cancer cell proliferation through induction of apoptosis. Clin Cancer Res 1999;5:3583–3593.

    PubMed  CAS  Google Scholar 

  120. Nevalainen MT, Valve EM, Ahonen TA, Yagi A, Paranko J, Harkonen PL. Androgen-dependent expression of prolactin in rat prostate epitheliumin vivoand in organ culture. FASEB J 1997;11:1297–1307.

    PubMed  CAS  Google Scholar 

  121. Nevalainen MT, Martikainen P, Valve EM, Ingleton PM, Nurmi M, Harkonen PL. Prolactin receptors are expressed and functioning in himan prostate. J Clin Invest 1997;99:618–627.

    Article  PubMed  CAS  Google Scholar 

  122. Ahonen TJ, Harkonen PL, Laine J, Rui H, Martikainen PM, Navalainen MT. Prolactin is a survival factor for androgen-deprived rat dorsal and lateral prostate epithelium in organ culture. Endocrinology 1999;140:5412–5421.

    Article  PubMed  CAS  Google Scholar 

  123. Evans HM, Simpson ME, Lyons MR, Turpeinen K. Anterior pituitary hormones which favor the production of traumatic uterine placentomata. Endocrinology 1941;28:933–940.

    Article  CAS  Google Scholar 

  124. Greenwald GS, Rothchild I. Formation and maintenance of corpora lutea in laboratory animals. J Anim Sci 1968;27: 139–162.

    PubMed  Google Scholar 

  125. Kanuka H, Matsuyama S, Ohnishi M, Matsumoto Y, Nishihara M, Takahashi M. Prolactin expresses differential effects on apoptotic cell death of luteal cellsin vivoandin vitro.Endocr J 1997;44:11–22.

    Article  PubMed  CAS  Google Scholar 

  126. Rothchild I. The regulation of the mammalian corpus luteum. Recent Prog Horm Res 1981;37:183–298.

    PubMed  CAS  Google Scholar 

  127. Malven PV. Hypophyseal regulation of luteolysis in the rat. In McKerns KW ed. Hypophyseal Regulation of Luteolysis in the Rat. New York: Meredith, 1969:367–371.

    Google Scholar 

  128. Gibori G, Khan I, Warsaw ML, McLean MP, Puryear TK, Nelson S, Durkee TJ, Azhar S, Steinschneider A, Rao MC. Placental-derived regulators and the complex control of luteal cell function. Recent Prog Horm Res 1988;44:377–429.

    PubMed  CAS  Google Scholar 

  129. Malven PV. Luteotrophic and luteolytic responses to prolactin in hypophysectomized rats. Endocrinology 1969;84:1224–1229.

    Article  PubMed  CAS  Google Scholar 

  130. Matsuyama S, Chang K-T, Kanuka H, Ohnishi M, Ikeda A, Nishihara M, Takahashi M. Occurrence of deoxyribonucleic acid fragmentation during prolactin-induced structural luteolysis in cycling rats. Biol Reprod 1996;54:1245–1251.

    Article  PubMed  CAS  Google Scholar 

  131. Kiya T, Endo T, Goto T, Yamamoto H, Ito E, Kudo R, Behrman HR. Apoptosis and PCNA expression induced by prolactin in structural involution of the rat corpus luteum. J Endocrinol Invest 1998;21:276–283.

    PubMed  CAS  Google Scholar 

  132. Bagavandoss P, Kunkel SL, Wiggins RC, Keyes PL. Tumor necrosis factor-a (TNF-a) production and localization of macrophages and T lymphocytes in the rabbit corpus luteum. Endocrinology 1988;122:1185–1187.

    Article  PubMed  CAS  Google Scholar 

  133. Bowen JM, Keyes PL, Warren JS, Townson DH, Prolactin-induced regression of the rat corpus luteum: expression of monocyte chemoattractant protein-1 and invasion of macrophages. Biol Reprod 1996;54:1120–1127.

    Article  PubMed  CAS  Google Scholar 

  134. Bowen JM, Towns R, Warren JS, Keyes PL. Luteal regression in the normally cycling rat: apoptosis, monocyte chemoattractant protein-1, and inflammatory cell involvement. Biol Reprod 1999;60:740–746.

    Article  PubMed  CAS  Google Scholar 

  135. Gaytan F, Bellido C, Morales C, Sanchez-Criado JE. Both prolactin and progesterone in proestrus are necessary for the induction of apoptosis in the regressing corpus luteum of the rat. Biol Reprod 1998;59:1200–1206.

    Article  PubMed  CAS  Google Scholar 

  136. Kuranaga E, Kanuka H, Bannai M, Suzuki M, Nichihara M, Takahashi M. Fas/Fas ligand system in prolactin-induced apoptosis in rat corpus luteum: possible role of luteal immune cells. Biochem Biophys Res Commun 1999;260:167–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buckley, A.R. (2001). Prolactin Regulation of Cell Proliferation and Apoptosis. In: Horseman, N.D. (eds) Prolactin. Endocrine Updates, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1683-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1683-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5676-9

  • Online ISBN: 978-1-4615-1683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics