Skip to main content

Hypothalamic Control of Prolactin Synthesis and Secretion

  • Chapter
Prolactin

Part of the book series: Endocrine Updates ((ENDO,volume 12))

Abstract

The synthesis and release of prolactin (PRL) by the lactotrophs is subjected to multiple regulators. These can be classified into four broad categories: endocrine, paracrine, juxtacrine and autocrine. Endocrine agents originate from the hypothalamus, gonads and the neural lobe of the pituitary and reach the lactotrophs via a humoral route. Paracrine factors are produced by cells of the intermediate and anterior lobes and reach their target cells by diffusion. Juxtacrine interactions emanate from extracellular matrix of cells adjacent to the lactotrophs. Autocrine agents are synthesized by the lactotrophs themselves. Consequently, the overall secretory activity of the lactotrophs reflects a balance between local and distant releasing and inhibiting factors Figure 1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore RY, Bloom FE. Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1978; 1:129–169

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Jonathan N. Dopamine: A prolactin inhibiting hormone. Endocr Rev 1985; 6:564–589

    Article  PubMed  CAS  Google Scholar 

  3. Lerant A, Herman ME, Freeman ME. Dopaminergic neurons of periventricular and arcuate nuclei of pseudopregnant rats: Semi-carcadian rhythm in fos-related antigens (FRAs) immunoreactivities and in dopamine concentration. Endocrinology 1996; 137:3621–3628

    Article  PubMed  CAS  Google Scholar 

  4. Chronwall BM, Millington WR, Griffin WST, Understall JR, O’Donohue TL. Histological evaluation of the dopaminergic regulation of proopiomelanocortin gene expression in the intermediate lobe of the rat pituitary, involving in situ hybridization and3H thymidine uptake measurement. Endocrinology 1987; 120:1201–1211

    Article  PubMed  CAS  Google Scholar 

  5. Pardy K, Carter D, Murphy D. Dopaminergic mediation of physiological changes in proopiomelanocortin messenger ribonucleic acid expression in the neurointermediate lobe of the rat pituitary. Endocrinology 1990; 126:2960–2964

    Article  PubMed  CAS  Google Scholar 

  6. Peters LL, Hoefer MT, Ben-Jonathan N. The posterior pituitary: Regulation of anterior pituitary prolactin secretion. Science 1981; 213: 659–661

    Article  PubMed  CAS  Google Scholar 

  7. Froehlich JC, Ben-Jonathan N. Posterior pituitary involvement in the control of luteinizing hormone and prolactin secretion during the estrous cycle. Endocrinology 1984; 114:1059–1064

    Article  PubMed  CAS  Google Scholar 

  8. DeMaria JA, Zelena D, Vecsernyes M, Nagy GM, Freeman ME. The effect of neurointermediate lobe denervation on hypothalamic neuroendocrine dopaminergic neurons. Brain Res 1998; 806:98–94

    Article  Google Scholar 

  9. Ben-Jonathan N, Laudon M, Garris PA. Novel aspects of posterior pituitary function: Regulation of prolactin secretion. Front Neuroendocrinol 1991; 12:231–277

    Google Scholar 

  10. Lookingland KJ, Farah JM, Lovell KL, Moore KE. Differential regulation of tuberohypophysial dopaminergic neurons terminating in the intermediate lobe and in the neural lobe of the rat pituitary gland. Neuroendocrinology 1985; 40:145–151

    Article  PubMed  CAS  Google Scholar 

  11. DeMaria JA, Livingstone JD, Freeman ME. Characterization of the dopaminergic input to the pituitary gland throughout the estrous cycle of the rat. Neuroendocrinology 1998; 67:377–383

    Article  PubMed  CAS  Google Scholar 

  12. DeMaria JA, Lerant A, Freeman ME. Prolactin activates all three populations of hypothalamic neuroendocrine dopaminergic neurons in ovariectomized rats. Brain Res 1999; 837:236–241

    Article  PubMed  CAS  Google Scholar 

  13. Arbogast LA, Voogt JL. Prolactin (PRL) receptors are co-localized in dopaminergic neurons in fetal hypothalamic cell cultures: effect of PRL on tyrosine hydroxylase activity. Endocrinology 1997; 138: 3016–3023

    Article  PubMed  CAS  Google Scholar 

  14. Mangurian LP, Walsh RJ, Posner BI 1992 Prolactin enhancement of its own uptake at the choroid plexus. Endocrinology 131:698–702

    Article  PubMed  CAS  Google Scholar 

  15. DeVito WJ, Avakian C, Stone S, Ace C. Estradiol increases prolactin synthesis and prolactin messenger ribonucleic acid in selected brain regions in the hypophysectomized female rat. Endocrinology 1992; 131:2154–2160

    Article  PubMed  CAS  Google Scholar 

  16. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998; 19:225–268

    Article  PubMed  CAS  Google Scholar 

  17. Muccioli G, Ghe C, Di Carlo R. Distribution and characterization of prolactin binding sites in the male and female rat brain: effects of hypophysectomy and ovariectomy. Neuroendocrinology 1991; 53:47–53

    Article  PubMed  CAS  Google Scholar 

  18. Lerant A, Freeman MC. Ovarian steroids differentially regulate the expression of PRLR in neuroendocrine dopaminergic neuron populations: a double label confocal microscopic study. Brain Res 1998; 802:141–154

    Article  PubMed  CAS  Google Scholar 

  19. Pi XJ, Grattan DR Increased prolactin receptor immunoreactivity in the hypothalamus of lactating rats. J Neuro-endocrinol 1999; 11:693–705

    CAS  Google Scholar 

  20. Couse JF, Korach KS, Estrogen receptor null mice: What have we learned and where will they lead us? Endocr Rev 1999; 20:358–417

    Article  PubMed  CAS  Google Scholar 

  21. Kohama SG, Bethea CL, Steroid regulation of tyrosine hydroxylase messenger ribonucleic acid in dopaminergic sub-populations of monkey hypothalamus. Endocrinology 1995; 136:1790–1800

    Article  PubMed  CAS  Google Scholar 

  22. Garris PA, Ben-Jonathan N Estradiol rapidly stimulates dopamine release from the posterior pituitaryin vitrovia an opioidergic mechanism. Neuroendocrinology 1991; 53:601–607

    Article  PubMed  CAS  Google Scholar 

  23. Pan J-T, Neuroendocrine functions of dopamine. In: Trevor WS (ed) CNS neurotransmitters and neuromodulators: Dopamine, 1996; CRC Press, Boca Raton, FA, p 213–231

    Google Scholar 

  24. Horvath TL, Naftolin F, Leranth C B-endorphin innervation of dopamine neurons in the rat hypothalamus: a light and electron microscopic double immunostaining study. Endocrinology 1992; 131: 1547–1555

    Article  PubMed  CAS  Google Scholar 

  25. Loose MD, Ronnekleiv OK, Kelly MJ Membrane properties and response to opioids in identified dopmaine neurons in the guinea pig hypothalamus. J Neurosci 1990; 10:3627–3634

    PubMed  CAS  Google Scholar 

  26. Garris PA, Ben-Jonathan N Regulation of dopamine releasein vitrofrom the posterior pituitary by opioid peptides. Neuroendo-crinology 1990; 52:399–404

    Article  CAS  Google Scholar 

  27. Arbogast LA, Voogt JL Endogenous opioid peptides contribute to suckling-induced prolactin release by suppressing tyrosine hydro-xylase activity and messenger ribonucleic acid levels in tubero-infundibular dopaminergic neurons. Endocrinology 1998; 139: 2857–2862

    Article  PubMed  CAS  Google Scholar 

  28. Balsa JA, Sanchez-Franco F, Pazos F, Lara JI, Lorenzo MJ, Maldonado G, Cacicedo L Direct action of serotonin on prolactin, growth hormone, corticotropin and luteinizing hormone release in co-cultures of anterior and posterior pituitary lobes: autocrine and/or paracrine action of vasoactive intestinal peptide. Neuroendocrinology 1998; 68:326–333

    Article  PubMed  CAS  Google Scholar 

  29. Pu L-P, Ma W, Barker JL, Loh YP Differential co-expression of genes encoding prothyrotropin-releasing hormone (Pro-TRH) and prohormone convertases (PC1 and PC2) in rat brain neurons: implications for differential processing of Pro-TRH. Endocrinology 1996; 137:1233–1241

    Article  PubMed  CAS  Google Scholar 

  30. Gershengorn MC, Osmar R Molecular and cellular biology of thyrotropin-releasing hormone receptors. Physiol Rev 1996; 76:175–191

    PubMed  CAS  Google Scholar 

  31. Wang W, Gershengorn MC Rat TRH receptor type 2 exhibits higher basal signaling activity than TRH receptor type 1. Endocrinology 1999;140:4916–4919

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y-H, Maurer RA A role for the mitogen-activated protein kinase in mediating the ability of thyrotropin-releasing hormone to stimulate the prolactin promoter. Mol Endocrinol 1999; 13: 1094–1104

    Article  PubMed  CAS  Google Scholar 

  33. Faglia G The clinical impact of the thyrotropin-releasing hormone test. Thyroid 1998; 8:903–908

    Article  PubMed  CAS  Google Scholar 

  34. Lam KSL, Vasoactive intestinal peptide in the hypothalamus and pituitary. Neuroendocrinology 1991; 53:45–51

    Article  PubMed  CAS  Google Scholar 

  35. Nagy G, Mulchahey JJ, Neill JD Autocrine control of prolactin secretion by vasoactive intestinal peptide. Endocrinology 1988; 122:364–366

    Article  PubMed  CAS  Google Scholar 

  36. Chaiseha Y, El Halawani ME Expression of vasoactive intestinal peptide/peptide histidine isoleucine in several hypothalamic areas during the turkey reproductive cycle: relationship to prolactin secretion. Neuroendocrinology 1999; 70:402–412

    Article  PubMed  CAS  Google Scholar 

  37. Gourlet P, Vandermeers A, Van Rampelbergh J, De Neef P, Cnudde J, Waelbroeck M, Robberecht P Analogues of VIP, helodermin and PACAP discriminate between rat and human VIPI and VIP2 receptors. Anal NY Acad Sci 1998; 865:247–252

    Article  CAS  Google Scholar 

  38. Tong Z, Pitts GR, You S, Foster DN, El Halawani ME Vasoactive intestinal peptide stimulates turkey prolactin gene expression by increasing transcription rate and enhancing mRNA stability. J Mol Endocrinol 1998; 21:259–266

    Article  PubMed  CAS  Google Scholar 

  39. Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H, Fujino M A prolactin-releasing peptide in the brain. Nature 1998; 393:272–276

    Article  PubMed  CAS  Google Scholar 

  40. Samson WK, Resch ZT, Murphy TC, Chang JK Gender-biased activity of the novel prolactin releasing peptides: comparison with thyrotropin releasing hormone levels reveals only pharmacological effects. Endocrine 1998; 9:289–291

    Article  PubMed  CAS  Google Scholar 

  41. Kimura A, Ohmichi M, Tasaka K, Kanda Y, Ikegami H, Hayakawa J, Hisamoto K, Morishige K, Hinuma S, Kurachi H, Murata Y Prolactin-releasing peptide activation of the prolactin promoter in differentially mediated by extracellular signal-regulated protein kinase and c-Jun N-terminal protein kinase. J Biol Chem 2000; 275:3667–3674

    Article  PubMed  CAS  Google Scholar 

  42. Matsumoto H, Noguchi J, Horikoshi Y, Kitada C, Hinuma S, Onda H, Nishimura O, Fujino M Stimulation of prolactin release by prolactin-releasing peptide in rats. Biochem Biophys Res Commun 1999; 259:321–324

    Article  PubMed  CAS  Google Scholar 

  43. Sutton SW, Wilson SJ, Luo L, Pyati J, Huvar R, Erlander MG, Lovenberg TW Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology 1999; 140:5736–5745

    Article  PubMed  Google Scholar 

  44. Zhang X, Danila DC, Katai M, Swearingen B, Klibansky A Expression of prolactinreleasing peptide and its receptor messenger ribonucleic acid in normal human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1999; 84:4652–4655

    Article  PubMed  CAS  Google Scholar 

  45. Ben-Jonathan N, Regulation of prolactin secretion. In: Imura H (ed) The Pituitary Gland, 2ed, 1994; Raven Press, New York, p 261–283

    Google Scholar 

  46. Samson WK, Lumpkin MD, McCann SM Evidence for a physiological role for oxytocin in the control of prolactin secretion. Endocrinology 1986; 119:554–560

    Article  PubMed  CAS  Google Scholar 

  47. Liu J-W, Ben-Jonathan N Prolactin-releasing activity of neuro-hypophysial hormones: structure-function relationship. Endocrinology 1994; 134:114–118

    Article  PubMed  CAS  Google Scholar 

  48. Murai I, Ben-Jonathan N Posterior pituitary lobectomy abolishes the suckling-induced rise in prolactin: evidence for a prolactin-releasing factor in posterior pituitary. 1987; Endocrinology 121:205–211

    Article  PubMed  CAS  Google Scholar 

  49. Laudon M, Grossman DA, Ben-Jonathan N Prolactin-releasing factor: cellular origin in the intermediate lobe of the pituitary. Endocrinology 1990; 126:3185–3192

    Article  PubMed  CAS  Google Scholar 

  50. Steinmetz R, Gutierrez-Hartmann A, Bigsby RM, Ben-Jonathan N Activation of the prolactin promoter in transfected GH3cells by posterior pituitary cells. Endocrinology 1994; 135:2737–2741

    Article  PubMed  CAS  Google Scholar 

  51. Liu J-W, Andrews PC, Mershon J, Yan C, Allen DL, Ben-Jonathan N Peptide V: a VGF-derived neuropeptide purified from bovine posterior pituitary. Endocrinology 1994; 135:2742–2748

    Article  PubMed  CAS  Google Scholar 

  52. Hnasko RM, Khurana S, Shackleford N, Steinmetz R, Low MI, Ben-Jonathan N Two distinct pituitary cell lines from mouse intermediate lobe tumors: A cell that produces prolactin-regulating factor and amelanotroph. Endocrinology 1997; 138:5589–5596

    Article  PubMed  CAS  Google Scholar 

  53. Kukstas LA, Domec C, Bascles L, Bonnet J, Verrier D, Israel JM, Vincent JD Different expression of the two dopaminergic D2 receptors, D2415andD2444in two types of lactotrophs each characterized by their response to dopamine, and modification of expression by sex steroids. Endocrinology 1991; 129:1101–1103

    Article  PubMed  CAS  Google Scholar 

  54. Chronwall BM, Beatty DM, Sharma P, Morris SJ Dopamine D2receptors regulatein vitromelanotroph L-type Caz+ Channel activity via c-fos. Endocrinology 1995; 136:614–621

    Article  PubMed  CAS  Google Scholar 

  55. Corrette BJ, Bauer CK, Schwarz JR Electrophysiology of anterior pituitary cells. In: Scherubl H, Hescheler J (eds) The electrophysiology of neuroendocrine cells, 1995; CRC Press, London, p 101–143

    Google Scholar 

  56. Guivarc’h D, Vincent J-D, Vernier P Alternate splicing of theD 2 dopamine receptor messenger ribonucleic acid is modulated by activated sex steroid receptors in the MMQ prolactin cell line. Endocrinology 1998; 139:4213–4221

    Article  PubMed  Google Scholar 

  57. Ho M-Y, Kao JPY, Gregerson KA Dopamine withdrawal elicits prolonged calcium rise to support prolactin rebound release. Endocrinology 1996; 137:3513–3521

    Article  PubMed  CAS  Google Scholar 

  58. Einhorn LC, Gregerson KA, Oxford GS D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording. J Neurosci 1991; 11:3727–3737

    PubMed  CAS  Google Scholar 

  59. Lledo P-M, Legendre P, Israel J-M, Vincent J-D Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology 1990; 127:990–1001

    Article  PubMed  CAS  Google Scholar 

  60. Denef C, Manet D, Dewals R, Dopaminergic stimulation of prolactin release. Nature 1980; 285:243–246

    Article  PubMed  CAS  Google Scholar 

  61. Burris TP, Freeman ME Low concentrations of dopamine increase cytosolic calcium in lactotrophs. Endocrinology 1993; 133:63–68

    Article  PubMed  CAS  Google Scholar 

  62. Shin SH, Dopamine agonists both stimulate and inhibit prolactin release in GH4ZR7 cells. Eur J Endocrinol 1999; 141:387–395

    Article  PubMed  Google Scholar 

  63. Porter TE, Grandy D, Bunzow J, Wiles CD, Civelli O, Frawley LS Evidence that stimulatory dopamine receptors may be involved in the regulation of prolactin secretion. Endocrinology 1994; 134:1263–1268

    Article  PubMed  CAS  Google Scholar 

  64. Kineman RD, Gettys TW, Frawley LS Paradoxical effects of dopamine (DA): G1mediates DA inhibition of PRL release while masking its PRL-releasing activity. Endocrinology 1994; 135:790–793

    Article  PubMed  CAS  Google Scholar 

  65. De La Escalera GM, Weiner RI Dissociation of dopamine from its receptor as a signal in the pleiotropic hypothalamic regulation of prolactin secretion. Endocr Rev 1992; 13:241–255

    Article  Google Scholar 

  66. Lamberts SWJ, MacLeod RM Regulation of prolactin secretion at the level of the lactotroph. Physiol Rev 1990; 70:279–318

    PubMed  CAS  Google Scholar 

  67. Martin TFJ, Kowalchyk JA Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: involvement of calcium. Endocrinology 1984; 115:1527–1536

    Article  PubMed  CAS  Google Scholar 

  68. Gershengorn MC, Thaw C Thyrotropin-releasing hormone (TRH) stimulates biphasic elevation of cytoplasmic free calcium in GH3 cells. Further evidence that TRH mobilizes cellular and extracellular calcium. Endocrinology 1985; 116:591–596

    Article  PubMed  CAS  Google Scholar 

  69. Mau SE, Effects of withdrawal of dopamine on translocation of protein kinase C isozymes and prolactin secretion in rat lactotroph-enriched pituitary cells. modulation by substance P-mediated responses. J Mol Endocrinol 1997; 18:181–191

    Article  PubMed  CAS  Google Scholar 

  70. Judd AM, MacLeod RM Thyrotropin-releasing hormone and lysine-bradykinin stimulate arachidonate liberation from rat anterior pituitary cells through different mechanisms. Endocrinology 1992; 131: 1251–1260

    Article  PubMed  CAS  Google Scholar 

  71. Gourdji D, Laverriere JN The rat prolactin gene: a target for tissue-specific and hormone-dependent transcription factors. Mol Cell Endocrinol 1994; 100:133–142

    Article  PubMed  CAS  Google Scholar 

  72. Gardette R, Rasolonjanahary R, Kordon C, Enjalbert A Epidermal growth factor treatment induces D2 dopamine receptors functionally coupled to delayed outward potassium current (Ik) in GH4C 1 clonal anterior pituitary cells. Neuroendocrinology 1994;59:10–19

    Article  PubMed  CAS  Google Scholar 

  73. Missale C, Boroni F, Sigala S, Zanellato A, Dal Toso R, Balsari A, Spano P Nerve growth factor directs differentiation of the bipotential cell lineGH-3 into the mammotroph phenotype. Endocrinology 1994;135:290–298

    Article  PubMed  CAS  Google Scholar 

  74. Ventra C, Meucci O, Grimaldi M, Scorziello A, Porcellini A, Schettini G Absence of D2S dopamine receptor in prolactin-secreting MMQ pituitary clone: characterization of a wild D2L receptor coupled to native transduction mechanisms. J Mol Endocrinol 1995; 14:375–389

    Article  PubMed  CAS  Google Scholar 

  75. Maurer RA, Notides AC Identification of an estrogen-responsive element from the 5’-flanking region of the rat prolactin gene. Mol Cell Biol 1987; 7:4247–4254

    PubMed  CAS  Google Scholar 

  76. Mitchner NA, Garlick C, Ben-Jonathan N Cellular distribution and gene regulation of estrogen receptors a and b in the rat pituitary gland. Endocrinology 1998;139:3976–3983

    Article  PubMed  CAS  Google Scholar 

  77. Schreihofer DA, Resnick EM, Soh A.Y, Shupnik MA Transcriptional regulation by a naturally occurring truncated rat estrogen receptor (ER), truncated ER Product-1 (TERP1). Mol Endocrinol 1999; 126:2960–2964

    Google Scholar 

  78. Mitchner NA, Garlick C, Steinmetz RW, Ben-Jonathan N Differential regulation and action of estrogen receptors a and b in GH3 cells. Endocrinology 1999; 140:2651–2658

    Article  PubMed  CAS  Google Scholar 

  79. Ben-Jonathan N, Steinmetz R Xenoestrogens: The emerging story of bisphenol A. Trends Endocrinol Metab 1998; 9:124–128

    Article  PubMed  CAS  Google Scholar 

  80. Asa SL, Ezzat S The cytogenesis and patogenesis of pituitary adenomas. Endocr Rev 1998; 19:798–827

    Article  PubMed  CAS  Google Scholar 

  81. Zhang Y, Cincotta AH Inhibitory effects of bromocriptine on vascular smooth muscle cell proliferation. Atherosclerosis 1997; 133:37–44

    Article  PubMed  CAS  Google Scholar 

  82. Senogles SE, The D2 dopamine receptor mediates inhibition of growth in GH4ZR7 cells: involvement of protein kinase-CE. Endocrinology 1994; 134:783–789

    Article  PubMed  CAS  Google Scholar 

  83. Levy L, Alvaro V, Dubray C, Joubert D Ca--dependent protein kinase C isoforms in rat pituitary hyperplasia: effect ofin vivotreatment with quingolide. Eur J Pharmacol 1994;16:327–334

    Google Scholar 

  84. Suzuki S, Yamamoto I, Arita J Mitogen-activated protein kinase-dependent stimulation of proliferation of rat lactotrophs in culture by 3’,5’-cyclic adenosine monophosphate. Endocrinology 1999; 140: 2850–2858

    Article  PubMed  CAS  Google Scholar 

  85. Saiardi A, Bozzi Y, Baik J-H, Borrelli E Anti-proliferative role of dopamine: loss of D2receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron 1997; 19:115–126

    Article  PubMed  CAS  Google Scholar 

  86. Kelly MA, Rubinstein M, Asa SL, Zheng G, Saez C, Bunzow JR, Allen R, Hnasko RM, Ben-Jonathan N, Grandy DK, Low MJ Pituitary lactotroph hyperplasia and chronic hyper-prolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997;19:103–113

    Article  PubMed  CAS  Google Scholar 

  87. Asa SL, Kelly MA, Grandy D, Low MJ Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology 1999; 140:5348–5355

    Article  PubMed  CAS  Google Scholar 

  88. Hyde JF, Keller BK Galanin secretion from anterior pituitary cellsin vitrois regulated by dopamine, somatostatin, and thyrotropin-releasing hormone. Endocrinology 1991; 128:917–922

    Article  PubMed  CAS  Google Scholar 

  89. Bosse R, Fumagalli F, Jaber M, Giros B, Gainetdinov RR, Wetsel WC, Missale C, Caron MG Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter. Neuron 1997; 19:127–138

    Article  PubMed  CAS  Google Scholar 

  90. Garris PA, Ben-Jonathan N Effects of reuptake inhibitors on dopamine release from the stalk-median eminence and posterior pituitaryin vitro.Brain Res 1991; 556:123–129

    Article  PubMed  CAS  Google Scholar 

  91. Meister B, Elde R Dopamine transporter mRNA in neurons of the rat hypothalamus. Neuroendocrinology 1993; 58:388–395

    Article  PubMed  CAS  Google Scholar 

  92. Li S, Crenshaw III EB, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1999; 347:528–533

    Article  Google Scholar 

  93. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Conell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Anderson B, Beamer WG, Rosenfeld MG Pituitary lineage ofthe prophete ofpit-1homeodomain factor defective in Ames dwarfism. Nature 1996; 384:327–333

    Article  PubMed  CAS  Google Scholar 

  94. Morgan WW, Bartke A, Pfeil K Deficiency of dopamine in the median eminence of Snell dwarf mice. Endocrinology 1981; 109:2069–2075

    Article  PubMed  CAS  Google Scholar 

  95. Phelps C Pituitary hormones as neurotropic signals: Anomalous hypophysiotrophic neuron differentiation in hypopituitary dwarf mice. Proc Soc Exp Biol Med 1994; 206:6–23

    PubMed  CAS  Google Scholar 

  96. Hyde JF, Bartke A, Davis BM Galanin gene expression in the hypothalamopituitary axis of the Ames Dwarf mouse. Mol Cell Neurosci 1993; 4:298–303

    Article  PubMed  CAS  Google Scholar 

  97. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997; 11:167–178

    Article  PubMed  CAS  Google Scholar 

  98. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanake M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 1997; 16:6926–6935

    Article  PubMed  CAS  Google Scholar 

  99. Ferrara N, Clapp C, Weiner R The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 1991; 129:896–900

    Article  PubMed  CAS  Google Scholar 

  100. Lucas BK, Ormandy CJ, Bridges RS, Kelly PA Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 1998; 139:4102–4107

    Article  PubMed  CAS  Google Scholar 

  101. Phelps C, Horseman ND Hypophysiotropic dopamine neurons in prolactin-knockout mice. Annual Meeting of the Endocrine Society, 1999; San Diego:P2–492 (abstract)

    Google Scholar 

  102. Steger RW, Chandrashekar V, Zhao W, Bartke A, Horseman ND Neuroendocrine and reproductive functions in male mice with targeted disruption of the prolactin gene. Endocrinology 1998; 139:3691–3695

    Article  PubMed  CAS  Google Scholar 

  103. Scully KM, Gleiberman AS, Lindzey J, Lubahn DB, Korach KS, Rosenfeld MG Role of estrogen receptor-a in the anterior pituitary gland. Mol Endocrinol 1997; 11:674–681

    Article  PubMed  CAS  Google Scholar 

  104. Hyde JF, Engle MG, Maley BE Co-localization of galanin and prolactin within secretory granules of anterior pituitary cells in estrogen-treated Fischer 344 rats. Endocrinology 1991; 129:270–276

    Article  PubMed  CAS  Google Scholar 

  105. Wynick D, Small CJ, Bloom SR Targeted disruption of the murine galanin gene. Anal NY Acad Sci 1998; 863:22–47

    Article  CAS  Google Scholar 

  106. Cai A, Hayes JD, Patel N, Hyde JF Targeted overexpression of galanin in lactotrophs of transgenic mice induces hyperprolactinemia and pituitary hyperplasia. Endocrinology 1999; 140: 4955–4964

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ben-Jonathan, N. (2001). Hypothalamic Control of Prolactin Synthesis and Secretion. In: Horseman, N.D. (eds) Prolactin. Endocrine Updates, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1683-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1683-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5676-9

  • Online ISBN: 978-1-4615-1683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics