Role of Mesenchymal-Epithelial Interactions in Pancreas Development

  • Thomas S. Maldonado
  • Christopher A. Crisera
  • Alan S. Kadison
  • Michael T. Longaker
  • George K. Gittes
Part of the Endocrine Updates book series (ENDO, volume 11)


Mesenchyme is traditionally defined as a network of loosely organized mesodermal cells derived from the embryonic primitive streak with the potential to differentiate and give rise to structures such as connective tissue, blood and blood vessels, lymphatics, cartilage, muscle, bone, and stromal tissues of all glands. More recently, the mesenchyme has been found to play an increasingly sophisticated role in organogenesis through its interactions with other germ layers, specifically the endoderm. Mesenchymal-epithelial interactions have been shown to be important in the development of many organs including kidney, intestine, mammary, chick feathers, and salivary gland (1-5). The prepancreatic endoderm, originating in the duodenal anlage, requires its surrounding mesenchyme in order to differentiate into mature pancreas with acinar, ductal, and endocrine components (6-10).


Hepatocyte Growth Factor Endocrine Cell Exocrine Cell Basement Membrane Component AR42J Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wallner EI, Yang Q, Peterson DR, Wada J, Kanwar YS. Relevance of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis. Am J Physiol 1998;275:F467–477.PubMedGoogle Scholar
  2. 2.
    Kedinger M, Duluc I, Fritsch C, Lorentz O, Plateroti M, Freund JN. Intestinal epithelialmesenchymal cell interactions. Ann NY Acad Sci 1998;859:1–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Cunha GR, Battle E, Young P, et al. Role of epithelial-mesenchymal interactions in the differentiation and spatial organization of visceral smooth muscle. Epithelial Cell Biol 1992;1:76–83.PubMedGoogle Scholar
  4. 4.
    Mizuno T, Yasugi S. Susceptibility of epithelia to directive influences of mesenchymes during organogenesis: uncoupling of morphogenesis and cytodifferentiation. Cell Differ Dev 1990;31:151–159.PubMedCrossRefGoogle Scholar
  5. 5.
    Cutler LS, Gremski W. Epithelial-mesenchymal interactions in the development of salivary glands. Crit Rev Oral Biol Med 1991;2:1–12.PubMedGoogle Scholar
  6. 6.
    Golosow N, Grobstein C. Epitheliomesenchymal Interaction in Pancreatic Morphogenesis. Dev Biol 1962;4:242–255.PubMedCrossRefGoogle Scholar
  7. 7.
    Rutter WJ, Wessells NK, Grobstein C. Control of specific synthesis 1964;13:51–65.Google Scholar
  8. 8.
    Fell PE, Grobstein C. The influence of extra-epithelial factors on the growth of embryonic mouse pancreatic epithelium. Exp Cell Res 1968;53:301–304.PubMedCrossRefGoogle Scholar
  9. 9.
    Kallman F, Grobstein C. Fine structure of differentiating mouse pancreatic exocrine cells in transfilter culture. J Cell B 1964;20:399–413.CrossRefGoogle Scholar
  10. 10.
    Wessells N, Cohen J. Early Pancreatic Organogenesis: Morphogenesis, Tissue Interactions, and Mass Effects. Dev Biol 1966;15:237–270.CrossRefGoogle Scholar
  11. 11.
    Spooner BS, Cohen HI, Faubion J. Development of the embryonic mammalian pancreas: the relationship between morphogenesis and cytodifferentiation. Dev Biol 1977;61:119–130.PubMedCrossRefGoogle Scholar
  12. 12.
    Ronzio RA, Rutter WJ. Effects of a partially purified factor from chick embryos on macromolecular synthesis of embryonic pancreatic epithelia. Dev Biol 1973;30:307–320.PubMedCrossRefGoogle Scholar
  13. 13.
    Rutter WJ, Pictet RL, Harding JD, Chirgwin JM, MacDonald RJ, Przybyla AE. An analysis of pancreatic development: role of mesenchymal factor and other extracellular factors. Symp Soc Dev Biol 1978;35:205–227.PubMedGoogle Scholar
  14. 14.
    Grobstein C, Cohen J. Collagenase: effect on the morphogenesis of embryonic salivary epithelium in vitro. Science 1965;150:626–628.PubMedCrossRefGoogle Scholar
  15. 15.
    Levine S, Pictet R, Rutter WJ. Control of cell proliferation and cytodifferentiation by a factor reacting with the cell surface. Nature New Biology 1973;246:49–52.PubMedGoogle Scholar
  16. 16.
    Pictet R, Rall L, de Gasparo M, Rutter WJ. Regulation of Differentiation of Endocrine Cells during Pancreatic Development In Vitro. In: Camerini-Davalos RA, Cole HS, eds. Early Diabetes in Early Life. New York: Academic Press, 1975:25–39.Google Scholar
  17. 17.
    Miralles F, Czernichow P, Scharfmann R. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 1998;125:1017–1024.PubMedGoogle Scholar
  18. 18.
    Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 1996;122:439–447.PubMedGoogle Scholar
  19. 19.
    Rose M, Crisera C, Colen K, Longaker M, Gittes G. Epithelio-mesenchymal interactions in the developing pancreas: morphogenesis of the adult architecture. Journal of Pediatric Surgery 1999:(in press).Google Scholar
  20. 20.
    Edlund H. Transcribing pancreas. Diabetes 1998;47:1817–1823.PubMedCrossRefGoogle Scholar
  21. 21.
    Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997;385:257–260.PubMedCrossRefGoogle Scholar
  22. 22.
    Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX 1-deficient mice. Development 1996;122:1409–1416.PubMedGoogle Scholar
  23. 23.
    Offield MF, Jetton TL, Labosky PA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.PubMedGoogle Scholar
  24. 24.
    Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer PK. The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. Embo J 1996;15:4317–4329.PubMedGoogle Scholar
  25. 25.
    Krapp A, Knofler M, Ledermann B, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 1998;12:3752–3763.PubMedCrossRefGoogle Scholar
  26. 26.
    Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995;172:126–138.PubMedCrossRefGoogle Scholar
  27. 27.
    Apelqvist A, Ahlgren U, Edlund H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas [published erratum appears in Curr Biol 1997 Dec 1;7(12):R809]. Curr Biol 1997; 7:801–804.Google Scholar
  28. 28.
    Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development 1997;124:4243–4252.PubMedGoogle Scholar
  29. 29.
    Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 1998;12:1705–1713.PubMedCrossRefGoogle Scholar
  30. 30.
    Ritvos O, Tuuri T, Eramaa M, et al. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 1995;50:229–245.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamaoka T, Idehara C, Yano M, et al. Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. J Clin Invest 1998;102:294–301.PubMedCrossRefGoogle Scholar
  32. 32.
    Furukawa M, Eto Y, Kojima I. Expression of immunoreactive activin A in fetal rat pancreas. Endocr J 1995;42:63–68.PubMedCrossRefGoogle Scholar
  33. 33.
    Schneyer AL, Rzucidlo DA, Sluss PM, Crowley WF, Jr. Characterization of unique binding kinetics of follistatin and activin or inhibin in serum. Endocrinology 1994;135:667–674.PubMedCrossRefGoogle Scholar
  34. 34.
    Matzuk MM, Lu N, Hannes V, Sellheryer K, Roop DR, Bradley A. Multiple defects and perinatal death in mice deficient in follistatin. Nature 1995;374:360–363.PubMedCrossRefGoogle Scholar
  35. 35.
    Furukawa M, Nobusawa R, Shibata H, Eto Y, Kojima I. Initiation of insulin secretion in glucose-free medium by activin A. Mol Cel Endocrinol 1995;113:83–87.CrossRefGoogle Scholar
  36. 36.
    Ogawa K, Abe K, Kurosawa N, et al. Expression of alpha, beta A and beta B subunits of inhibin or activin and follistatin in rat pancreatic islets. FEBS Lett 1993;319:217–220.PubMedCrossRefGoogle Scholar
  37. 37.
    Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987;327:239–242.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci USA 1986;83:6489–6493.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsarfaty I, Resau JH, Rulong S, Keydar I, Faletto DL, Vande Woude GF. The met proto-oncogene receptor and lumen formation. Science 1992;257:1258–1261.PubMedCrossRefGoogle Scholar
  40. 40.
    Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991;67:901–908.PubMedCrossRefGoogle Scholar
  41. 41.
    Kermorgant S, Walker F, Honni K, Dessiner V, Lewin MJ, Lehy T. Developmental expression and functionality of hepatocyte growth factor and c-Met in human fetal digestive tissues. Gastroenterology 1997;112:1635–1647.PubMedCrossRefGoogle Scholar
  42. 42.
    Sonnenberg E, Meyer D, Weidner KM, Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 1993;123:223–235.PubMedCrossRefGoogle Scholar
  43. 43.
    Rubin JS, Chan AM, Bottaro DP, et al. A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc Natl Acad Sci USA 1991;88:415–419.PubMedCrossRefGoogle Scholar
  44. 44.
    Noji S, Tashiro K, Koyama E, et al. Expression of hepatocyte growth factor gene in endothelial and Kupffer cells of damaged rat livers, as revealed by in situ hybridization. Biochem Biophys Res Commun 1990;173:42–47.PubMedCrossRefGoogle Scholar
  45. 45.
    Schirmacher P, Geerts A, Pietrangelo A, Dienes HP, Rogler CE. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology 1992;15:5–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Zarnegar R, Muga S, Rahija R, Michalopoulos G. Tissue distribution of hepatopoietin-A: a heparin-binding polypeptide growth factor for hepatocytes. Proc Natl Acad Sci USA 1990;87:1252–1256.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang Y, Selden C, Famaud S, Calnan D, Hodgson HJ. Hepatocyte growth factor (HGF/SF) is expressed in human epithelial cells during embryonic development; studies by in situ hybridisation and northern blot analysis. J Anat 1994;185:543–551.PubMedGoogle Scholar
  48. 48.
    Wolf HK, Zarnegar R, Michalopoulos GK. Localization of hepatocyte growth factor in human and rat tissues: an immunohistochemical study. Hepatology 1991;14:488–494.PubMedCrossRefGoogle Scholar
  49. 49.
    Defrances MC, Wolf HK, Michalopoulos GK, Zarnegar R. The presence of hepatocyte growth factor in the developing rat. Development 1992;116:387–395.PubMedGoogle Scholar
  50. 50.
    Tsuda H, Iwase T, Matsumoto K, et al. Immunohistochemical localization of hepatocyte growth factor protein in pancreas islet A-cells of man and rats. Jpn J Cancer Res 1992;83:1262–1266.PubMedCrossRefGoogle Scholar
  51. 51.
    Otonkoski T, Beattie GM, Rubin JS, Lopez AD, Baird A, Hayek A. Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes 1994;43:947–953.PubMedCrossRefGoogle Scholar
  52. 52.
    Otonkoski T, Cirulli V, Beattie M, et al. A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic beta-cell growth. Endocrinology 1996;137:3131–3139.PubMedCrossRefGoogle Scholar
  53. 53.
    Mashima H, Shibata H, Mine T, Kojima I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 1996;137:3969–3976.PubMedCrossRefGoogle Scholar
  54. 54.
    Jeffers M, Rao MS, Rulong S, et al. Hepatocyte growth factor/scatter factor-Met signaling induces proliferation, migration, and morphogenesis of pancreatic oval cells. Cell Growth Differ 1996;7:1805–1813.PubMedGoogle Scholar
  55. 55.
    Vila MR, Nakamura T, Real FX. Hepatocyte growth factor is a potent mitogen for normal pancreas cells in vivo. Lab Invest 1995;73:409–418.PubMedGoogle Scholar
  56. 56.
    Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55:1129–1138.PubMedGoogle Scholar
  57. 57.
    Calvo EL, Boucher C, Pelletier G, Morisset J. Ontogeny of hepatocyte growth factor and c-met/hgf receptor in rat pancreas. Biochem Biophys Res Commun 1996;229:257–263.PubMedCrossRefGoogle Scholar
  58. 58.
    Parsa I, Marsh WH, Fitzgerald PJ. Pancreas acinar cell differentiation. II. Comparative DNA and protein synthesis of the embryonic rat pancreas and the pancreatic anlage grown in organ culture. Am J Pathol 1969;57:489–521.PubMedGoogle Scholar
  59. 59.
    Parsa I, Marsh WH, Fitzgerald Pi. Pancreas acinar cell differentiation. I. Morphologic and enzymatic comparisons of embryonic rat pancreas anlage grown in organ culture. Am J Pathol 1969;57:457–487.PubMedGoogle Scholar
  60. 60.
    Kleinman HK, McGarvey ML, Hassell JR, et al. Basement membrane complexes with biological activity. Biochemistry 1986;25:312–318.PubMedCrossRefGoogle Scholar
  61. 61.
    Aumailley M, Smyth N. The role of laminins in basement membrane function. J Anat 1998;193(Pí. 1):1–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Klein G. Role of laminin A chain in the development of epithelial cell polarity. Cell 1988;55:331–341.PubMedCrossRefGoogle Scholar
  63. 63.
    Schuger L, O’Shea S, Rheinheimer J, Varani J. Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis. Dev Biol 1990;137:26–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Kadoya Y. Antibodies against domain E3 of laminin-1 and integrin alpha 6 subunit perturb branching epithelial morphogenesis of submandibular gland, but by different modes. J Cell Biol 1995;129(2):521–534.PubMedCrossRefGoogle Scholar
  65. 65.
    Kleinman HK, Cannon FB, Laurie GW, et al. Biological activities of laminin. J Cell Biochem 1985;27:317–325.PubMedCrossRefGoogle Scholar
  66. 66.
    Durbeej M, Ekblom P. Dystroglycan and laminins: glycoconjugates involved in branching epithelial morphogenesis. Exp Lung Res 1997;23:109–118.PubMedCrossRefGoogle Scholar
  67. 67.
    Ekblom M, Falk M, Salmivirta K, Durbeej M, Ekblom P. Laminin isoforms and epithelial development. Ann N Y Acad Sci 1998;857:194–211.PubMedCrossRefGoogle Scholar
  68. 68.
    Aumailley M, Timpl R, Sonnenberg A. Antibody to integrin alpha 6 subunit specifically inhibits cell-binding to laminin fragment 8. Exp Cell Res 1990;188:55–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Henry M, Campbell K. A role for dystroglycan in basement membrane assembly. Cell 1988;95:859–870.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Thomas S. Maldonado
    • 1
  • Christopher A. Crisera
    • 1
  • Alan S. Kadison
    • 1
  • Michael T. Longaker
    • 1
  • George K. Gittes
    • 1
  1. 1.New York University Medical CenterNew YorkUSA

Personalised recommendations