Skip to main content

Role of Invasive Devices in the Pathogenesis of Nosocomial Pneumonia

  • Chapter
Critical Care Infectious Diseases Textbook

Abstract

Nosocomial pneumonia is still a common problem, especially in intubated and mechanically ventilated patients. The endotracheal tube contributes substantially to the pathogenesis of pneumonia in these patients, because it facilitates microaspiration and impairs host defenses. Common nosocomial pathogens like Pseudomonas aeruginosa are known to produce exopolysaccha-ride and generate the complex biofilm structure, which allows adhesion to abiotic surfaces and protection from antibiotic action. Multiple studies have identified bacterial biofilm on the inner lumen of endotracheal tubes, which represent a permanent source of infectious material. Endotracheal tubes, removed from patients with ventilator-associated pneumonia are covered more frequently with biofilm than those of uninfected controls but it remains unclear whether this represents a source of infection or secondary contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levine SA, Niederman MS. The impact of tracheal intubation on host defenses and risks for nosocomial pneumonia. Clin Chest Med 12:523, 1991.

    PubMed  CAS  Google Scholar 

  2. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annnu Rev Microbiol 49:711, 1995.

    Article  CAS  Google Scholar 

  3. Prakash UB. Does the bronchoscope propagate infection? Chest 104:552, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 21:1318, 1999.

    Article  Google Scholar 

  6. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295, 1998.

    Article  PubMed  Google Scholar 

  7. Parsek MR, Greenberg EP. Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods Enzymol 310:43, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Inglis TJ, Lim TM, Ng ML, Tang EK, Hui KP Structural features of tracheal tube biofilm formed during prolonged mechanical ventilation. Chest 108:1049, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Vorachit M, Lam K, Jayanetra P, Costerton JW. Resistance of Pseudomonas pseudomallei growing as a biofilm on silastic discs to ceftazidime and co-trimoxazole. Antimicrob Agents Chemother 37:2000, 1993.

    Google Scholar 

  10. Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43:340, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Dibdin GH, Assinder SJ, Nichols WW, Lambert PA. Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. J Antimicrob Chemother 38:757, 1996.

    Article  PubMed  CAS  Google Scholar 

  12. Costerton JW. Introduction to biofilm. Int J Antimicrob Agents 11:217, 1999.

    Article  PubMed  CAS  Google Scholar 

  13. Fletcher M. The physiological activity of bacteria attached to solid surfaces. Adv Microb Physiol 32:53, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Sottile FD, Marrie TJ, Prough DS, Hobgood CD, Gower DJ, et al. Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit Care Med 14:265, 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Diaz-Bianco J, Clawson RC, Roberson SM, Sanders CB, Pramanik AK, Herbst JJ. Electron microscopic evaluation of bacterial adherence to polyvinyl chloride endotracheal tubes used in neonates. Crit Care Med 17:1335, 1989.

    Google Scholar 

  16. Inglis TJ, Millar MR, Jones JG, Robinson DA. Tracheal tube biofilm as a source of bacterial colonization of the lung. J Clin Microbiol 27:2014, 1989.

    PubMed  CAS  Google Scholar 

  17. Inglis TJ. Evidence for dynamic phenomena in residual tracheal tube biofilm. Br J Anaesth 70:22, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Coalson JJ, Gerstmann DR, Winter VT, Delemos RA. Bacterial colonization and infection studies in the premature baboon with bronchopulmonary dysplasia. Am Rev Respir Dis 144:1140, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Rubenstein JS, Kabat K, Shulman ST, Yogev R. Bacterial and fungal colonization of endotracheal tubes in children: a prospective study. Crit Care Med 20:1544, 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Garrouste-Orgeas M, Chevret S, Arlet G, Marie O, Rouveau M, et al. Oropharyngeal or gastric colonization and nosocomial pneumonia in adult intensive care unit patients. A prospective study based on genomic DNA analysis. Am J Respir Crit Care Med 156:1647, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Estes RJ, Meduri GU. The pathogenesis of ventilator-associated pneumonia: I. Mechanisms of bacterial transcolonization and airway inoculation. Intensive Care Med 21:365, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Feldman C, Kassel M, Cantrell J, Kaka S, Morar R, et al. The presence and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation. Eur Respir J 13:546, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072, 1999.

    Article  PubMed  CAS  Google Scholar 

  24. Koerner RJ. Contribution of endotracheal tubes to the pathogenesis of ventilator-associated pneumonia. J Hosp Infect 35:83, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. van Saene HKF, Damjanovic V, Williets T, Mostafa SM, Fox MA, Petros AJ. Pathogenesis of ventilator-associated pneumonia: is the contribution of biofilm clinically significant? [letter]. J Hosp Infect 38:231, 1998.

    Article  PubMed  Google Scholar 

  26. Torres A, Aznar R, Gatell JM, Jiménez P, González J, Ferrer M, et al. Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am Rev Respir Dis 142:523, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Bonten MJ, Bergmans DC, Ambergen AW, de Leeuw PW, van der Geest S, et al. Risk factors for pneumonia, and colonization of respiratory tract and stomach in mechanically ventilated ICU patients. Am J Respir Crit Care Med 154:1339, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Craven DE, Kunches LM, Kilinsky V, Lichten-berg DA, Make BJ, McCabe WR. Risk factors for pneumonia and fatality in patients receiving mechanical ventilation. Am Rev Respir Dis 133:792, 1986.

    PubMed  CAS  Google Scholar 

  29. Fernández-Crehuet R, Diáz-Molina C, De Irala J, Martínez-Concha D, Salcedo-Leal I, et al. Nosocomial infection in an intensive-care unit: Identification of risk factors. Infect Control Hosp Epidemiol 18:825, 1997.

    Article  PubMed  Google Scholar 

  30. Rello J, Mariscal D, Marco F, Jubert P, Sanchez F, et al. Recurrent Pseudomonas aeruginosa pneumonia in ventilated patients: relapse or reinfection? Am J Respir Crit Care Med 157:912,1998.

    Article  PubMed  CAS  Google Scholar 

  31. Gorman S, Adair C, O’Neill F, Goldsmith C, Webb H. Influence of selective decontamination of the digestive tract on microbial biofilm formation on endotracheal tubes from artificially ventilated patients. Eur J Clin Microbiol Infect Dis 12:9, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Credle WF Jr, Smiddy JF, Elliot RC. Complications of fiberoptic bronchoscopy. Am Rev Respir Dis 109:67, 1974.

    PubMed  Google Scholar 

  33. Pereira W, Kovnat DM, Khan MA, Iacovino JR, Spivack ML, Snider GL. Fever and pneumonia after flexible bronchoscopy. Am Rev Respir Dis 112:59, 1975.

    PubMed  CAS  Google Scholar 

  34. Suratt PM, Gruber B, Wellons HA, Wenzel RP. Absence of clinical pneumonia following bronchoscopy with contaminated and clean bronchofiberscopes. Chest 71:52, 1977.

    Article  PubMed  CAS  Google Scholar 

  35. Hussain SA. Fiberoptic bronchoscope-related outbreak of infection with Pseudomonas. Chest 74:483, 1978.

    Article  PubMed  CAS  Google Scholar 

  36. Sammartino MT, Israel RH, Magnussen CR. Pseudomonas aeruginosa contamination of fiberoptic bronchoscopes. J Hosp Infect 3:65, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Boisjoly HM, Jotterand VH, Bazin R, Bergeron MG. Metastatic Pseudomonas endophtalmitis following bronchoscopy. Can J Ophthalmol 22:378, 1987.

    PubMed  CAS  Google Scholar 

  38. Weinstein HJ, Bone RC, Ruth WE. Contamination of a fiberoptic bronchoscope with a Proteus species. Am Rev Respir Dis 116:541, 1977.

    PubMed  CAS  Google Scholar 

  39. Webb SF, Vall-Spinosa A. Outbreak of Serratia marcescens associated with the flexible fiberoptic bronchoscope. Chest 68:703, 1975.

    Article  Google Scholar 

  40. Beyt BE Jr, King DK, Glew RH. Fatal pneumonitis and septicemia after fiberbronchoscopy. Chest 72:105, 1977.

    Article  PubMed  Google Scholar 

  41. Hsu JT, Barrett CR Jr. Lung absess complicating transbronchial biopsy of a mass lesion. Chest 80:230, 1981.

    Article  PubMed  CAS  Google Scholar 

  42. Muers M, Lane D. Acute pneumonia and pneumothorax as a complication of transbronchial biopsy. Endoscopy 12:183, 1980.

    Article  PubMed  CAS  Google Scholar 

  43. Watts WJ, Green RA. Bacteriemia following transbronchial fine needle aspiration. Chest 85:295, 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Leers WD. Disinfecting endoscopes: how to not transmit Mycobacterium tuberculosis by bronchoscopy. Can Med Assoc J 123:275, 1980.

    PubMed  CAS  Google Scholar 

  45. Nelson KE, Larson PA, Schraufnagel DE, Jackson J. Transmission of tuberculosis by flexible fiberbronchoscopes. Am Rev Respir Dis 127:97, 1983.

    PubMed  CAS  Google Scholar 

  46. Wheeler PW, Lancaster D, Kaiser AB. Bronchopulmonary cross-colonization and infection related to mycobacterial contamination of suctuon valves of bronchoscopes. J Infect Dis 159:954, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Agerton T, Valway S, Gore B, Pozsik C, Plikaytis B, et al. Transmission of a highly drug-resistant strain (strain Wl) of Mycobacterium tuberculosis. Community outbreak and nosocomial transmission via a contaminated bronchoscope. JAMA 278:1073, 1999.

    Article  Google Scholar 

  48. Pappas SA, Schaaff DM, DiCostanzo MB, King FW, Sharp JT. Contamination of flexible fiberoptic bronchoscopes. Am Rev Respir Dis 127:391, 1983.

    PubMed  CAS  Google Scholar 

  49. Uttley AHC, Honeywell KM, Fitch LE, Yates MD, Collins CH, Simpson RA. Cross contamination of bronchial washings. Brit Med J 301:1274, 1990.

    Article  PubMed  CAS  Google Scholar 

  50. Mehta AC, Minai OA. Infection control in the bronchoscopy suite. Clinics Chest Med 20:19, 1999.

    Article  CAS  Google Scholar 

  51. Brown SE, Stansbury DW, Merril EJ, Linden GS, Light RW. Prevention of suctioning-related arterial oxygen desaturation. Comparison of off-ventilator and on-ventilator suctioning. Chest 83:621, 1983.

    Article  PubMed  CAS  Google Scholar 

  52. Mayhall CG. The Trach Care closed tracheal suction system: a new medical device to permit tracheal suctioning without interruption of ventilatory assistance. Infect Control Hosp Epidemiol 9:125, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Baker T, Taylor M, Wilson M, Rish J, Brazeal S. Evaluation of a closed system endotracheal suction catheter. Am J Infect Control 17:97, 1989.

    Article  Google Scholar 

  54. Johnson KL, Kearney PA, Johnson SB, Niblett JB, Mcmillian NL, Mc Clain RE. Closed versus open endotracheal suctioning: costs and physiologic consequences. Crit Care Med 22:658, 1994.

    Article  PubMed  CAS  Google Scholar 

  55. Cobley M, Atkins M, Jones FL. Environmental contamination during tracheal suction. A comparison of disposable conventional catheters with a multiple-use closed system device. Anaesthesia 46:957, 1991.

    Article  PubMed  CAS  Google Scholar 

  56. Deppe SA, Kelly JW, Thoi LL, Chudy JH, Long-field RN, et al. Incidence of colonization, nosocomial pneumonia, and mortality in critically ill patients using a Trach Care closed-suction system versus an open-suction system: prospective, randomized study. Crit Care Med 18:1393, 1990.

    Article  Google Scholar 

  57. Ritz R, Scott LR, Coyle MB, Pierson DJ. Contamination of a multiple-use suction catheter in a closed-circuit system compared to contamination of a disposable, single-use suction catheter. Respir Care 31:1087, 1986.

    Google Scholar 

  58. Tablan OC, Andreson LJ, Arden NH, Breiman RF, Butler JC, McNeil MM. Guideline for prevention of nosocomial pneumonia. The Hospital Infection Control Practices Advisory Committee, Centers for Disease Control and Prevention. Infect Control Hosp Epidemiol 15:588, 1994.

    Article  Google Scholar 

  59. Kollef MH, Shapiro SD, Fraser VJ, Silver P, Murphy M, et al. Mechanical ventilation with or without 7-day circuit changes: a randomized controlled trial. Ann Intern Med 123:168, 1995.

    Article  PubMed  CAS  Google Scholar 

  60. Kollef MH, Prentice D, Shapiro SD, Fraser VJ, Silver P, et al. Mechanical ventilation with or without daily changes of in-line suction catheters. Am J Respir Crit Care Med 156:466, 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, T.T., Ferrer, R., Torres, A. (2001). Role of Invasive Devices in the Pathogenesis of Nosocomial Pneumonia. In: Rello, J., Valles, J., Kollef, M.H. (eds) Critical Care Infectious Diseases Textbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1679-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1679-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5674-5

  • Online ISBN: 978-1-4615-1679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics