Newer In vivo Imaging Modalities

  • Roee S. Lazebnik
  • David L. Wilson
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 238)


Much as an animal in isolation does not represent its behavior within its natural habitat, an isolated heart does not capture its dynamic role within the cardiovascular system.In vivoopen chest, models of transgenic mouse cardiac function were among the first in attempting to circumvent this difficulty, but an inevitable complication resulted: the subject did not survive the analysis, precluding long term or repeated studies. In addition, the invasive nature of such procedures inherently alters the observed system. Noninvasive in vivo imaging appears an ideal solution. Among the primary advantages of this approach, is the feasibility of serial measurements, through time, allowing a given subject to act as its own control. Even studies requiring complete dissection benefit from an estimate of the optimal time for the subject’s sacrifice. However, in vivo imaging techniques must be carefully chosen in context of the experimental design. Several imaging modalities are available, and may be differentiated by attributes such as spatial and temporal resolution, contrast, and financial or logistical costs.


Positron Emission Tomography Optical Coherence Tomography Right Ventricle Positron Emission Tomography Imaging Positron Emission Tomography Scanner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haacke,EM. Magnetic resonance imaging physical principles and sequence design. 1999. Wiley-Liss, New York.Google Scholar
  2. 2.
    White,RD, Paschal,CB, Tkach,JA, Carvlin,MJ. Functional cardiovascular evaluation by magnetic resonance imaging. Top.Magn Reson.Imaging 2:31–48.Google Scholar
  3. 3.
    Topol,EJ. Textbook of cardiovascular medicine. 1997, Lippincott-Raven, Philadelphia.Google Scholar
  4. 4.
    Ruff,J, Wiesmann,F, Lanz,T, Haase,A. Magnetic resonance imaging of coronary arteries and heart valves in a living mouse: techniques and preliminary results. J.Magn Reson. 146:290–296.Google Scholar
  5. 5.
    Slawson,SE, Roman,BB, Williams,DS, Koretsky,AP. Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson.Med. 39:980–987.Google Scholar
  6. 6.
    Franco,F, Dubois,SK, Peshock,RM, Shohet,RV. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am.J.Physiol 274:H679–H683.Google Scholar
  7. 7.
    Ruff,J, Wiesmann,F, Hiller,KH, Voll,S, von Kienlin,M, Bauer,WR, Rommel,E, Neubauer,S, Haase,A. Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson.Med. 40:43–48.Google Scholar
  8. 8.
    Wiesmann,F, Ruff,J, Hiller,KH, Rommel,E, Haase,A, Neubauer,S. Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am.J.Physiol Heart Circ.Physiol 278:H652–H657.Google Scholar
  9. 9.
    Franco,F, Thomas,GD, Giroir,B, Bryant,D, Bullock,MC, Chwialkowski,MC, Victor,RG, Peshock,RM. Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 99:448–454.Google Scholar
  10. 10.
    Weiss,RG, Chacko,SM, Aresta,F, Chacko,VP. Dynamic magnetic resonance images of murine cardiac function at physiologic heart rates. Circulation 101:E92.Google Scholar
  11. 11.
    Fayad,ZA, Fallon,JT, Shinnar,M, Wehrli,S, Dansky,HM, Poon,M, Badimon,JJ, Charlton,SA, Fisher,EA, Breslow,JL, Fuster,V. Noninvasive In vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98:1541–1547.Google Scholar
  12. 12.
    Burstein,D. MR imaging of coronary artery flow in isolated and in vivo hearts. J.Magn Reson.Imaging 1:337–346.Google Scholar
  13. 13.
    Rose,SE, Wilson,SJ, Zelaya,FO, Crozier,S, Doddrell,DM. High resolution high field rodent cardiac imaging with flow enhancement suppression. Magn Reson.Imaging 12:1183–1190.Google Scholar
  14. 14.
    Wiesmann,F, Ruff,J, Haase,A. High-resolution MR imaging in mice. MAGMA. 6:186–188.Google Scholar
  15. 15.
    Fabry,ME, Kennan,RP, Paszty,C, Costantini,F, Rubin,EM, Gore,JC, Nagel,RL. Magnetic resonance evidence of hypoxia in a homozygous alpha-knockout of a transgenic mouse model for sickle cell disease. J.Clin.Invest 98:2450–2455.Google Scholar
  16. 16.
    Henson,RE, Song,SK, Pastorek,JS, Ackerman,JJ, Lorenz,CH. Left ventricular torsion is equal in mice and humans. Am.J.Physiol Heart Circ.Physiol 278:H1117–H1123.Google Scholar
  17. 17.
    Omerovic,E, Basetti,M, Bollano,E, Bohlooly,M, Tome11,J, Isgaard,J, Hjalmarson,A, Soussi,B, Waagstein,F. In vivo metabolic imaging of cardiac bioenergetics in transgenic mice. Biochem.Biophys.Res.Commun. 271:222–228.Google Scholar
  18. 18.
    Louie,AY, Huber,MM, Ahrens,ET, Rothbacher,U, Moats,R, Jacobs,RE, Fraser,SE, Meade,TJ. In vivo visualization of gene expression using magnetic resonance imaging. Nat.Biotechnol. 18:321–325.Google Scholar
  19. 19.
    Bushberg,JT. The Essential physics of medical imaging. 1994. Williams & Wilkins, Baltimore.Google Scholar
  20. 20.
    Green,LA, Gambhir,SS, Srinivasan,A, Banerjee,PK, Hoh,CK, Cherry,SR, Sharfstein,S, Barrio,JR, Herschman,HR, Phelps,ME. Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-l 8-fluorodeoxyglucose. J.Nucl.Med. 39:729–734.Google Scholar
  21. 21.
    Phelps,ME. PET: the merging of biology and imaging into molecular imaging. J.Nucl.Med. 41:661–681.Google Scholar
  22. 22.
    Chatziioannou,AF, Cherry,SR, Shao,Y, Silverman,RW, Meadors,K, Farquhar,TH, Pedarsani,M, Phelps,ME. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J.Nucl.Med. 40:1164–1175.Google Scholar
  23. 23.
    Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, Young JW, Jones WF, Moyers JC, Newport D, Boutefnouchet A, Farquhar TH, Andreaco M, Paulus MJ, Binkley DM, Nutt R, and Phelps ME. Micro PET: A high resolution PET scanner for imaging small animals. IEEE Transactions on Nuclear Science 44(3), 1161–1166. 1997.CrossRefGoogle Scholar
  24. 24.
    Qi,J, Leahy,RM, Cherry,SR, Chatziioannou,A, Farquhar,TH. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys. Med. B iol. 43:1001–1013.Google Scholar
  25. 25.
    Schelbert,HR. Metabolic imaging to assess myocardial viability. J.Nucl.Med. 35:8S–14S.Google Scholar
  26. 26.
    Wu,AM, Yazaki,PJ, Tsai,S, Nguyen,K, Anderson,AL, McCarthy,DW, Welch,MJ, Shively,JE, Williams,LE, Raubitschek,AA, Wong,JY, Toyokuni,T, Phelps,ME, Gambhir,SS. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc.Natl.Acad.Sci.U.S.A 97:8495–8500.Google Scholar
  27. 27.
    MacLaren,DC, Toyokuni,T, Cherry,SR, Barrio,JR, Phelps,ME, Herschman,HR, Gambhir,SS. PET imaging of transgene expression. Biol.Psychiatry 48:337–348.Google Scholar
  28. 28.
    Gambhir,SS, Herschman,HR, Cherry,SR, Barrio,JR, Satyamurthy,N, Toyokuni,T, Phelps,ME, Larson,SM, Balatoni,J, Finn,R, Sadelain,M, Tjuvajev,J, Blasberg,R. Imaging transgene expression with radionuclide imaging technologies. Neoplasia. 2:118–138.Google Scholar
  29. 29.
    Pan,D, Gambhir,SS, Toyokuni,T, Iyer,MR, Acharya,N, Phelps,ME, Barrio,JR. Rapid synthesis of a 5’-fluorinated oligodeoxy-nucleotide: a model antisense probe for use in imaging with positron emission tomography (PET). Bioorg.Med.Chem.Lett. 8:1317–1320.Google Scholar
  30. 30.
    Loke,SL, Stein,CA, Zhang,XH, Mori,K, Nakanishi,M, Subasinghe,C, Cohen,JS, Neckers,LM. Characterization of oligonucleotide transport into living cells. Proc.Natl.Acad.Sci.U.S.A 86:3474–3478.Google Scholar
  31. 31.
    Gambhir,SS, Barrio,JR, Herschman,HR, Phelps,ME. Imaging gene expression: principles and assays. J.Nucl.Cardiol. 6:219–233.Google Scholar
  32. 32.
    Chatziioannou A, Silverman RW, Meadors K, Farquhar TH, and Cherry SR. Techniques to improve the spatial sampling of microPET - A high resolution animal PET tomograph. IEEE Transactions on Nuclear Science 47(2), 422–427. 2000.CrossRefGoogle Scholar
  33. 33.
    Foster,FS, Pavlin,CJ, Harasiewicz,KA, Christopher,DA, Turnbull,DH. Advances in ultrasound biomicroscopy. Ultrasound Med.Biol. 26:1–27.Google Scholar
  34. 34.
    Srinivasan,S, Baldwin,HS, Aristizabal,O, Kwee,L, Labow,M, Artman,M, Turnbull,DH. Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography. Circulation 98:912–918.Google Scholar
  35. 35.
    Goertz,DE, Christopher,DA, Yu,JL, Kerbel,RS, Burns,PN, Foster,FS. High-frequency color flow imaging of the microcirculation. Ultrasound Med.Biol. 26:6371.Google Scholar
  36. 36.
    Aristizabal,O, Christopher,DA, Foster,FS, Turnbull,DH. 40-MHZ echocardiography scanner for cardiovascular assessment of mouse embryos. Ultrasound Med.Biol. 24:1407–1417.Google Scholar
  37. 37.
    Jorgensen,SM, Demirkaya,O, Ritman,EL. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am.J.Physiol 275:H1103–H1114.Google Scholar
  38. 38.
    Huang,D, Swanson,EA, Lin,CP, Schuman,JS, Stinson,WG, Chang,W, Hee,MR, Flotte,T, Gregory,K, Puliafito,CA. Optical coherence tomography. Science 254:1178–1181.Google Scholar
  39. 39.
    Izatt, J. A., Kulkarni, M. D., Yazdanfar, S., Barton, J. K, and Welch, A. J. In vivo bidirectional color Doppler flow imagingof picoliter blood volumes using optical coherence tomography. Optics Letters 22(18), 1439–1441. 1997.PubMedCrossRefGoogle Scholar
  40. 40.
    Tearney,GJ, Brezinski,ME, Bouma,BE, Boppart,SA, Pitris,C, Southern,JF, Fujimoto,JG. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276:2037–2039.Google Scholar
  41. 41.
    Brezinski,ME, Tearney,GJ, Bouma,BE, Izatt,JA, Hee,MR, Swanson,EA, Southern,JF, Fujimoto,JG. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93:1206–1213.Google Scholar
  42. 42.
    Russ,JC. The image processing handbook. 1999. CRC Press in cooperation with IEEE Press, Boca Raton, Fla.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Roee S. Lazebnik
    • 1
  • David L. Wilson
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of RadiologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations