Skip to main content

Transient Transgenesis in The Endocrine System: Viral Vectors for Gene Delivery

  • Chapter
Transgenic Models in Endocrinology

Part of the book series: Endocrine Updates ((ENDO,volume 13))

  • 70 Accesses

Abstract

Transgenic animals and knockout technology have been of great importance to elucidate the molecular basis of many endocrine processes. In both these technologies, changes are introduced into germline cells, and animals develop with the addition or lack of individual genes. Germline alterations have two major shortcomings. Some will be embryonic lethal mutations, whilst others will induce compensatory changes during development, which will then contribute to the phenotype of mutant animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Coffin, JM. Retroviridae: The viruses and their replication. In: Fundamental Virology (Eds: Fields BN, Knipe DM, Howley PM, et al.) Philadelphia: Lippincott-Raven Publishers, 1996.

    Google Scholar 

  2. Sommerfelt MA. Retrovirus receptors. J Gen Virol 1999;80:3049–64.

    PubMed  CAS  Google Scholar 

  3. Roe TY, Reynolds TC, Yu G, Brown PO. Integration of murine leukaemia virus DNA depends on mitosis. EMBO J 1993;12:2099–2108.

    PubMed  CAS  Google Scholar 

  4. Mann R, Mulligan RC, Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 1983;33:153–159.

    Article  PubMed  CAS  Google Scholar 

  5. Cone RD, Mulligan RC. High-efficiency gene transfer into mammalian cells: generation of helper free recombinant retrovirus with broad mammalian host range. Proc Natl Acad Soi USA 1984;81:6349–6353.

    Article  CAS  Google Scholar 

  6. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 1986;6:2895–2902.

    PubMed  CAS  Google Scholar 

  7. Muenchau DD, Freeman SM, Cornelia K, Zweibel JA, Anderson WF. Analysis of retroviral packaging lines for generation of replication-competent virus. Virology 1990;176:262–265.

    Article  PubMed  CAS  Google Scholar 

  8. Scarpa M, Cournoyer D, Muzny DM, Moore KA, Belmont JW, Caskey CT. Characterisation of recombinant helper retroviruses from moloney-based vectors in ecotropic and amphotropic packaging cell lines. Virology 1991;180:849–852.

    Article  PubMed  CAS  Google Scholar 

  9. Markowitz D, Goff S, Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 1988;62:1120–1124.

    PubMed  CAS  Google Scholar 

  10. Markowitz D, Goff S, Bank A. Construction and use of a safe and efficient packaging cell line. Virology 1988;167:400–406.

    PubMed  CAS  Google Scholar 

  11. Chong H, Vile RG. Replication-competent retrovirus produced by a ‘split-function’ third generation amphotropic packaging cell line. Gene Ther 1996;3:624–629.

    PubMed  CAS  Google Scholar 

  12. Chong H, Starkey W, Vile RG. A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J Virol 1998;72:2663–2670.

    PubMed  CAS  Google Scholar 

  13. Welsh RM, Cooper NR, Jensen FC, Oldstone MBA. Human serum lyses RNA tumour viruses. Nature 1975;257:612–614.

    Article  PubMed  CAS  Google Scholar 

  14. Rother RP, Squinto SP, Mason JM, Rollins SA. Protection of retroviral vector particles in human blood through complement inhibition. Hum Gene Ther 1995;6:429–435.

    Article  PubMed  CAS  Google Scholar 

  15. Takeuchi Y, Porter CD, Strachan KM, Preece AF, Gustafsson K, Cosset F-L, Weiss RA, Collins MK. Sensitisation of cells and retroviruses to human serum by (al-3) galactosyltransferase. Nature 1996;379:85–88.

    Article  PubMed  CAS  Google Scholar 

  16. Takeuchi Y, Cosset F-L, Lachmann PJ, Okada H, Weiss RA, Collins MK. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cells. J Virol 1994;68:8001–8007.

    PubMed  CAS  Google Scholar 

  17. Cosset F-L, Takeuchi Y, Battini JL, Weiss RA, Collins MK. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995;69:7430–7436.

    PubMed  CAS  Google Scholar 

  18. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993;90:8033–8037.

    Article  PubMed  CAS  Google Scholar 

  19. Luciw PA. Human immunodeficiency viruses and their replication. In: Fundamental Virology (Eds: Fields BN, Knipe DM, Howley PM, et al.) Philadelphia: Lippincott-Raven Publishers, 1996.

    Google Scholar 

  20. Naldini L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998;9:457–463.

    Article  PubMed  CAS  Google Scholar 

  21. Federico M. Lentiviruses as gene delivery vectors. Curr Opin Biotechnol 1999;10:448–453.

    Article  PubMed  CAS  Google Scholar 

  22. Klimatcheva E, Rosenblatt JD, Planelles V. Lentiviral vectors and gene therapy. Front Biosci 1999;4:D481–496.

    Google Scholar 

  23. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272:263–267.

    Article  PubMed  CAS  Google Scholar 

  24. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotech 1997;15:871–875.

    Article  CAS  Google Scholar 

  25. Kim VN, Mitrophanous K, Kingsmann SM, Kingsmann AJ. Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 1998;72:811816.

    Google Scholar 

  26. Dull T, Zufferey R, Mandel RJ, Nguyen M, Trono D, Naldini L. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998;72:8463–8471.

    PubMed  CAS  Google Scholar 

  27. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. Development of a self-inactivating lentivirus vector. J Virol 1998;72:8150–8157.

    PubMed  CAS  Google Scholar 

  28. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998;72:9873–9880.

    PubMed  CAS  Google Scholar 

  29. Poeschla E, Gilbert J, Li X, Huang S, Ho A, Wong-Stall F. Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2 based lentivirus vectors. J Virol 1998;72:6527–6536.

    PubMed  CAS  Google Scholar 

  30. Arya SK, Zamani M, Kundra P. Human immunodeficiency virus type 2 vectors for gene transfer: expression and potential for helper virus-free packaging. Hum Gene Ther 1998;9:1371–1380.

    Article  PubMed  CAS  Google Scholar 

  31. White SM, Renda M, Nam NY, Klimatcheva E, Zhu Y, Fisk J, Halterman M, Rimel BJ, Federoff H, Pandya S, Rosenblatt JD, Planelles V. Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 1999;73:2832–2840.

    Google Scholar 

  32. Poeschla E, Wong-Stall F, looney D. Efficient transduction of non-dividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 1998;4:354–357.

    Article  PubMed  CAS  Google Scholar 

  33. Johnston JC, Gasmi M, Lim LE, Elder JH, Yee JK, Jolly DJ, Campbell KP, Davidson BL, Sauter SL. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 1999;73:4991–5000.

    PubMed  CAS  Google Scholar 

  34. Olsen JC. Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 1998;5:1481–1487.

    Article  PubMed  CAS  Google Scholar 

  35. Mitrophanous KA, Yoon S, Rohll JB, Patil D, Wilkes FJ, Kim VN, Kingsmann SM, Kingsmann AJ, Mazarakis ND. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 1999;6:1808–1818.

    Article  PubMed  CAS  Google Scholar 

  36. Mselli-Lakhal L, Favier C, Da Silva Teixeira MF, Chettab K, Legras C, Ronfort C, Verdier G, Momex JF, Chebloune Y. Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch Virol 1998;143:681–695.

    Article  PubMed  CAS  Google Scholar 

  37. Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 1953;84:570–573.

    PubMed  CAS  Google Scholar 

  38. Enders JF, Bell JA, Dingle JH, Francis T, Hilleman MR, Huebner RJ, Payne AM-M. “Adenovirus”: group name proposed for new respiratory-tract viruses. Science 1956;124:119–120.

    Article  PubMed  CAS  Google Scholar 

  39. Home RW, Brenner S, Waterson AP, Wildy P. The icosahedral form of an adenovirus. 1 Mol Biol 1959;1:84–86.

    Google Scholar 

  40. van Oostrum J, Burnett RM. Molecular composition of the adenovirus type 2 virion. J Virol 1985;56:439–448.

    PubMed  Google Scholar 

  41. Signtis C, Katze MG, Persson H, Philipson L. An adenovirus glycoprotein binds chains of class I transplantation antigens from man and mouse. Nature 1982;299:175–178.

    Article  Google Scholar 

  42. Gooding LR, Elmore LW, Tollefson AE, Brady HA, Wold WSM A. 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 1988;53:341–346.

    Article  PubMed  CAS  Google Scholar 

  43. Wold, WSM. Adenovirus genes that modulate the sensitivity of virus-infected cells to lysis by TNF. J Cell Biochem 1993;53:329–335.

    Article  PubMed  CAS  Google Scholar 

  44. Halbert DN, Cutt JR, Shenk T. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 1985;56:250–257.

    PubMed  CAS  Google Scholar 

  45. Weinberg DH, Ketner G. Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 1986;57:833–838.

    PubMed  CAS  Google Scholar 

  46. Yoder SS, Berget SM. Role of adenovirus type 2 early region 4 in the early-to-late switch during productive infection. J Virol 1986;60:779–781.

    PubMed  CAS  Google Scholar 

  47. Falgout B, Ketner G. Adenovirus early region 4 is required for efficient virus particle assembly. J Virol 1987;61:3759–3768.

    PubMed  CAS  Google Scholar 

  48. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW. Isolation of a common receptor for Coxsackie B viruses and Adenoviruses 2 and 5. Science 1997;275:1320–1323.

    Article  PubMed  CAS  Google Scholar 

  49. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993;73:309–319.

    Google Scholar 

  50. Greber UF, Willets M, Webster P, Helenius A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993;75:477–486.

    Article  PubMed  CAS  Google Scholar 

  51. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977;36:59–72.

    Article  PubMed  CAS  Google Scholar 

  52. Southgate T, Kingston PA, Castro MG. Gene transfer into neural cellsin vitrousing adenoviral vectors.CuffProt Neurosci (In Press)

    Google Scholar 

  53. Graham FL, Prevec L. Manipulation of adenovirus vectors. Methods in Molecular Biology 1991;7:109–128.

    PubMed  CAS  Google Scholar 

  54. Yang Y, Ertl HCJ, Wilson JM. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with El-deleted recombinant adenoviruses. Immunity 1994;1:433–442.

    Article  PubMed  CAS  Google Scholar 

  55. Yang Y, Nunes FA, Berensi K, Furth EE, Gönczi l E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994;91:4407–4411.

    Article  Google Scholar 

  56. Thomas CE, Birkett D, Castro MG, Lowenstein PR. Acute direct adenoviral vector cytotoxicity and chronic, but not acute inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther (In Press)

    Google Scholar 

  57. Englehardt JF, Litzky L, Wilson JM. Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective for E2a. Hum Gene Ther 1994;5:1217–1229.

    Article  Google Scholar 

  58. Englehardt JF, Ye X, Doranz B, Wilson JM. Ablation of E2a in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 1994;91:6196–6200.

    Article  Google Scholar 

  59. Yang Y, Nimes FA, Berensi K, Furth EE, Glinczeil E, Engelhardt JF, Wilson JM. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat Genet 1994;7:362–369.

    Article  PubMed  CAS  Google Scholar 

  60. Armentano D, Sookdeo CC, Hehir KM, Gregory RJ, George JA, Prince GA, Wadworth SC, Smith AE. Characterisation of an adenovirus gene transfer vector containing an E4 deletion. Hum Gene Ther 1995;6:1343–1353.

    Article  PubMed  CAS  Google Scholar 

  61. Gao G-P, Yang Y, Wilson JM. Biology of adenovirus vectors with El and E4 deletions for liver-directed gene therapy. J Virol 1996;70:8934–8943.

    PubMed  CAS  Google Scholar 

  62. Wang Q, Greenburg G, Bunch D, Farson D, Finer MH. Persistent transgene expression in mouse liver following in vivo gene transfer with a AE1/4E4 adenovirus vector. Gene Ther 1997;4:393–400.

    Article  CAS  Google Scholar 

  63. Armentano D, Zabner J, Sacks C, Sookdeo CC, Smith MP, George JA, Wadworth SC, Smith AE, Gregory RJ. Effect of the E4 region on the persistence of transgene expression from adenovirus vectors. J Virol 1997;71:2408–2416.

    PubMed  CAS  Google Scholar 

  64. Dedieu J-F, Vigne E, Torrent C, Jullien C, Mahfouz I, Aubailly N, Orsini C, Guillaume J-M, Opolon P, Delaere P, Perricaudet M, Yeh P. Long-term gene delivery into the livers of immunocompetent mice with E1/E4-defective adenoviruses. J Virol 1997;71:4626–4637.

    PubMed  CAS  Google Scholar 

  65. Gorziglia MI, Lapcevich C, Roy S, Kang Q, Kadan M, Wu V, Pechan P, Kaleko M. Generation of an adenovirus vector lacking El, E2a, E3 and all of E4 except open reading frame 3. J Virol 1999;73:6048–6055.

    PubMed  CAS  Google Scholar 

  66. Mitani K, Graham FL, Caskey CT, Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci USA 1995;92:3854–3858.

    Article  PubMed  CAS  Google Scholar 

  67. Fisher KJ, Choi H, Burda J, Chen S-J. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 1996;217:11–22.

    Article  PubMed  CAS  Google Scholar 

  68. Kochanek S, Clemens PR, Mitani K, Chen H-H, Chan S, Caskey CT. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Nat! Acad Sci USA 1996;93:5731–5736.

    Article  CAS  Google Scholar 

  69. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL. A helper-dependant adenovirus vector system: removal of helper virus by Cre-medited excision of the viral packaging signal. Proc Natl Acad Sci USA 1996;93:13565–13570.

    Article  PubMed  CAS  Google Scholar 

  70. Clemens PR, Kochanek S, Sunada Y, Chan S, Chen H-H, Campbell KP, Caskey CT. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther 1996;3:965–972.

    PubMed  CAS  Google Scholar 

  71. Haecker SE, Stedman HH, Balice-Gordon RJ, Smith DBJ, Greelish JP, Mitchell MA, Wells A, Sweeney HL, Wilson JM.In vivoexpression of full-lenth human dystrophin from adenoviral vectors deleted of all viral gene. Hum Gene Ther 1996;7:1907–1914.

    Article  PubMed  CAS  Google Scholar 

  72. Chen H-H, Mack LM, Kelly R, Ontell M, Kochanek S, Clemens PR. Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci USA 1997;94:1645–1650.

    Article  PubMed  CAS  Google Scholar 

  73. Morral N, Parks RJ, Zhou H, Langston C, Schiedner G, Quinones J, Graham FL, Kochanek S, Beaudet AL. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of al-antitrypsin with negligible toxicity. Hum Gene Ther 1998;9:2709–2716.

    Google Scholar 

  74. Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q, Allen H, Franklin L, Parks RJ, Graham FL, Kochanek S, Bett A, Caskey CT. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 1998;95:7866–7871.

    Article  PubMed  CAS  Google Scholar 

  75. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, Graham FL, Beaudet AL, Kochanek S. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Gen 1998;18:180–183.

    Article  CAS  Google Scholar 

  76. Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected with first-generation, but not with high-capacity adenovirus vectors: towards realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000;97:7482–7487.

    Article  PubMed  CAS  Google Scholar 

  77. Morral N, O’Neal W, Rice K, Leland M, Kaplan J, Piedra PA, Zhou H, Parks RJ, Velji R, Aguilar-Cordova E, Wadworth S, Graham FL, Kochanek S, Carey KD, Beaudet AL. Administration of helper-dependent adenoviral vectors and sequential delivery ofdifferent vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 1999;96:12816128–21.

    Google Scholar 

  78. Rose JA, Maizel JVJ, Inman JK, Shatkin AJ. Structural proteins of adenovirusassociated viruses. J Virol 1971;8:766–770.

    PubMed  CAS  Google Scholar 

  79. Rose JA, Berns KI, Hoggan MD, Koczot FJ. Evidence for a single-stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci USA 1969;64:863–869.

    Article  PubMed  CAS  Google Scholar 

  80. Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organisation of the adeno-associated virus 2 genome. J Virol 1983;45:555–564.

    PubMed  CAS  Google Scholar 

  81. Kotin RM, Berns KI. Organization of adeno-associated virus DNA in latently infected Detroit 6 cells. Virology 1989;170:460–467.

    Article  PubMed  CAS  Google Scholar 

  82. Kotin RM, Siniscalco M, Samulski RJ, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990;87:2211–2215.

    Article  PubMed  CAS  Google Scholar 

  83. Linden RM, Winocour E, Bems KI. The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci USA 1996;93:7966–7972.

    Article  PubMed  CAS  Google Scholar 

  84. Summerford C, Samulski, RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998;72:1438–1445.

    PubMed  CAS  Google Scholar 

  85. Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1998;5:78–82.

    Google Scholar 

  86. Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989;63:3822–3828.

    PubMed  CAS  Google Scholar 

  87. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ, Muzyczka N. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1999;6:973–985.

    Article  PubMed  CAS  Google Scholar 

  88. Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996;70:8098–8108.

    PubMed  CAS  Google Scholar 

  89. Huard J, Krisky D, Oligino T, Marconi P, Day CS, Watkins SC, Glorioso JC. Gene transfer to muscle using herpes simplex virus-based vectors. Neuromuscul Disord 1997;7:299–313.

    Article  PubMed  CAS  Google Scholar 

  90. D’Angelica M, Karpoff H, Halterman M, Ellis J, Klimstra D, Edelstein D, Brownlee M, Federoff H, Fong Y. In vivo interleukin-2 gene therapy of established tumors with herpes simplex amplicon vectors. Can Immunol Immunother 1999;47:265–271.

    Article  Google Scholar 

  91. Miyanohara A, Johnson PA, Elam RL, Dai Y, Witztum JL, Verma IM, Friedmann T. Direct gene transfer to the liver with herpes simplex virus type 1 vectors: transient production of physiologically relevant levels of circulating factor IX. New Biol 1992;4:238–246.

    PubMed  CAS  Google Scholar 

  92. Lachmann RH, Efstathiou S. Use of herpes simplex virus type 1 for transgene expression within the nervous system. Clin Sci 1999;96:533–541.

    Article  PubMed  CAS  Google Scholar 

  93. Lowenstein PR, Fournel S, Bain D, Tomasec P, Clissold PM, Castro MG, Epstein AL. Simultaneous detection of amplicon and HSV-1 helper encoded proteins reveals that neurons and astrocytoma cells do express amplicon-bome transgenes in the absence of synthesis of virus immediate early proteins. Brain Res Mol Brain Res 1995;30:169–175.

    Article  PubMed  CAS  Google Scholar 

  94. Goya RG, Rowe J, Sosa YE, Tomasec P, Lowenstein PR, Castro MG. Use of recombinant herpes simplex virus type 1 vectors for gene transfer into tumour and normal pituitary cells. Mol Cell Endocrinol 1998;139:199–207.

    Article  PubMed  CAS  Google Scholar 

  95. Rabinovitch A, Suarez-Pinzon W, Strynadka K, Ju Q, Edelstein D, Brownlee M, Korbutt GS, Rajotte RV. Transfection of human pancreatic islets with an anti-apoptotic gene (bc1–2) protects beta-cells from cytokine-induced destruction. Diabetes 1999;48:1223–1239.

    Article  PubMed  CAS  Google Scholar 

  96. Spear PG, Shieh MT, Herold BC, WuDunv D, Koshy TI. Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv Exp Med Biol 1992;313:341–353.

    PubMed  CAS  Google Scholar 

  97. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG. A novel role for 3–0-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999;99:13–22.

    Article  PubMed  CAS  Google Scholar 

  98. Cocchi F, Menotti L, Dubreuil P, Lopez M, Campadelli-Fiume G. Cell-to-cell spread of wild-type herpes simplex virus type 1, but not of syncytial strains, is mediated by the immunoglobulin-like receptors that mediate virion entry, nectinl (PRR1/HveC/HIgR) and nectin2 (PRR2/HveB). J Virol 2000;74:3909–3917.

    Article  PubMed  CAS  Google Scholar 

  99. Kwong AD, Frenkel N. The herpes simplex virus virion host shutoff function. J Virol 1989;63:4834–4839.

    PubMed  CAS  Google Scholar 

  100. Carpenter DE, Stevens JG. Long-term expression of a foreign gene from a unique position in the latent herpes simplex virus genome. Hum Gene Ther 1996;7:1447–1454.

    Google Scholar 

  101. Glorioso JC, DeLuca NA, Fink DJ. Development and application of herpes simplex virus vectors for human gene therapy. Annu Rev Microbiol 1995;49:675–710.

    Article  PubMed  CAS  Google Scholar 

  102. Samaniego LA, Neiderhiser L, DeLuca NA. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 1998;72:3307–3320.

    PubMed  CAS  Google Scholar 

  103. Frenkel N, Singer O, Kwong AD. Minireview: the herpes simplex virus amplicon-a versatile defective virus vector. Gene Ther 1994;1:S40–46.

    PubMed  Google Scholar 

  104. Geller AI, Yu L, Wang Y, Fraefel C. Helper virus-free herpes simplex virus-1 plasmid vectors for gene therapy of Parkinson’s disease and other neurological disorders. Exp Neurol 1997;144:98–102.

    Article  PubMed  CAS  Google Scholar 

  105. Todryk S, McLean C, Ali S, Entwistle C, Boursnell M, Rees R, Vile R. Disabled infectious single-cycle herpes simplex virus as an oncolytic vector for immunotherapy of colorectal cancer. Hum Gene Ther 1999;10:2757–2768.

    Article  PubMed  CAS  Google Scholar 

  106. McKie EA, Graham DI, Brown SM. Selective astrocytic transgene expression in vitro and in vivo from the GFAP promoter in a HSV RL1 null mutant vector-potential glioblastoma targeting. Gene Ther 1998;5:440–450.

    Article  PubMed  CAS  Google Scholar 

  107. Boviatsis EJ, Park JS, Sena-Esteves M, Kramm CM, Chase M, Efird JT, Wei MX, Breakefield XO, Chiocca EA. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 1994;54: 5745–5751.

    PubMed  CAS  Google Scholar 

  108. Wang X, Zhang G, Yang T, Zhang W, Geller AI. Fifty-one kilobase HSV-1 plasmid vector can be packaged using a helper virus-free system and supports expression in the rat brain. Biotechniques 2000;28:102–107.

    PubMed  Google Scholar 

  109. Krisky D, Marconi P, Oligino T, Rouse RJ, Fink DJ, Cohen JB, Watkins SC, Glorioso JC. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther 1998;5:1517–1530.

    Article  PubMed  CAS  Google Scholar 

  110. Bischoff JR, Kim DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373–376.

    Article  PubMed  CAS  Google Scholar 

  111. Ganly I, Kirn D, Eckhardt SG, Rodriguez GI, Soutar DS, Otto R, Robertson AG, Park O, Gulley ML, Heise C, Von Hoff DD, Kaye SB. A phase I study of Onyx-015, an EIB attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000;6:798–806.

    PubMed  CAS  Google Scholar 

  112. Reynolds PN, Feng M, Curiel DT. Chimeric viral vectors: the best of both worlds? Mol Med Today 1999;5:25–31.

    Article  PubMed  CAS  Google Scholar 

  113. Bilbao G, Feng M, Rancourt C, Jackson WHJ, Curiel DT. Adenoviral/retroviral vector chimeras: a novel strategy to achieve high-efficiency stable transduction in vivo. FASEB J 1997;11:624–634.

    PubMed  CAS  Google Scholar 

  114. Fisher KJ, Kelley M, Burda JF, Wilson JM. Novel adenovirus-adeno associated virus hybrid vector that displays efficient rescue and delivery of the AAV genome. Hum Gene Ther 1996;7:2079–2087.

    Article  PubMed  CAS  Google Scholar 

  115. Recchia A, Parks RJ, Lamartina S, Toniatti C, Pieroni L, Palombo F, Ciliberto G, Graham FL, Cortese R, La Monica N, Coloca S. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci USA 1999;96:2615–2620.

    Article  PubMed  CAS  Google Scholar 

  116. Johnston KM, Jacoby D, Pechan PA, Fraefel C, Borghesani P, Schuback D, Dunn RJ, Smith FI, Breakefield XO. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther 1997;8:359–370.

    Article  PubMed  CAS  Google Scholar 

  117. Kaneda Y, Saeki Y, Morishita R. Gene therapy using HVJ-liposomes: the best of both worlds? Mol Med Today 1999;5:298–303.

    Article  PubMed  CAS  Google Scholar 

  118. Peplinski GR, Tsung K, Norton JA. Vaccinia virus for human gene therapy. Surg Oncol Clin N Am 1998;7:575–588.

    PubMed  CAS  Google Scholar 

  119. Polo JM, Belli BA, Frolov I, Sherrill S, Hariharan MJ, Townsend K, Perri S, Mento SJ, Jolly DJ, Chang SM, Schlesinger S, Dubensky TWJ. Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc Natl Acad Sci USA 1999;96:4598–4603.

    Article  PubMed  CAS  Google Scholar 

  120. Huard J, Lochmuller H, Ascadi G, Jani A, Massie B, Karpati G. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 1995;2:107–115.

    PubMed  CAS  Google Scholar 

  121. Gahery-Segard H, Juillard V, Gaston J, Lengagne R, Pavirani A, Boulanger P, Guillet J-G. Humoral immune response to the capsid components of recombinant adenoviruses: routes of immunization modulate virus-induced Ig subclass shifts. Eur J Immunol 1997;27:653–659.

    Article  PubMed  CAS  Google Scholar 

  122. Harvey BG, Hackett NR, El-Sawy T, Rosengart TK, Hirschowitz EA, Lieberman MD, Lesser ML, Crystal RG. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J Virol 1999;73:6729–6742.

    PubMed  CAS  Google Scholar 

  123. Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG. Induction of immunity to antigens expressed by recombinant adenoassociated virus depends on the route of administration. Clin Immunol 1999;92:67–75.

    Article  PubMed  CAS  Google Scholar 

  124. Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffne W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 1985;41:521–530.

    Article  PubMed  CAS  Google Scholar 

  125. Gerdes CA, Castro MG, Lowenstein PR. Strong promoters are the key highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Mol Ther 2000;2:330–338.

    Article  PubMed  CAS  Google Scholar 

  126. Korfhagen TR, Glasser SW, Wert SE, Bruno MD, Daugherty CC, McNeish JD, Stock JL, Potter SS, Whitsett JA. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice. Proc Natl Acad Sci USA 1990;87:6122–6126.

    Article  PubMed  CAS  Google Scholar 

  127. Potter JJ, Cheneval D, Dang CV, Resar LM, Mezey E, Yang VW. The upstream stimulatory factor binds to and activates the promoter of the rat class I alcohol dehydrogenase gene. J Biol Chem 1991;266:15457–15463.

    PubMed  CAS  Google Scholar 

  128. Franz, WM, Brem, G, Katus, HA, Klingel, K, Hofschneider, PH, Kandolf, R Characterization of a cardiac-selective and developmentally upregulated promoter in transgenic mice. Cardioscience 1994;5:235–243.

    PubMed  CAS  Google Scholar 

  129. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER. Control of memory formation through regulated expression of a CaMKII transgene. Science 1996;274:1678–83.

    Article  PubMed  CAS  Google Scholar 

  130. Morelli AE, Larregina AT, Smith-Arica J, Dewey RA, Southgate TD, Ambar B, Fontana A, Castro MG, Lowenstein PR. Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosisinducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity. J Gen Virol 1999;3:571–578.

    Google Scholar 

  131. Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy MR. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol 1993;7:1275–1283.

    Article  PubMed  CAS  Google Scholar 

  132. DeMatteo RP, McClane SJ, Fisher K, Yeh H, Chu G, Burke C, Raper SE. Engineering tissue-specific expression of a recombinant adenovirus: selective transgene transcription in the pancreas using the amylase promoter. J Surg Res 1997;72:155–161.

    Article  PubMed  CAS  Google Scholar 

  133. Hussain MA, Lee J, Miller CP, Habener JF. POU domain transcription factor brain 4 confers pancreatic alpha-cell-specific expression of the proglucagon gene through interaction with a novel proximal promoter GI element. Mol Cell Biol 1997;17:7186–7194.

    PubMed  CAS  Google Scholar 

  134. Canaff L, Bevan S, Wheeler DG, Mouland AJ, Rehfuss RP, White JH, Hendy GN. Analysis of molecular mechanisms controlling neuroendocrine cell specific transcription of the chromogranin A gene. Endocrinology 1998;139:1184–1196.

    Article  PubMed  CAS  Google Scholar 

  135. Braiden V, Nagayama Y, Iitaka M, Namba H, Niwa M, Yamashita S. Retrovirusmediated suicide gene/prodrug therapy targeting thyroid carcinoma using a thyroid-specific promoter. Endocrinology 1998;139:3996–3999.

    Article  PubMed  CAS  Google Scholar 

  136. Zeiger MA, Takiyama Y, Bishop JO, Ellison AR, Saji M, Levine MA. Adenoviral infection of thyroid cells: a rationale for gene therapy for metastatic thyroid carcinoma. Surgery 1996;120:921–925.

    Article  PubMed  CAS  Google Scholar 

  137. Chung I, Schwartz PE, Crystal RG, Pizzomo G, Leavitt J, Deisseroth AB. Use of L-plastin promoter to develop an adenoviral system that confers transgene expression in ovarian cancer cells but not in normal mesothelial cells. Cancer Gene Ther 1999;6:99–106.

    Article  PubMed  CAS  Google Scholar 

  138. Lee EJ, Anderson LM, Thimmapaya B, Jameson JL. Targeted expression of toxic genes directed by pituitary hormone promoters: a potential strategy for adenovirusmediated gene therapy of pituitary tumors. J Clin Endocrinol Metabol 1999;84:786–794.

    Article  CAS  Google Scholar 

  139. Castro MG, Windeatt S, Smith-Arica J, Lowenstein PR. Cell-type specific expression in the pituitary: physiology and gene therapy. Biochem Soc Transac 1999;27:858–863.

    CAS  Google Scholar 

  140. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Mad Sci USA 1992;89:5547–5551.

    Article  CAS  Google Scholar 

  141. Hwang JJ, Scuric Z, Anderson WF. Novel retroviral vector transferring a suicide gene and a selectable marker gene with enhanced gene expression by using a tetracycline-responsive expression system. J Virol 1996;70:8138–8141.

    PubMed  CAS  Google Scholar 

  142. Fotaki ME, Pink JR, Mous J. Tetracycline-responsive gene expression in mouse brain after amplicon-mediated gene transfer. Gene Ther 1997;4:901–908.

    Article  PubMed  CAS  Google Scholar 

  143. Harding TC, Geddes BJ, Murphy D, Knight D, Uney JB. Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system. Nat Biotechnol 1998;16:553–555.

    Article  PubMed  CAS  Google Scholar 

  144. Smith-Arica JR, Williams JC, Stone D, Smith J, Lowenstein PR, Castro MG. Switching on and off transgene expression within lactotrophic cells in the anterior pituitary glandin vivo.Endocrinology (Submitted)

    Google Scholar 

  145. Peng K-W, Russell SJ. Viral vector targeting. Curr Opin Biotechnol 1999;10:454–457.

    Article  PubMed  CAS  Google Scholar 

  146. Cosset F-L, Russell SJ. Targeting retrovirus entry. Gene Ther 1996;3:946–956.

    PubMed  CAS  Google Scholar 

  147. Roux P, Jeanteur P, Piechaczyk M. A versatile approach to the targeting of specific cell types by retroviruses. Proc Natl Acad Sci USA 1989;86:9079–9083.

    Article  PubMed  CAS  Google Scholar 

  148. Goud B, Legrain P, Buttin G. Antibody-mediated binding of a murine ecotropic moloney retroviral vector to human cells allows intemalisation but not establishment of the pro-viral state. Virology 1988;163:251–254.

    Article  PubMed  CAS  Google Scholar 

  149. Etienne-Julan M, Roux P, Carillo S, Jeanteur P, Piechaczyk M. The efficiency of cell targeting by recombinant retroviruses depends on the nature of the receptor and the composition of the artificial cell-virus linker. J Gen Virol 1992;73:3251–3255.

    Article  PubMed  CAS  Google Scholar 

  150. Neda H, Wu G. Chemical modification of an ecotropic murine leukaemia virus results in redirection of its target cell specificity. J Biol Chem 1991;266:14143–14149.

    PubMed  CAS  Google Scholar 

  151. Valsesia-Wittmann S, Drynda A, Deleage G, Aumailley M, Heard JM, Danos O, Verdier G, Cosset F-L. Modifications of the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J Virol 1994;68:4609–4619.

    PubMed  CAS  Google Scholar 

  152. Kasahara N, Dozy AM, Kan YW. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 1994;25:1373–1376.

    Article  Google Scholar 

  153. Han X, Kasahara N, Kan YW. Ligand-directed retroviral targeting of human breast cancer cells. Proc Natl Acad Sci USA 1995;92:9747–9751.

    Article  PubMed  CAS  Google Scholar 

  154. Russell SJ, Hawkins RE, Winter G. Retroviral vectors displaying functional antibody fragments. Nucl Acid Res 1993;21:1081–1085.

    Article  CAS  Google Scholar 

  155. Marin M, Noel D, Valesia-Wittman S, Brockly F, Etienne-Julan M, Russell S, Cosset F-L, Piechaczyk M. Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukaemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J Virol 1996;70:2957–2962.

    PubMed  CAS  Google Scholar 

  156. Konishi H, Ochiya T, Chester KA, Begent RHJ, Muto T, Sugimura T, Terada M. Targeting strategy for gene delivery to carcinoembryonic antigen-producing cancer cells by retrovirus displaying a single-chain variable fragment antibody. Hum Gene Ther 1998;9:235–248.

    Article  PubMed  CAS  Google Scholar 

  157. Martin M, Kupsch J, Takeuchi Y, Russell S, Cosset F-L. Retroviral vector targeting to melanoma cells by single-chain antibody incorporation in envelope. Hum Gene Ther 1996;9:737–746.

    Article  Google Scholar 

  158. Valsesia-Wittmann S, Morling FJ, Nilson BHK, Takeuchi Y, Russell SJ, Cosset F-L. Improvement of retroviral retargeting by using amino acid spacers between an additional binding domain and the N terminus of Moloney murine leukaemia virus SU. J Virol 1996;70:2059–2064.

    CAS  Google Scholar 

  159. Ager S, Nilson BHK, Morling FJ, Peng, KW, Cosset F-L, Russell SJ. Retroviral display of antibody fragments; interdomain spacing strongly influences vector infectivity. Hum Gene Ther 1996;7:2157–2164.

    Article  PubMed  CAS  Google Scholar 

  160. Cosset F-L, Morling FJ, Takeuchi Y, Weiss RA, Collins MK, Russell SJ. Retroviral retargeting by envelopes expressing an N-terminal binding domain. J Virol 1995;69:6314–6322.

    PubMed  CAS  Google Scholar 

  161. Nilson BHK, Morling FJ, Cosset F-L, Russell SJ. Targeting of retroviral vectors through protease-substrate interactions. Gene Ther 1996;3:280–286.

    PubMed  CAS  Google Scholar 

  162. Peng K-W, Morling FJ, Cosset F-L, Russell SJ. Retroviral gene delivery system activatable by plasmin. Tumour Targeting 1998;3:112–120.

    CAS  Google Scholar 

  163. Peng K-W, Morling FJ, Cosset F-L, Murphy G, Russell SJ. A gene delivery system activatable by disease-associated matrix metalloproteinases. Hum Gene Ther 1997;8:729–738.

    Google Scholar 

  164. Morling FJ, Peng K-W, Cosset F-L, Russell SJ. Masking of retroviral envelope functions by oligomerizing polypeptide adaptors. Virology 1997;234:51–61.

    Article  PubMed  CAS  Google Scholar 

  165. Chadwick MP, Morling FJ, Cosset F-L, Russell SJ. Modification of retroviral tropism by display of IGF-I. J Mol Biol 1999;285:485–494.

    Article  PubMed  CAS  Google Scholar 

  166. Hall FL, Gordon EM, Wu L, Zhu NL, Skotzko MJ, Starnes VA, Anderson WF. Targeting retroviral vectors to vascular lesions by genetic engineering of the MoMLV gp70 envelope protein. Hum Gene Ther 1997;8:2183–2192.

    Article  PubMed  CAS  Google Scholar 

  167. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996;70:6839–6346.

    PubMed  CAS  Google Scholar 

  168. Dimitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, Curiel DT. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilisation of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998;72:9706–9713.

    Google Scholar 

  169. Krasnykh VN, Dmitriev I, Mikheeva GV, Miller CR, Belousova N, Curiel DT. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998;72:1844–1852.

    PubMed  CAS  Google Scholar 

  170. Michael SI, Hong JS, Curiel DT, Engler JA. Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther 1995;2:660–668.

    PubMed  CAS  Google Scholar 

  171. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I. Adenovirus targeted to heparancontaining receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol 1996;14:1570–1573.

    Article  PubMed  CAS  Google Scholar 

  172. Wickham TJ, Tzeng E, Shears LLN, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A, Kovesdi I. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997;71:8221–8229.

    PubMed  CAS  Google Scholar 

  173. Wickham TJ, Carrion ME, Kovesdi I. Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Ther 1995;2:750–756.

    PubMed  CAS  Google Scholar 

  174. Wickham TJ, Segal DM, Roelvink PW, Carrion ME, Lizonova A, Lee GM, Kovesdi I. Targeted adenovirus gene transfer to endothelial and smooth muscle cells using bispecific antibodies. J Virol 1996;70:6831–6838.

    Google Scholar 

  175. Wickham TJ, Lee GM, Titus JA, Sconocchia G, Kovesdi I, Segal DM. Targeted adenovirus-mediated gene delivery to T cells via CD3 cells. J Virol 1997;71:7663–7669.

    PubMed  CAS  Google Scholar 

  176. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT. Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotech 1996;14:1574–1578.

    Article  CAS  Google Scholar 

  177. Rogers BE, Douglas JT, Ahlem C, Buchsbaum DJ, Frincke J, Curiel DT. Use of a novel cross-linking method to modify adenovirus tropism. Gene Ther 1997;4:1387–1392.

    Google Scholar 

  178. Watkins SJ, Mesyanzhinov VV, Kurochkina LP, Hawkins RE. The ‘adenobody’ approach to viral targeting: specific and enhanced adenoviral gene delivery. Gene Ther 1997;4:1004–1012.

    Article  PubMed  CAS  Google Scholar 

  179. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’gamma)2 antibody. Nat Biotechnol 1999;17:181–186.

    Article  PubMed  CAS  Google Scholar 

  180. Olmo K, Sawai K, Iijima Y, Levin B, Meruelo D. Cell-specific targeting of sindbis virus vectors displaying IgG-binding domains of protein A. Nat Biotechnol 1997;15:763–767.

    Article  Google Scholar 

  181. Leibowitz G, Beattie GM, Kafri, T Cirulli V, Lopez AD, Hayek A, Levine F. Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes 1999;48:745753.

    Google Scholar 

  182. O’Malley BWJ, Adams RM, Sikes ML, Sawada T, Ledley FD. Retrovirus-mediated gene transfer into canine thyroid using an ex vivo strategy. Hum Gene Ther 1993;4:171–178.

    Article  PubMed  Google Scholar 

  183. O’Malley BWJ, Ledley FD. DNA- and viral-mediated gene transfer in follicular cells:progress toward gene therapy of the thyroid. Laryngoscope 1993;103:1084–1092.

    PubMed  Google Scholar 

  184. Ivan M, Ludgate M,-Gire V, Bond JA, Wyndford-Thomas D. An amphotropic retroviral vector expressing a mutant gsp oncogene: effects on human thyroid cells in vitro. J Clin Endocrinol Metabol 1997;82:2702–2709.

    Article  CAS  Google Scholar 

  185. Falqui L, Martinenghi S, Severini GM, Corbella P, Taglietti MV, Arcelloni C, Sarugeri E, Monti LD, Paroni R, Dozio N, Pozza G, Bordignon C. Reversal of diabetes in mice by implantation of human fibroblasts genetically engineered to release mature human insulin. Hum Gene Ther 1999;10:1753–1762.

    Article  PubMed  CAS  Google Scholar 

  186. Nishihara E, Nagayama Y, Mawatari F, Tanaka K, Namba H, Niwa M, Yamashita S. Retrovirus-mediated herpes simplex virus thymidine kinase gene transduction renders human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro and in vivo. Endocrinology 1997;138:4577–4583.

    Article  PubMed  CAS  Google Scholar 

  187. Kimura M, Yoshida Y, Narita M, Takenaga K, Takenouchi T, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M. Acquired immunity in nude mice induced by expression of the IL-2 or IL-4 gene in human pancreatic carcinoma cells and anti-tumor effect generated by in vivo gene transfer using retrovirus. Int J Cancer 1999;82:549–555.

    Article  PubMed  CAS  Google Scholar 

  188. Ju Q, Edelstein D, Brendel MD, Brandhorst D, Brandhorst H, Bretzel RG, Brownlee M. Transduction of non-dividing adult human pancreatic beta cells by an integrating lentiviral vector. Diabetologia 1998;41:736–739.

    Article  PubMed  CAS  Google Scholar 

  189. Becker TC, BeltrandelRio H, Noel RJ, Johnson JH, Newgard CB. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels. J Biol Chem 1994;269:21234–21238.

    PubMed  CAS  Google Scholar 

  190. Csete ME, Benhamou PY, Drazan KE, Wu L, Mclntee DF, Afta R, Mullen Y, Busuttil RW, Shaked A. Efficient gene transfer to pancreatic islets mediated by adenoviral vectors. Transplantation 1995;59:263–268.

    PubMed  CAS  Google Scholar 

  191. Csete ME, Afra R, Mullen Y, Drazan KE, Benhamou PY, Shaked A. Adenoviralmediated gene transfer to pancreatic islets does not alter islet function. Transplant Proc 1994;26:756–757.

    PubMed  CAS  Google Scholar 

  192. Raper SE, DeMatteo RP. Adenovirus-mediated in vivo gene transfer and expression in normal rat pancreas. Pancreas 1996;12:401–410.

    Article  PubMed  CAS  Google Scholar 

  193. Sigalla J, David A, Anegon I, Fiche M, Huvelin JM, Boeffard F, Cassard A, Soulillou JP, Le Mauff B. Adenovirus-mediated gene transfer into isolated mouse adult pancreatic islets: normal beta-cell function despite induction of an anti-adenovirus immune response. Hum Gene Ther 1997;8:1625–1634.

    Article  PubMed  CAS  Google Scholar 

  194. Muzzin P, Eisensmith RC, Copeland KC, Woo SLC. Correction of obesity and diabetes in genetically obese mice by leptin gene therapy. Proc Natl Acad Sci USA 1996;93:14804–14808.

    Article  PubMed  CAS  Google Scholar 

  195. Wang M-Y, Koyama K, Shimabukuro M, Newgard CB, Unger RH. OB-Rb gene transfer to leptin-resistant islets reverses diabetogenic phenotype. Proc Natl Acad Sci USA 1998;95:714–718.

    Article  PubMed  CAS  Google Scholar 

  196. Wang M-Y, Koyama K, Shimabukuro M, Mangelsdorf D, Newgard CB, Unger RH. Overexpression of leptin receptors in pancreatic islets of Zucker diabetic fatty rats restores GLUT-2, glucokinase, and glucose-stimulated insulin secretion. Proc Natl Acad Sci USA 1998;95:11921–11926.

    Article  PubMed  CAS  Google Scholar 

  197. Short DK, Okada S, Yamauchi K, Pessin JE. Adenovirus-mediated transfer of a modified human proinsulin gene reverses hyperglycemia in diabetic mice. Am J Physiol 1998;275:E748–E756.

    PubMed  CAS  Google Scholar 

  198. Geddes BJ, Harding TC, Lightman SL, Uney JB. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin. Nat Med 1997;3:1402–1404.

    Article  PubMed  CAS  Google Scholar 

  199. Zhang R, Minemura K, De Groot LJ. Immunotherapy for medullary thyroid carcinoma by a replication-defective adenovirus transducing murine interleukin-2. Endocrinology 1998;139:601–608.

    Article  PubMed  CAS  Google Scholar 

  200. Zhang R, Baunoch D, De Groot LJ. Genetic immunotherapy for medullary thyroid carcinoma: destruction of tumors in mice by in vivo delivery of adenoviral vector transducing the murine interleukin-2 gene. Thyroid 1998;8:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  201. Zhang R, Straus FH, De Groot LJ. Effective genetic therapy of established medullary thyroid carcinomas with murine interleukin-2: dissemination and cytotoxicity studies in a rat tumor model. Endocrinology 1999;140:2152–2158.

    Article  PubMed  CAS  Google Scholar 

  202. Tajima T, Okada T, Ma XM, Ramsey W, Bornstein S, Aguilera G. Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochrome P450 21-hydroxylase into the adrenal gland of 21-hydroxylase-deficient mice. Gene Ther 1999;6:18981–903.

    Article  CAS  Google Scholar 

  203. Santoso JT, Tang DC, Lane SB, Hung J, Reed DJ, Muller CY, Carbone DP, Lucci JA, Miller DS, Mathis JM. Adenovirus-based p53 gene therapy in ovarian cancer. Gynecol Oncol 1995;59:171–178.

    Article  PubMed  CAS  Google Scholar 

  204. Rosenfeld ME, Feng M, Micheal SI, Siegal GP, Alvarez RD, Curiel DT. Adenoviralmediated delivery of the herpes simplex virus thymidine kinase gene selectively sensitizes human ovarian carcinoma cells to ganciclovir. Clin Cancer Res 1995;1:15711580.

    Google Scholar 

  205. Wolf JK, Kim TE, Fightmaster D, Bodurka D, Gerhenson D, Mills G, Wharton JT. Growth suppression of human ovarian cancer cell lines by the introduction of a p16 gene via a recombinant adenovirus. Gynecol Oncol 1999;73:27–34.

    Article  PubMed  CAS  Google Scholar 

  206. Minaguchi T, Mori T, Kanamori Y, Matsushima M, Yoshikawa H, Taketani Y, Nakamura Y Growth suppression of human ovarian cancer cells by adenovirusmediated transfer of the PTEN gene. Cancer Res. 1999;59:6063–6067.

    PubMed  CAS  Google Scholar 

  207. Deshane J, Siegal GP, Wang M, Wright M, Bucy RP, Alvarez RD, Curiel DT. Transductional efficacy and safety of an intraperitoneally delivered adenovirus encoding an erbB-2 intracellular single-chain antibody for ovarian cancer gene therapy. Gynecol Oncol 1997;64:378–385.

    Article  PubMed  CAS  Google Scholar 

  208. Gilligan MG, Knox P, Weedon S, Barton R, Kerr DJ, Searle P, Young LS. Adenoviral delivery of B7–1 (CD80) increases the immunogenicity of human ovarian and cervical carcinoma cells. Gene Ther 1998;5:965–974.

    Article  PubMed  CAS  Google Scholar 

  209. Behbakht K, Benjamin I, Chiu HC, Eck SL, Van Deerlin PG, Rubin SC, Boyd J. Adenovirus-mediated gene therapy of ovarian cancer in a mouse model. Amer J Obstet Gynec 1996;175:1260–1265.

    Article  PubMed  CAS  Google Scholar 

  210. Rosenfeld ME, Wang M, Siegal GP, Alvarez RD, Mikheeva G, Krasykh V, Curiel DT. Adenoviral-mediated delivery of herpes simplex virus thymidine kinase results in tumor reduction and prolonged survival in a SCID mouse model of human ovarian carcinoma. J Mol Med 1996;74:455–462.

    CAS  Google Scholar 

  211. Tong XW, Block A, Chen SH, Contant CF, Agoulnik I, Blankenburg K, Kaufman RH, Woo SL, Kieback DG. In vivo gene therapy of ovarian cancer by adenovirus-mediated thymidine kinase gene transduction and ganciclovir administration. Gynecol Oncol 1996;61:175–179.

    Article  PubMed  CAS  Google Scholar 

  212. Von Gruenigen VE, Santoso JT, Coleman RL, Muller CY, Miller DS, Mathis JM. In vivo studies of adenovirus-based p53 gene therapy for ovarian cancer. Gynecol Oncol 1998;69:197–204.

    Article  Google Scholar 

  213. Kleinerman DI, Zhang WW, Lin SH, Nguyen TV, von Eschenbach AC, Hsieh JT. Application of a tumor suppressor (C-CAM1)-expressing recombinant adenovirus in androgen-independent human prostate cancer therapy: a preclinical study. Cancer Res 1995;55:2831–2836.

    PubMed  CAS  Google Scholar 

  214. Eastham JA, Hall SJ, Sehgal I, Wang J, Timme TL, Yang G, Connell-Crowley L, Elledge SJ, Zhang WW, Harper JW. In vivo gene therapy with p53 and p21 adenovirus for prostate cancer. Cancer Res. 1995;55:5151–5155.

    PubMed  CAS  Google Scholar 

  215. Hall SJ, Mutchnik SE, Chen SH, Woo SL, Thompson TC. Adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy leads to systemic activity against spontaneous and induced metastasis in an orthotopic mouse model of prostate cancer. Int J Cancer 1997;70:183–187.

    Article  PubMed  CAS  Google Scholar 

  216. He D, Mum ZM, Le X, Hsieh JT, Pong RC, Chung LW, Chang KS. Adenovirusmediated expression of PML suppresses growth and tumorigenicity of prostate cancer cells. Cancer Res 1997;57:1868–1872.

    PubMed  CAS  Google Scholar 

  217. Nasu Y, Bangma CH, Hull GW, Lee HM, Hu J, Wang J, McCurdy MA, Shimura S, Yang G, Timme TL, Thompson TC. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Ther 1999;6:338–349.

    Article  PubMed  CAS  Google Scholar 

  218. Hedlund TE, Meech DJ, Srikanth S, Kraft AS, Miller GJ, Schaack JB, Duke RC. Adenovirus-mediated expression of Fas ligand induces apoptosis of human prostate cancer cells. Cell Death Differ 1999;6:175–182.

    Article  PubMed  CAS  Google Scholar 

  219. Yang C, Chichi C, Capogrossi MC, Passaniti A. Adenovinus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res 1995;55:4210–4213.

    PubMed  CAS  Google Scholar 

  220. Alvarez RD, Curiel DT. A phase I study of recombinant adenovirus vector-mediated delivery of an anti-erbB-2 single-chain (sFv) antibody gene for previously treated ovarian and extraovarian cancer patients. Hum Gene Ther 1997;8:229–242.

    Article  PubMed  CAS  Google Scholar 

  221. Alvarez RD, Curiel DT. A phase I study of recombinant adenovirus vector-mediated intraperitoneal delivery of herpes simplex virus thymidine kinase (HSV-TK) gene and intravenous ganciclovir for previously treated ovarian and extraovarian cancer patients. Hum Gene Ther 1997;8:597–613.

    Article  PubMed  CAS  Google Scholar 

  222. Hortobagyi GN, Hung MC, Lopez-Berestein G. A phase I multicenter study of E1A gene therapy for patients with metastatic breast cancer and epithelial ovarian cancer that overexpresses HER-2/neu or epithelial ovarian cancer. Hum Gene Ther 1998;9:1775–1798.

    Article  PubMed  CAS  Google Scholar 

  223. Herman JR, Adler HL, Aguilar-Cordova E, Rojas-Martinez A, Woo S, Timme TL, Wheeler M, Thompson TC, Scardino PT. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999;10: 1239–1249.

    Article  PubMed  CAS  Google Scholar 

  224. Peng L, Sidner RA, Bochan MR, Burton MM, Cooper ST, Jindal RM. Construction of recombinant adeno-associated virus vector containing the rat preproinsulin II gene. J Surg Res 1997;69:193–198.

    Article  PubMed  CAS  Google Scholar 

  225. Murphy JE, Zhou S, Giese K, Williams LT, Escobedo JA, Dwarki VJ. Long-term correction of obesity and diabetes in genetically obese mice by a single injection of recombinant adeno-associated virus encoding mouse leptin. Proc Natl Acad Sci USA 1997;94:13921–13926.

    Article  PubMed  CAS  Google Scholar 

  226. Sugiyama A, Hattori S, Tanaka S, Isoda F, Kleopoulos S, Rosenfeld M, Kaplitt M, Sekihara H, Mobbs C. Defective adeno-associated viral-mediated transfection of insulin gene by direct injection into liver parenchyma decreases blood glucose of diabetic mouse. Horm Metabol Res 1997;28:599–603.

    Article  Google Scholar 

  227. Walker JR, McGeagh KG, Sundaresan P, Jorgensen TJ, Rabkin SD, Martuza RL. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum Gene Ther 1999;10:2237–2243.

    Article  PubMed  CAS  Google Scholar 

  228. Wang M, Rancourt C, Navarro JG, Krisky D, Marconi P, Oligino T, Alvarez RD, Siegal GP, Glorioso JC, Curiel DT. High-efficacy thymidine kinase gene transfer to ovarian cancer cell lines mediated by herpes simplex virus type 1 vector. Gynecol Oncol 1998;71:278–287.

    Article  PubMed  CAS  Google Scholar 

  229. Liu Y, Rabinovitch A, Suarez-Pinzon W, Muhkerjee B, Brownlee M, Edelstein D, Federoff HJ. Expression of the bel-2 gene from a defective HSV-1 amplicon vector protects pancreatic beta-cells from apoptosis. Hum Gene Ther 1996;7:1719–1726.

    Article  PubMed  CAS  Google Scholar 

  230. Windeatt S, Southgate TD, Dewey RA, Bolognani F, Perone MJ, Larregina AT, Maleniak TC, Morris PD, Goya RG, Klatzman D, Lowenstein PR, Castro MG. Adenovirus-mediated herpes simplex virus type-1 thymidine kinase gene therapy suppresses oestrogen-induced pituitary prolactinomas. J Clin Endocrinol Metabol 2000;85:1296–1305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

David, A., Stone, D., Cowen, R.L., Castro, M.G., Lowenstein, P.R. (2001). Transient Transgenesis in The Endocrine System: Viral Vectors for Gene Delivery. In: Castro, M.G. (eds) Transgenic Models in Endocrinology. Endocrine Updates, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1633-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1633-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5651-6

  • Online ISBN: 978-1-4615-1633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics