Transgenic Rats and the Functional Genomics of Endocrine Systems

  • David Murphy
  • Sara J. Wells
Part of the Endocrine Updates book series (ENDO, volume 13)

Abstract

Based on the gene density of the recently sequenced human chromosome 22 (1), it can be calculated that mammals have about 50,000 genes. The identification of these genes is a necessary prelude to any attempt to construct models of endocrine function based on integrated gene networks. Such a global approach demands that we identify all of the genes that are expressed in endocrine cells, that we determine when and where these genes are expressed, and, finally, that we determine their functions. Although information in databases will not, by itself, be sufficient to determine biological function, it will provide a foundation for the design of appropriate experiments. This remarkable wealth of information that molecular genetics has provided us with needs to be integrated into an understanding of the functioning of whole tissues, organs and organisms. Without such integration, molecular information is nothing more than a confusing catalogue of sequences and structures. The experimental tools exist in model organisms such as the rat, but not in humans, for assembling genes into pathways and thus identifying gene function from sequence. In particular, transgenic technologies enable rapid movement between genotype and phenotype through the generation of specific loss-of-function, overexpression or misexpression phenotypes (2).

Keywords

Recombination Dehydration Prolactin Renin Chloramphenicol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR et al. The DNA sequence of human chromosome 22. Nature 1999;402:489–495.PubMedCrossRefGoogle Scholar
  2. 2.
    Murphy D, Carter DA. Transgenic approaches to modifying cell and tissue function. Curr Opp Cell Biol 1992;4:274–279.CrossRefGoogle Scholar
  3. 3.
    Murphy D, Carter DA. Transgenesis Techniques: Principles and Protocols. Methods in Molecular Biology, Volume 18. New Jersey: Humana Press, 1993.Google Scholar
  4. 4.
    Flavell DM, Wells T, Wells SE, Carmignac DF, Thomas GB, Robinson IC. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons. EMBO J 1996;15:3871–3879.PubMedGoogle Scholar
  5. 5.
    Zeng Q, Carter DA, Murphy D. Cell specific expression of a vasopressin transgene in rats. J Neuroendocrinol 1994;6:469–477.PubMedCrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    Murphy D, Si-Hoe S-L, Brenner S, Venkatesh B. Something fishy in the rat brain: molecular genetics of the hypothalamo-neurohypophyseal system. BioEssays 1998;20:741–749.PubMedCrossRefGoogle Scholar
  9. 9.
    Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S. Characterisation of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 1993;366:265–268.PubMedCrossRefGoogle Scholar
  10. 10.
    Burbach JPH, Luckman, SM, Murphy D, Gainer H (1999) Gene Regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2000; (in press)Google Scholar
  11. 11.
    Reeves WB, Andreoli TE. The posterior pituitary and water metabolism. In Williams Textbook of Endocrinology (eds. Wilson JD, and Foster DW), pp 311–356. Philadelphia: WB Saunders, 1992.Google Scholar
  12. 12.
    Pierson PM, Guibbolini ME, Mayer-Gostan N, Lahlou B. ELISA measurements of vasotocin and isotocin in plasma and pituitary of the rainbow trout: effect of salinity. Peptides 1995;16:859–865.PubMedCrossRefGoogle Scholar
  13. 13.
    Young WS 3rd, Shepard E, DeVries AC, Zimmer A, LaMarca ME, Ginns EI, Amico J, Nelson RJ, Hennighausen L, Wagner KU. Targeted reduction of oxytocin expression provides insights into its physiological roles. Adv Exp Biol Med 1998;449:231–240.CrossRefGoogle Scholar
  14. 14.
    Russell JA, Leng G. Sex, parturition and motherhood without oxytocin. J Endocrinol 1998; 157:343–359.PubMedCrossRefGoogle Scholar
  15. 15.
    Verbalis JG, Mangione MP, Stricker EM. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 1991;128:1317–1322.PubMedCrossRefGoogle Scholar
  16. 16.
    Huang W, Lee SL, Amason SS, Sjoquist M. Dehydration natriuresis in male rats is mediated by oxytocin. Am J Physiol 1996;270: R427–R433.PubMedGoogle Scholar
  17. 17.
    Perks AM. The neurohypophysis. In: Fish Physiology Vol II (eds W.S. Hoar WS, Randall DJ) pp 111–205. New York: Academy Press, 1969.Google Scholar
  18. 18.
    Urano A, Kubokawa K, Hiraoka S. Expression of the vasotocin and isotocin gene family in fish. In: Fish Physiology, Vol XIII (eds Sherwood NM, Hew CL). New York: Academy Press, 1994.Google Scholar
  19. 19.
    Kiyama H, Emson PC. Evidence for the co-expression of oxytocin and vasopressin messenger ribonucleic acids in magnocellular neurosecretory cells: Simultaneous demonstration of two neurophysin messenger ribonucleic acids by hybridisation histochemistry. J Neuroendocrinol 1990;2:257–260.PubMedCrossRefGoogle Scholar
  20. 20.
    Mohr E, Bahnsen U, Kiessling C, Richter D. Expression of the vasopressin and oxytocin genes occurs in mutually exclusive sets of hypothalamic neurons. FEBS Lett 1988;242:144–148.PubMedCrossRefGoogle Scholar
  21. 21.
    Moore RY. Organisation and function of a central nervous system circadian oscillator: the suprachiasmatic nucleus. Fed Proc 1983;42:2783–2789.PubMedGoogle Scholar
  22. 22.
    Carter DA, Murphy D. Circadian rhythms and autoregulatory transcription loops - going around in circles? Mol Cell Endocrinol 1996:124:1–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Young WS. Expression of the oxytocin and vasopressin genes. J Neuroendocrinol 1992;4:527–540.PubMedCrossRefGoogle Scholar
  24. 24.
    Schmitz E, Mohr E, Richter D. Rat vasopressin and oxytocin genes are linked by a long interspersed repeated DNA element (LINE): sequence and transcriptional analysis of LINE. DNA and Cell Biol 1991;10:81–91.CrossRefGoogle Scholar
  25. 25.
    Ratty AK, Jeong S-W, Nagle JW, Chin H, Gainer H, Murphy D, Venkatesh B. A systematic survey of the intergenic region between the murine oxytocin and vasopressin genes. Gene 1996;174:71–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Murphy D, Carter DA. Vasopressin gene expression in the rodent hypothalamus: transcriptional and post-transcriptional responses to physiological stimulation. Mol Endocrinol 1990;4:1051–1059.PubMedCrossRefGoogle Scholar
  27. 27.
    Burbach JPH, De Hoop MJ, Schmale H, Richter D, De Kloet ER, Ten Haaf JA, De Wied D (1984) Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei. Neuroendocrinol 1984;39:582–584.CrossRefGoogle Scholar
  28. 28.
    Zingg HH, Lefebvre D, Almazan G. Regulation of vasopressin gene expression in hypothalamic neurons. J Biol Chem 1986;261:12956–12959.PubMedGoogle Scholar
  29. 29.
    Lightman SL, Young WS. Vasopressin, oxytocin, dynorphin, enkephalin, and corticotrophin releasing factor mRNA stimulation in the rat. J Physiol (London) 1987;394:23–39.Google Scholar
  30. 30.
    Sherman TG, Day R, Civelli O, Douglas J, Herbert E, Akil H, Watson SJ. Regulation of hypothalamic magnocellular neuropeptides and their mRNAs in the Brattleboro rat: coordinate responses to further osmotic challenge. J Neurosci 1988;8:3785–3796.PubMedGoogle Scholar
  31. 31.
    Carrazana EJ, Pasieka KB, Majzoub JA. The vasopressin poly (A) tail is unusually long and increases during stimulation of vasopressin gene expression in vivo. Mol Cell Biol 1988;8:2267–2274.PubMedGoogle Scholar
  32. 32.
    Carter DA, Pardy K, Murphy D Regulation of vasopressin gene expression: changes in level, but not size, of VP mRNA following endocrine manipulations. Cell Mol Neurobiol 1993;13:87–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Carter DA, Murphy D. Rapid changes in poly(A) tail length of vasopressin and oxytocin mRNAs form a common early component of neurohypophysial peptide gene activation following physiological stimulation. Neuroendocrinol 1991;53:1–6.CrossRefGoogle Scholar
  34. 34.
    Van Tol HHM, Voorhuis TAM, Burbach JPH. Oxytocin gene expression in discrete hypothalamic magnocellular groups is stimulated by prolonged salt loading. Endocrinology 1987;120:71–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Carter DA, Murphy D. Independent regulation of neuropeptide mRNA level and poly(A) tail length. J Biol Chem 1989;264:6601–6603.PubMedGoogle Scholar
  36. Si-Hoe SL, Murphy D. Physiological regulation of vasopressin mRNA abundance and poly(A) tail length: tissue and species differences revealed by comparative analysis in transgenic rodents. (Submitted)Google Scholar
  37. 37.
    Zeng Q, Foo N-C, Funkhouser JM, Carter DA, Murphy D. Expression of a rat vasopressin transgene in rat testis. J Reprod Fert 1994;102:471–481CrossRefGoogle Scholar
  38. 38.
    Venkatesh V, Si-Hoe S-L, Murphy D, Brenner S. Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes. Proc Natl Acad Sci USA 1997;94:12462–12466.PubMedCrossRefGoogle Scholar
  39. 39.
    Goossens N, Diericks K, Vandesande F. Immunocytochemical localization of vasotocin and isotocin in the preopticohypophysial neurosecretory system of teleosts. Gen Comp Endocrinol 1977;32:371–375.PubMedCrossRefGoogle Scholar
  40. 40.
    Hyodo S, Urano A. Changes in expression of provasotocin and proisotocin genes during adaptation to hyper-and hypo-osmotic environments in rainbow trout. J Comp Physiol B 1991;161:549–556.PubMedCrossRefGoogle Scholar
  41. 41.
    Waller S, Fairhall KM, J Xu, Robinson ICAF, Murphy D. Neurohypophyseal and Fluid Homeostasis in Transgenic Rats Expressing a Tagged Rat Vasopressin Prepropeptide in Vasopressinergic Magnocellular Neurons. Endocrinology 1996;137:5068–5077.PubMedCrossRefGoogle Scholar
  42. 42.
    Fitzsimmons MD, Roberts MM, Sherman TG, Robinson AG. Models of neurohypophyseal homeostasis. Am J Physiol 1992;262:R1121–R1130.PubMedGoogle Scholar
  43. 43.
    Fitzsimmons MD, Roberts MM, Robinson AG. Control of posterior pituitary vasopressin content: implications for the control of the vasopressin gene. Endocrinology 1994;134:1874–1878.PubMedCrossRefGoogle Scholar
  44. 44.
    Olsen SR, Uhler MD. Inhibition of protein kinase A by overexpression of the cloned human protein kinase inhibitor. Mol Endocrinol 1991;5:1246–1256.PubMedCrossRefGoogle Scholar
  45. 45.
    Pearson JD, DeWald DB, Mathews WR, Mozier NM, Zurcher-Neely HA, Heinrikson RL, Morris MA, McCubbin WD, McDonald JR, Fraser ED, Vogel HJ, Kay CM, Walsh MP. Amino acid sequence and characterisation of a protein inhibitor of protein kinase C. J Biol Chem 1990;265:4583–4591PubMedGoogle Scholar
  46. 46.
    Ang H-L, Carter DA, Murphy D. Neuron-specific and physiological regulation of bovine vasopressin transgenes in mice. EMBO J 1993;12:2397–2409.PubMedGoogle Scholar
  47. 47.
    Waller SJ, Murphy D. Expression of rat vasopressin transgenes in rats. In, The 1st Joint World Congress of Neurohypophysis and Vasopressin. Excerpta Medica International Congress Series 1098 (Eds, Saito et al.) pp89–98. Amsterdam: Elsevier Science, 1995.Google Scholar
  48. 48.
    Hentze MW, Kulozik AE. A perfect message: RNA surveillance and nonsense-mediated decay. Cell 1999;96:307–310.PubMedCrossRefGoogle Scholar
  49. 49.
    Harvey S. Growth hormone release. In: Growth Hormone (eds Harvey S, Scanes CG, Daughaday WH) pp 97–130. 1995.Google Scholar
  50. 50.
    Clarke I J. What can we learn from sampling hypophysial portal blood? In: Functional anatomy of the neuroendocrine hypothalamus. Ciba Foundation symposium. 1992;168:87–103.PubMedGoogle Scholar
  51. 51.
    Barinaga M, Yamonoto G, Rivier G, Vale W, Evans R, Rosenfeld MG. Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature 1987;306:84–5.CrossRefGoogle Scholar
  52. 52.
    Guillemin R, Brazeau P, Böhlen P, Esch F, Ling N, Wehrenberg, WB. Growth hormone-releasing factor from a human pancreatic tumor that caused agromegaly. Science 1982;218:585–587.PubMedCrossRefGoogle Scholar
  53. 53.
    Rivier J, Speiss J, Thorner M, Vale W. Characterization of growth hormone-releasing factor from a pancreatic islet tumor. Nature 1982;300:276–278.PubMedCrossRefGoogle Scholar
  54. 54.
    Brazeau P, Vale W, Burgus R, Ling L, Butcher M, Rivier J, Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973;179:77–79.PubMedCrossRefGoogle Scholar
  55. 55.
    de Gennaro CV, Cattaneo E, Cocchi D, Miller EE, Maggi A. Growth hormone regulation of growth hormone-releasing hormone gene expression. Peptides 1988;9:985–988.CrossRefGoogle Scholar
  56. 56.
    Mild N, Ono M, Miyoshi H, Tsushima T, Shizume K. Hypothalamic growth hormone-releasing factor (GRF) participates in the negative feeback regulation of growth hormone secretion. Life Sciences 1989;44:469–476.CrossRefGoogle Scholar
  57. 57.
    Berelowitz M, Firestone SL, Frohman LA. Effects of growth hormone excess and deficiency on hypothalamic somatostatin content and release and on tissue somatostatin distribution. Endocrinology 1981;109:714–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Levy A, Matovelle MC, Lightman SL, Young III WS. The effects of pituitary stalk transection, hypophysectomy and thyroid hormone status on insulin-like growth factor 2-, growth hormone releasing hormone-, and somatostatin mRNA prevalence in rat brain. Brain Res 1992;579:1–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Gen 1993;4:227–231.CrossRefGoogle Scholar
  60. 60.
    Li S, Crenshaw III EB, Rawson E.J, Simmons M, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990;347:528–533.PubMedCrossRefGoogle Scholar
  61. 61.
    Stewart TA, Clift S, Pitts-Meek S, Martin L, Terrell TG, Liggitt D, Oakley H. An evaluation of the functions of the 22-kilodalton (kDa), the 20 kDa, and the N-terminal polypeptide forms of human growth hormone using transgeiiic mice. Endocrinology 1992;130:405–414.PubMedCrossRefGoogle Scholar
  62. 62.
    Banerji J, Olson L, Schaffner W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 1983;33:729–740.PubMedCrossRefGoogle Scholar
  63. 63.
    Palmiter R.D, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 1982;300:611–615.PubMedCrossRefGoogle Scholar
  64. 64.
    Palmiter RD, Norstedt G, Gelinas E, Hammer RE, Brinster RL. Metallothioneinhuman GH fusion genes stimulate growth of mice. Science 1983;222:809–814.PubMedCrossRefGoogle Scholar
  65. 65.
    Takeuchi T, Suzuki H, Sakurai S, Nogami H, Okuma S, Ishikawa H. Molecular mechanism of growth hormone (GH) deficiency in the spontaneous dwarf rat: detection of abnormal splicing of GH messenger ribonucleic acid by polymerase chain reaction. Endocrinology 1990;126:31–38.PubMedCrossRefGoogle Scholar
  66. 66.
    Charlton HM, Clark RG, Robinson ICAF, Porter Goff AE, Cox BS, Bugnon C, Bloch BA. Growth hormone-deficient dwarfism in the rat: a new mutation. J Endocrinol 1988;119:51–58.PubMedCrossRefGoogle Scholar
  67. 67.
    Flavell DM, Wells T, Wells SE, Carmignac DF, Thomas, GB, Robinson ICAF. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons. EMBO J 1996;15:3871–3879.PubMedGoogle Scholar
  68. 68.
    Wells T, Flavell DM, Wells SE, Carmignac DF, Robinson ICAF. Effects of growth hormone secretagogues in the transgenic growth-retarded (Tgr) rat. Endocrinology 1997;138:580–587.PubMedCrossRefGoogle Scholar
  69. 69.
    Iannaccone PM, Taborn GU, Garton RL, Caplice MD, Brenin DR. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol 1994;163:288–292.PubMedCrossRefGoogle Scholar
  70. 70.
    Iannaccone PM, Taborn GU, Garton RL, Caplice MD, Brenin DR Pluripotent embryonic stem cells from the rat are capable of producing chimeras (erratum). Dev Biol 1997;185:124–125.CrossRefGoogle Scholar
  71. 71.
    Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 1997;278:2130–2133.PubMedCrossRefGoogle Scholar
  72. 72.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring from fetal and adult mammalian cells. Nature 1997;385:810–813.PubMedCrossRefGoogle Scholar
  73. 73.
    Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998;394:369–374.PubMedCrossRefGoogle Scholar
  74. 74.
    Nelson RJ. The use of genetic “knockout” mice in behavioural endocrinology research. Horm Behav 1997;31:188–96.PubMedCrossRefGoogle Scholar
  75. 75.
    Routtenberg A. Knockout mouse fault lines. Nature 1995;374:314–315.PubMedCrossRefGoogle Scholar
  76. 76.
    Hochgeschwender U, Brennan MB. Mouse knockouts rule OK. Nature 1995;374:543.CrossRefGoogle Scholar
  77. 77.
    Thomas JH. Thinking about genetic redundancy. TIG 1993;9:395–399.PubMedCrossRefGoogle Scholar
  78. 78.
    Nowak MA, Boerlijst MC, Cooke J, Smith JM. Evolution of genetic redundancy. Nature 1997;388:167–171.PubMedCrossRefGoogle Scholar
  79. 79.
    Gilman AG. G proteins: transducers of receptor-generated signals. Ann Rev Biochem 1987;56:615–649.PubMedCrossRefGoogle Scholar
  80. 80.
    Burton FH, Hasel KW, Bloom FE, Sutcliffe JG. Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene. Nature 1991;350:74–77.PubMedCrossRefGoogle Scholar
  81. 81.
    Struthers RS, Vale WW, Arias C, Sawchenko PE, Montminy MR. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 1991;350:622–624.PubMedCrossRefGoogle Scholar
  82. 82.
    Schinke M, Baltatu O, Bohm M, Peters J, Rascher W, Bricca G, Lippoldt A, Ganten D, Bader M. Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci U S A 1999;96:3975–3980.PubMedCrossRefGoogle Scholar
  83. 83.
    Matsumoto K, Kakidani H, Anzai M, Nakagata N, Takahashi A, Takahashi Y, Miyata K. Evaluation of an antisense RNA transgene for inhibiting growth hormone gene expression in transgenic rats. Dev Genet 1995;16:273–277.PubMedCrossRefGoogle Scholar
  84. 84.
    Matsumoto K, Kakidani H, Takahashi A, Nakagata N, Anzai M, Matsuzaki Y, Takahashi Y, Miyata K, Utsumi K, Iritani A. Growth retardation in rats whose growth hormone gene expression was suppressed by antisense RNA transgene. Mol Reprod Dev 1993;36:53–58.PubMedCrossRefGoogle Scholar
  85. 85.
    Flanagan LM, McCarthy MM, Brooks PJ, Ptaff DW, McEwan BS. Arginine vasopressin levels after daily infusions of antisense oligonucleotides into the supraoptic nucleus. Ann NY Acad Sci 1993;689:520–521.PubMedCrossRefGoogle Scholar
  86. 86.
    Skutella T, Probst JC, Engelmann CT, Wotjak CT, Landgraf R, Jirikowski GF. Vasopressin antisense oligonucleotide induces temporary diabetes insipidus in rats. J Neuroendocrinol 1994;6:121–125.PubMedCrossRefGoogle Scholar
  87. 87.
    Meeker R, LeGrand G, Ramirez J, Smith T, Shih YH. Antisense vasopressin oligonucleotides: uptake, turnover, distributioin, toxicity and behavioural effects. J Neuroendocrinol 1995;7:419–428.PubMedCrossRefGoogle Scholar
  88. 88.
    Neumann I, Porter DW, Landgraf R, Pittman QJ. Rapid effect on suckling of an antisense oligonucleotide administered into the rat supraoptic nucleus. Am J Physiol 1994;267:R852–858.PubMedGoogle Scholar
  89. 89.
    Jirikowski GF, Celeda D, Jantz M, Prufer K, Lee JS. Sense-and antisense-targeting of oxytocinergic systems in rat hypothalamus. Adv Exp Med Biol 1995;395:59–65.PubMedGoogle Scholar
  90. 90.
    Skutella T, Probst JC, Caldwell JD, Pederson CA, Jirikowski GF. Antisense oligodeoxynucleotide complementary to oxytocin mRNA blocks lactaion in rats. Exp Clin Endocrinol Diabetes 1995;103:191–195.PubMedCrossRefGoogle Scholar
  91. 91.
    Neumann I, Kremarik P, Pittman QJ. Acute, sequence-specific effects of oxytocin and vasopressin antisense oligonucleotides on neuronal responses. Neuroscience 1995;69:997–1003.PubMedCrossRefGoogle Scholar
  92. 92.
    Neumann I, Pittman QJ, Landgraf R. Release of oxytocin within the supraoptic nucleus. Mechanisms, physiological significnce and antisense targeting. Adv Exp Med Biol 1995;395:173–183.PubMedGoogle Scholar
  93. 93.
    Schobitz B, Pezeshki G, Probst JC, Reul JM, Skutella T, Stohr T, Holsboer F, Spanagel R. Centrally administered oligonucleotides in rats: occurance of non-specific effects. Eur J Phannacol 1997;331:97–107.CrossRefGoogle Scholar
  94. 94.
    Branch AD. A good antisense molecule is hard to find. TIBS 1998;23:45–50.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David Murphy
    • 1
  • Sara J. Wells
    • 1
  1. 1.University Research Centre for NeuroendocrinologyUniversity of Bristol, Bristol Royal InfirmaryBristolUK

Personalised recommendations