Skip to main content

Abstract

Seeds are uniquely equipped to survive as viable regenerative organisms until the time and place are right for the beginning of a new generation; however, like any other form of life, they cannot retain their viability indefinitely and eventually deteriorate and die. Fortunately, neither nature nor agricultural practice ordinarily requires seeds to survive longer than the next growing season, though seeds of most species are able to survive much longer under the proper conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Abdul-Baki, A. A. 1969. Metabolism of barley seed during early hours of germination. Plant Physiology 44:733–738.

    Article  PubMed  CAS  Google Scholar 

  • Abdul-Baki, A. A., and J. D. Anderson. 1970. Viability and leaching of sugars for germinating barley. Crop Science 10:31–34.

    Article  CAS  Google Scholar 

  • Abu-Shakra, S. 1963. Biochemical study of aging in seeds. Ph.D. Dissertation. Oregon State University, Corvallis.

    Google Scholar 

  • American Phytopathological Society. 1983. Deterioration mechanisms in seeds. Phytopathology 73:313–339.

    Google Scholar 

  • Anderson, J. D. 1970. Physiological and biochemical differences in deteriorating barley seed. Crop Science 10:36–39.

    Article  CAS  Google Scholar 

  • Anderson, J. D., J. E. Baker, and E. K. Worthington. 1970. Ultrastructural changes of embryos in wheat infected with storage fungi. Plant Physiology 46:857–859.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, W. 1956. The mitochondria of neuron. International Review of Cytology 5:147–170.

    Article  Google Scholar 

  • App, A. A., M. G. Bulis, and W. J. McCarthy. 1971. Dissociation of ribosomes and seed germination. Plant Physiology 47:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Austin, R. B., and P. C. Longden. 1967. Some effects of seed size and maturity on the yield of carrot crops. Journal of Horticultural Science 42:339–353.

    Google Scholar 

  • Banerjee, A., M. M. Choudhuri, and B. Ghosh. 1981. Changes in nucleotide content and histone phosphorylation of ageing rice seeds. Zeitschrift fur Pflanzenthysiologie 102:33–36.

    CAS  Google Scholar 

  • Barton, L. V. 1961. Seed Preservation and Longevity. London: Leonard Hill.

    Google Scholar 

  • Bass, L. N. 1967. Controlled atmosphere and seed storage. Seed Science and Technology 1:463–492.

    Google Scholar 

  • Bass, L. N. 1970. Prevention of physiological necrosis (red cotyledons) in lettuce seeds (Lactuca sativa L.). Journal of American Society of Horticulture Science 95:550–553.

    Google Scholar 

  • Bass, L. N., and P. C. Stanwood. 1978. Long-term preservation of sorghum seed as affected by seed moisture, temperature, and atmospheric environment. Crop Science 18:575–577.

    Article  Google Scholar 

  • Battle, W. R. 1948. Effect of scarification on longevity of alfalfa seed. Journal of the American Society of Agronomy 40:758–759.

    Article  CAS  Google Scholar 

  • Beattie, J. H., and V. R. Boswell. 1939. Longevity of onion seed in relation to storage conditions. U.S. Department of Agriculture Circular No. 512.

    Google Scholar 

  • Becquerel, P. 1934. La longevite des graines macrobiotiques. Comptes Rendus Academie des Sciences (Paris) 199:1662–1664.

    Google Scholar 

  • Bennici, A., M. B. Bitonti, C. Floris, D. Gennai, and A. M. Innocenti. 1984. Ageing in Triticum durum wheat seeds: Early storage in carbon dioxide prolongs longevity. Environmental and Experimental Botany 24:159–165.

    Article  Google Scholar 

  • Berjak, P., J. M. Farrant, D. J. Mycock, and N. W. Pammenter. 1990. Recalcitrant (homoiohydrous) seeds: The enigma of their desiccation sensitivity. Seed Science and Technology 18:297–310.

    Google Scholar 

  • Bewley, J. D. 1986. Membrane changes in seeds as related to germination and the perturbations resulting from deterioration in storage. In: Physiology of Seed Deterioration, eds. M. B. McDonald and C. J. Nelson, Madison, WI, pp. 27–47. Crop Science Society of America.

    Google Scholar 

  • Bewley, J. D., and M. Black. 1982. Physiology and Biochemistry of Seeds in Relation to Germination, Vol. II. New York: Springer-Verlag.

    Book  Google Scholar 

  • Bockholt, A. J., J. S. Rogers, and T. R. Richmond. 1969. Effects of various storage conditions on longevity of cotton, corn, and sorghum seeds. Crop Science 9:151–153.

    Article  Google Scholar 

  • Bray, C.M., and T. Y. Chow. 1976. Lesions in ribosomes of nonviable pea (Pisum arvense) embryonic axis tissue. Biochim Biophys Acta 442:14–23.

    Article  PubMed  CAS  Google Scholar 

  • Brett, C. C. 1952. Factors affecting the viability of grass and legume seed in and during shipment. Proceedings of the International Grassland Congress 6:878–884.

    Google Scholar 

  • Brocklehurst, P. A., and J. Dearman. 1983. Interactions between seed priming treatments and nine seed lots of carrot, celery, and onion. I. Laboratory germination. Annals Applied Biology 102:577–584.

    Article  Google Scholar 

  • Brocq-Rosseu, D., and E. Gain. 1908. Sur la duree desperoxy distases des graines. Comptes Rendus de L&Academie des Sciences 146:545–548.

    Google Scholar 

  • Bulat, H. 1963. Das allmahliche, durch ungunstige Largerungsbedingungen beschleunigte Absterben der Samen bzw. Ruckgang der Keimfahigkeit im Bilde des topografischen Tetrazoli-umverfahrens. Proceedings of International Seed Testing Association 28:713–751.

    Google Scholar 

  • Burgass, R. W., and A. A. Powell. 1984. Evidence for repair processes in the invigoration of seeds by hydration. Annals of Botany 53:753–757.

    Google Scholar 

  • Canode, C. L. 1972. Germination of grass seed as influenced by storage conditions. Crop Science 12:79–80.

    Article  Google Scholar 

  • Chefurka, W. 1963. Comparative study of the dinitrophenol-induced ATPase activity in relation to mitochondrial aging. Life Sciences 6:399–406.

    Article  Google Scholar 

  • Chin, H. F., B. Krishnapillay, and P. C. Stanwood.1989. Seed moisture: Recalcitrant vs. orthodox seeds. In: Physiology of Seed Deterioration, eds. M. B. McDonald and C. J. Nelson, pp. 15–22. Crop Science Society of America, Madison, WI.

    Google Scholar 

  • Chin, H. F., and E. H. Roberts. 1980. Recalcitrant Crop Seeds. Kuala Lumpur, Malaysia: Tropical Press.

    Google Scholar 

  • Ching, T. M. 1972. Aging stresses on physiological and biochemical activities of crimson clover (Trifolium incarnatum L. var. Dixie) seeds. Crop Science 12:415–418.

    Article  Google Scholar 

  • Christensen, C. M., and R. A. Meronuck. 1986. Quality Maintenance in Stored Grains and Seeds. Minneapolis, Minn.: University of Minnesota Press.

    Google Scholar 

  • Christensen, C. M., J. H. Olafson, and W. F. Geddes. 1949. Grain storage studies. III. Relation of molds in moist stored cottonseed to increased production of carbon dioxide, fatty acids, and heat. Cereal Chemistry 26:109–128.

    CAS  Google Scholar 

  • Clark, B. E., and N. H. Peck. 1968. Relationship between size and performance of snap bean seeds. New York State Agricultural Experiment Station Bulletin 819, pp. 4–30.

    Google Scholar 

  • Cowdry, E. V. 1956. E. W. Dempsey&s variations in the structure of mitochondria. Journal of Biophysical and Biochemical Cytology 2(4-Suppl.):305–310.

    Article  Google Scholar 

  • Crocker, W., and G. T. Harrington. 1918. Catalase and oxidase content of seeds in relation to their dormancy, age, vitality, and respiration. Journal of Agricultural Research 15:137–174.

    CAS  Google Scholar 

  • Crowe, J. H., and L. M. Crowe. 1986. Stabilization of membranes in anhydrobiotic organisms. In: Membranes, Metabolism, and Dry Organisms, ed. A. C. Leopold, pp. 188–209. Ithaca, New York: Cornell University Press.

    Google Scholar 

  • D&Amato, F. 1952. The problem of the origin of spontaneous mutations. Caryologia 5:1–13.

    Google Scholar 

  • D&Amato, F., and O. Hoffmann-Ostenhof. 1956. Metabolism and spontaneous mutations in plants. Advances in Genetics 8:1–28.

    Article  Google Scholar 

  • Delouche, J. C. 1973. Precepts of seed storage. Proceedings of the Mississippi State Seed Processors Shortcourse, 1973:93–122.

    Google Scholar 

  • Dempsey, W. H., and J. F. Harrington. 1951. Red cotyledon of lettuce. California Agriculture 5(7):4.

    Google Scholar 

  • Duvel, J. W. T. 1905. The storage and germination of wild rice seed. U.S. Department ofAgriculture Plant Industry Bulletin 90, Part I.

    Google Scholar 

  • Earnshaw, M. J., B. Truelove, and R. D. Butler. 1970. Swelling of Phaseolus vulgaris mitochondria in relation to free fatty acid levels. Plant Physiology 45:318–321.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R. H. 1991. The longevity of seeds. Horticultural Science 26:1119–1125.

    Google Scholar 

  • Feeney, R. E., and J. R. Whitaker. 1982. The Maillard reaction and its prevention. In: Food Protein Deterioration, ed. J. P. Cherry, pp. 201–229. Washington, D.C.: American Chemical Society.

    Chapter  Google Scholar 

  • Fernandez Garcia de Castro, M., and C. J. Martinez-Honduvilla. 1984. Ultrastructural changes in naturally aged Pinuspinea seeds. Physiologia Plantarum 62:581–588.

    Article  Google Scholar 

  • Flood, R. G. 1978. Contribution of impermeable seed to longevity in Trifolium subterraneum (subterranean clover). Seed Science and Technology 6:647–654.

    Google Scholar 

  • Floris, C. 1970. Aging Triticum durum seeds: Behavior of embryo and endosperms from aged seeds as revealed by the embryo-transplantation technique. Journal of Experimental Botany 21:462–468.

    Article  Google Scholar 

  • Fontes, L. A. N., and A. J. Ohlrogge. 1972. Influence of seed size and population on yield and other characteristics of soybeans [Glycine max (L.) Merr.]. Agronomy Journal 64:833–836.

    Article  Google Scholar 

  • Francis, A., and P. Coolbear. 1984. Changes in the membrane phospholipid composition of tomato seeds accompanying loss of germination capacity caused by controlled deterioration. Journal of Experimental Botany 35:1764–1770.

    Article  CAS  Google Scholar 

  • Ghosal, K. K., and J. L. Mondal. 1978. Nature and consequence of chromosomal damage in aged seeds of tetraploid and hexaploid wheat. Seed Research 6:129–134.

    Google Scholar 

  • Ghosh, B., and M. M. Chaudhuri.1984. Ribonucleic acid breakdown and loss of protein synthetic capacity with loss of viability of rice embryos (Qryza sativa). Seed Science and Technology 12:669–677.

    CAS  Google Scholar 

  • Goldbach, H. 1979. Imbibed storage of Melicoccus bijugatus and Eugenia brasiliensis (E. dombeyi) using abscisic acid as a germination inhibitor. Seed Science and Technology 7:403–406.

    CAS  Google Scholar 

  • Goldsworthy, A., J. L. Fielding, and M. B. J. Dover. 1982. “Flash imbibition:” A method for the reinvigoration of aged wheat seed. Seed Science and Technology 10:55–65.

    Google Scholar 

  • Grabe, D. F. 1965. Prediction of relative storability of corn seed lots. Proceedings of the Association of Official Seed Analysts 55:92–96.

    Google Scholar 

  • Grabe, D. F., and D. Isely. 1969. Seed storage in moisture-resistant packages. Seed World 104(2):4.

    Google Scholar 

  • Gustafsson, A. 1937. Der Tod Als Ein Nulclearer Prozess. Hereditas 23:1–37.

    Article  Google Scholar 

  • Haferkamp, M. E., L. Smith, and R. A. Nilan. 1953. Studies of aged seeds. 1. Relation of age of seed to germination and longevity. Agronomy Journal 45:434–437.

    Article  Google Scholar 

  • Halder, S., S. Kole, and K. Gupta. 1983. On the mechanism of sunflower seed deterioration under two different types of accelerated aging. Seed Science and Technology 11:331–339.

    CAS  Google Scholar 

  • Hall, C. W. 1957. Drying Farm Crops. Reynoldsburg, Ohio: Agricultural Consulting Associates, Inc.

    Google Scholar 

  • Hallam, N. D., B. E. Roberts, and D. J. Osborne. 1973. Embryogenesis and germination in rye (Secale cereale L.). III. Fine structure and biochemistry of the nonviable embryo. Planta 110:279–290.

    Article  CAS  Google Scholar 

  • Harman, G. E., and A. L. Granett. 1972. Deterioration of stored pea seed: Changes in germination, membrane permeability, and ultrastructure resulting from infection by Aspergillus ruber and from aging. Physiological Plant Pathology 2:271–278.

    Article  Google Scholar 

  • Harman, G. E., A. A. Khan, and K. L. Tao. 1976. Physiological changes in the early stages of germination of pea seeds induced by aging and by infection by a storage fungus, Aspergillus ruber. Canadian Journal of Botany 54:39–44.

    Article  CAS  Google Scholar 

  • Harman, G. E., B. Nedrow, and G. Nash. 1978. Stimulation of fungal spore germination by volatiles from aged seeds. Canadian Journal of Botany 56:2124–2127.

    Article  Google Scholar 

  • Harman, G. E., B. L. Nedrow, B. E. Clark, and L. R. Mattick.1982. Association of volatile aldehyde production during germination with poor soybean and pea seed quality. Crop Science 22:712–716.

    Article  CAS  Google Scholar 

  • Harmon, D. 1956. Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology 11:298–300.

    Article  Google Scholar 

  • Harrington, J. F. 1960a. Drying, storing, and packaging seed to maintain germination and vigor. Seedsmen&s Digest 11 (1): 16.

    Google Scholar 

  • Harrington, J. F. 1960b. Germination of seeds from carrot, lettuce, and pepper plants grown under severe nutrient deficiencies. Hilgardia 30:219–235.

    Google Scholar 

  • Harrington, J. F. 1972. Seed storage and longevity. In: Seed Biology, Vol 3, ed. T. T. Kozlowski, pp. 145–240. New York: Academic Press.

    Google Scholar 

  • Harrington, J. F. 1973. Biochemical basis of seed longevity. Seed Science and Technology 1:453–461.

    CAS  Google Scholar 

  • Harrison, B. J. 1966. Seed deterioration in relation to storage conditions and its influence upon germination, chromosomal damage, and plant performance. Journal of National Institute of Agricultural Botany 10:644–663.

    Google Scholar 

  • Haynes, B. C, Jr. 1961. Vapor pressure determination of seed hygroscopicity. U.S. Department of Agriculture Technical Bulletin 1229.

    Google Scholar 

  • Heydecker, W. 1969. The vigor of seeds—a review. Proceedings of the International Seed Testing Association 4(2):201–219.

    Google Scholar 

  • Hibbard, R. P., and E. V. Miller. 1928. Biochemical studies on seed viability. I. Measurements of conductance and reduction. Plant Physiology 3:335–352.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand, D. F., and T. Hymowitz. 1982. Inheritance of lipoxygenase-1 activity in soybean seeds. Crop Science 22:851–855.

    Article  CAS  Google Scholar 

  • Hoffpauir, C. I., D. J. Petty, and J. D. Guthrie. 1947. Germination and free fatty acid in individual cotton seeds. Science 106:344–345.

    Article  PubMed  CAS  Google Scholar 

  • Hove, E. L., and P. L. Harris. 1951. Note on the linoleic acid-tocopherol relationship in fats and oils. Journal of American Oil Chemical Society 28:405.

    Article  CAS  Google Scholar 

  • Huber, T. A., and M. B. McDonald. 1982. Gibberellic acid influence on aged and unaged barley seed germination and vigor. Agronomy Journal 74:386–389.

    Article  CAS  Google Scholar 

  • Hughes, P. A., and R. F. Sandsted. 1975. Effect of temperatures, relative humidity, and light on the color of &California Light Red Kidney& bean seed during storage. Horticultural Science 10:421–423.

    Google Scholar 

  • Hummel, B. C. W., L. S. Cuendet, C. M. Christensen, and W. F. Geddes. 1954. Grain storage studies. XIII. Comparative changes in respiration, viability, and chemical composition of mold-free and mold-contaminated wheat upon storage. Cereal Chemistry 31:143–150.

    CAS  Google Scholar 

  • Isely, D. 1957. Vigor tests. Proceedings of the Association of Official Seed Analysts 47:176–182.

    Google Scholar 

  • James, E. 1960. Seed deterioration. 5th Farm Seed Research Conference Proceedings, pp. 31–39. Published by the American Seed Trade Association, Washington, D.C.

    Google Scholar 

  • Jones, H. A. 1920. Physiological study of maple seeds. Botanical Gazette 69:127–152.

    Article  CAS  Google Scholar 

  • Justice, O. L., and L. N. Bass. 1978. Principles and Practices of Seed Storage. USDA Agricultural Handbook 506.

    Google Scholar 

  • Kavanau, J. L. 1964. Water and Solute-Water Interactions. San Francisco: Holden-Day. Kielley, W., and R. Kielley, 1951. Myokinase and adenosine triphosphatase in oxidative phosphorylation. Journal of Biological Chemistry 191:485–500.

    Google Scholar 

  • Kittock, D. L., and A. G. Law. 1968. Relationship of tetrazolium chloride reduction by germinating wheat seeds. Agronomy Journal 60:286–288.

    Article  CAS  Google Scholar 

  • Knowles, P. F. 1969. Modification of quantity and quality of safflower oil through plant breeding. Journal of American Oil Chemical Society 46:130–133.

    Article  Google Scholar 

  • Kohn, R. R. 1963. Mutations and aging. Science 142–540.

    Google Scholar 

  • Koostra, P. T., and J. F. Harrington. 1969. Biochemical effects of age on membranal lipids of Cucumis sativus L. seed. Proceedings of International Seed Testing Association 34:329–340.

    CAS  Google Scholar 

  • Kueneman, E. A. 1983. Genetic control of seed longevity in soybeans. Crop Science 23:5–8.

    Article  Google Scholar 

  • Lehninger, A. L., and L. F. Remmert. 1959. An endogenous uncoupling and swelling agent in liver mitochondria and its enzymatic formation. Journal of Biological Chemistry 234:2458–2464.

    Google Scholar 

  • Leopold, A. C, ed. 1986. Membranes, Metabolism, and Dry Organisms. Ithaca, New York: Cornell University Press.

    Google Scholar 

  • Libby, W. F. 1951. Radiocarbon dates II. Science 114:291–296.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, E. W. 1942. Inheritance of seed longevity in maize inbreds and hybrids. Genetics 26:154.

    Google Scholar 

  • Lopez, A., and D. F. Grabe. 1973. Effect of protein content on seed performance in wheat (Triticum aestivam L.). Proceedings of the Association of Official Seed Analysts 63:106–116.

    Google Scholar 

  • Lougheed, E. C, D. P. Murr, P. M. Harney, and J. T. Sykes. 1976. Low-pressure storage of seeds. Experientia 32:1159–1161.

    Article  Google Scholar 

  • Lunn, G., and E. Madsen. 1981. ATP-levels of germinating seeds in relation to vigor. Physiologia Plantarum 53:164–169.

    Article  CAS  Google Scholar 

  • MacLeod, A. M. 1952. Enzyme activity in relation to barley viability. Transactions of the Botanical Society of Edinburgh 36:18–33.

    Article  CAS  Google Scholar 

  • Mamiepic, N. G., and W. P. Caldwell. 1963. Effects of mechanical damage and moisture content upon viability of soybeans in sealed storage. Proceedings of the Association of Official Seed Analysts 53:215–220.

    Google Scholar 

  • Mandal, A. K., and R. N. Basu. 1981. Role of embryo and endosperm in rice seed deterioration. Proceedings of Indian National Science Academy, Part B, Biological Science 47:109–114.

    CAS  Google Scholar 

  • Mandal, A. K., and R. N. Basu. 1983. Maintenance of vigour, viability, and yield potential of stored wheat seed. Indian Journal of Agricultural Science 53:905–912.

    Google Scholar 

  • Martin, G. C, M. I. R. Mason, and H. I. Forde. 1969. Changes in endogenous growth substances in the embryos of Juglans regia during stratification. Journal of the American Society for Horticultural Science 94:13–17.

    CAS  Google Scholar 

  • Marzke, F. O., S. R. Cecil, A. F. Press, and P. K. Harein. 1976. Effects of controlled storage atmospheres on the quality, processing, and germination of peanuts. U.S. Department of Agriculture, Agricultural Research Service 114:1–12.

    Google Scholar 

  • McDonald, M.B. 1999. Seed deterioration: physiology, repair and assessment. Seed Science and Technology 27:177–237.

    Google Scholar 

  • McDonald, M. B. 1985. Physical seed quality of soybean. Seed Science and Technology 13:601–628.

    Google Scholar 

  • McDonald, M. B., and C. J. Nelson, eds. 1986. Physiology of Seed Deterioration. Crop Science Society of America, Madison, WI.

    Google Scholar 

  • McDonald, M. B., and D. O. Wilson. 1980. ASA-610 ability to detect changes in soybean seed quality. Journal of Seed Technology 5:56–66.

    Google Scholar 

  • McHargue, J. S. 1920. The significance of the peroxidase reaction with reference to the viability of seeds. Journal of the American Chemical Society 42:612–615.

    Article  CAS  Google Scholar 

  • Minor, H. C., and E. H. Paschal. 1982. Variation in storability of soybeans under simulated tropical conditions. Seed Science and Technology 10:131–139.

    Google Scholar 

  • Moore, R. P. 1972. Effects of mechanical injuries on viability. In: Viability of Seeds, ed. E. H Roberts, pp. 94–114. Syracuse, N.Y.; Syracuse University Press.

    Chapter  Google Scholar 

  • Mukhopadhyay, A., M. M. Choudhuri, K. Sen, and B. Ghosh. 1983. Changes in polyaminesand related enzymes with loss of viability in rice seeds. Phytochemistry 22:1547–1551.

    Article  CAS  Google Scholar 

  • Murata, M., E. E. Roos, and T. Tsuchiya. 1980. Mitotic delay in root tips of peas induced bv artificial seed aging. Botanical Gazette 141:19–23.

    Article  Google Scholar 

  • Murata, M., E. E. Roos, and T. Tsuchiya. 1981. Chromosome damage induced by artificial seed aging in barley. 1. Germinability and frequency of aberrant anaphases at first mitosis. Canadian Journal of Genetic Cytology 23:267–280.

    Google Scholar 

  • Murata, M., E. E. Roos, and T. Tsuchiya. 1984. Chromosome damage induced by artificial seed aging in barley. III. Behavior of chromosomal aberrations during plant growth. Theoretical and Applied Genetics 67:161–170.

    Article  Google Scholar 

  • Nementhy, G., and H. A. Scheraga. 1962. Structure of water and hydrophobic bonding in proteins. 1. A model for the thermodynamic properties of liquid water. Journal of Chemical Physics 63:3382–3400.

    Article  Google Scholar 

  • Nowak, J., and T. Mierzwinski. 1978. Activity of proteolytic enzymes in rye seeds of different ages. Zeitschrift fur Pflanzenphysiologie 86:15–22.

    CAS  Google Scholar 

  • Nozzolillo, C., and M. DeBezada. 1984. Browning of lentil seeds, concomitant loss of viability, and the possible role of soluble tannins in both phenomena. Canadian Journal of Plant Science 64:815–824.

    Article  CAS  Google Scholar 

  • Ohga, I. 1926. The germination of century-old and recently harvested Indian Lotus fruits, with special reference to the effect of oxygen supply. American Journal of Botany 13:754–759.

    Article  CAS  Google Scholar 

  • Ohlrogge, J. B., and T. P. Kernan. 1982. Oxygen-dependent aging of seeds. Plant Physiology 70:791–794.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, D. J. 1983. Biochemical control systems operating in the early hours of germination. Canadian Journal of Botany 61:3568–3577.

    Article  CAS  Google Scholar 

  • Osborne, D. J., M. Dobrzanska, and S. Sen. 1977. Factors determining nucleic acid and protein synthesis in the early hours of germination. Symposium, Society for Experimental Biology 31:177–194.

    CAS  Google Scholar 

  • Paleg, L. G. 1960. Physiological effects of gibberellic acid: 1. On carbohydrate metabolism and amylase activity of barley endosperm. Plant Physiology 35:293–299.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, D. J., and C. C. Bahler. 1983. Maintaining vigor of soybean seeds with lipid anitoxidants. Proceedings of the Plant Growth Regulator Society of America 10:165–170.

    Google Scholar 

  • Patil, V. N., and C. H. Andrews. 1985. Cotton seeds resistant to water absorption and seed deterioration. Seed Science and Technology 13:193–199.

    Google Scholar 

  • Payne, F. 1946. The cellular picture of the anterior pituitary of normal fowls from embryo to old age. Anatomical Record 96:77–91.

    Article  PubMed  CAS  Google Scholar 

  • Penner, D., and F. M. Ashton. 1965. Effect of benzyladenine on the proteolytic activity of germinating squash seeds. Plant Physiology 40 (suppl.):lxxix.

    Google Scholar 

  • Petruzzelli, L., and G. Taranto. 1984. Phospholipid changes in wheat embryos aged under different storage conditions. Journal of Experimental Botany 35:517–520.

    Article  CAS  Google Scholar 

  • Petruzzelli, L., and G. Taranto. 1985. Effects of permeations with plant growth regulators via acetone on seed viability during accelerated aging. Seed Science and Technology 13:183–191.

    CAS  Google Scholar 

  • Porsild, A. E., and C. R. Harrington. 1967. Lupinus articus Wats, grown from seeds of the Pleistocene Age. Science 158:113–114.

    Article  PubMed  CAS  Google Scholar 

  • Powell, A. A., and S. Matthews. 1981. Association of phospholipid changes with early stages of seed aging. Annals of Botany 47:709–712.

    CAS  Google Scholar 

  • Priestley, D. A. 1986. Seed Aging. Ithaca, New York: Cornell University Press.

    Google Scholar 

  • Priestley, D. A., and A. C. Leopold. 1983. Lipid changes during natural aging of soybean seeds. Plant Physiology 63:726–729.

    Article  Google Scholar 

  • Quaglia, G., R. Cavaioli, P. Catani, J. Shejbal, and M. Lombardi. 1980. Preservation of chemical parameters in cereal grains stored in nitrogen. In: Controlled Atmosphere Storage of Grains, ed. J. Shejbal, pp. 319–333. New York: Elsevier.

    Google Scholar 

  • Rahman, A., and F. H. Stillinger. 1971. Molecular dynamics study of liquid water. Journal of Chemical Physics 55:3331–3359.

    Article  Google Scholar 

  • Ries, S. K. 1971. The relationship of size and protein content of bean seed with growth and yield. Proceedings of the American Society for Horticultural Science 96:557–560.

    Google Scholar 

  • Roberts, E.H.I. 1973. Predicting the storage life of seeds. Seed Science and Technology 1:499–514.

    Google Scholar 

  • Roberts, E. H. 1986. Quantifying seed deterioration. In: Physiology of Seed Deterioration, eds. M. B. McDonald, andC. J. Nelson, pp. 101–123. Crop Science Society of America Special Publication 11. Madison, WI.

    Google Scholar 

  • Roberts, E. H., and F. H. Abdalla. 1968. The influence of temperature, moisture, and oxygen on period of seed viability in barley, broad beans, and peas. Annals of Botany 32:97–117.

    Google Scholar 

  • Roberts, E. H., and R. H. Ellis. 1982. Physiological, ultrastructural and metabolic aspects of seed viability. In: The Physiology and Biochemistry of Seed Development, Dormancy and Germination, ed. A. A. Khan, pp. 465–485. Amsterdam: Elsevier Biomedical Press.

    Google Scholar 

  • Roos, E. E. 1982. Induced genetic changes in seed germplasm during storage. In: The Physiology and Biochemistry of Seed Development, Dormancy, and Germination, ed. A. A. Khan, pp. 409–434. New York: Elsevier.

    Google Scholar 

  • Rossi, C. R., L. Sartorelli, L. Tato, and N. Siliprandi. 1964. Relationship between oxidative phosphorylation efficiency and phospholipid content in rat liver mitochondria. Archives of Biochemistry and Biophysics 107:170–175.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, K. 1969. Abscisic acid, a component of the beta-inhibitor complex in the Prunus endocarp. Journal of the American Society for Horticultural Science 94(l):5–8.

    CAS  Google Scholar 

  • Sacktor, B. 1953. Investigations on the mitochondria of the house fly, Musca domestica L. Journal of General Physiology 36:371–387.

    Article  PubMed  CAS  Google Scholar 

  • Sacktor, B., J. J. O&Neill, and D. G. Cochran. 1958. The requirement for serum albumin in oxidative phosphorylation of flight muscle mitochondria. Journal of Biological Chemistry 233:1233–1235.

    PubMed  CAS  Google Scholar 

  • Saio, K., I. Nikkuni, Y. Ando, M. Otsuru, Y. Terauchi, and M. Kito. 1980. Soybean quality changes during model storage studies. Cereal Chemistry 57:77–82.

    CAS  Google Scholar 

  • Salunkhe, D. K., J. K. Chavan, and S. S. Kadam. 1985. Postharvest Biotechnology of Cereals. Boca Raton, Fla.: CRC Press.

    Google Scholar 

  • Sanchez, R. A., and L. C. de Miguel. 1983. Aging of Datura ferox seed embryos during dry storage and its reversal during imbibition. Zeitschrift fur Pflanzenthysiologie 110:319–329.

    Google Scholar 

  • Saxens, O. P., and D. C. Maheshwari. 1980. Biochemical aspects of viability in soybean. Acta Botanica Indica 8:229–234.

    Google Scholar 

  • Simpson, D. M. 1946. The longevity of cottonseed as affected by climate and seed treatments. Agronomy Journal 38:32–45.

    Article  Google Scholar 

  • Sinex, F. M 1960. Aging and the lability of irreplaceable molecules—II. The amide groups of collagen. Journal of Gerontology 15:15–18.

    Article  PubMed  CAS  Google Scholar 

  • Sivori, E., F. Nakayama, and E. Cigliano. 1968. Germination of Achirs seed (Canna sp.) approximately 550 years old. Nature 219:1269–1270.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. T. 1983. Cotyledonary necrosis in aged lettuce seeds. Proceedings of the Electron Microscopy Society of South Africa 13:129–130.

    Google Scholar 

  • Sreeramulu, N. 1983. Germination and food reserves in bambarra groundnut seeds (Voandzeia subterranea Thouars) after different periods of storage. Annals of Botany 51:209–216.

    CAS  Google Scholar 

  • Stanwood, P. C. 1985. Cryopreservation of seed germplasm for genetic conservation. In: Plant Cryopreservation, ed. K. Kartha, pp. 199–225. Boca Raton, Fla.: CRC Press.

    Google Scholar 

  • Stanwood, P.C. 1986. Dehydration problems associated with the preservation of seed and plant germplasm. In: Membranes, Metabolism, and Dry Organisms, ed. A. C. Leopold, pp. 327–310. Ithaca, N.Y.: Cornell University Press.

    Google Scholar 

  • Stanwood, P. C., andM. B. McDonald, eds. 1989. Seed Moisture. Madison. WI; Crop Science Society of America.

    Google Scholar 

  • Takayanagi, K., and J. F. Harrington. 1971. Enhancement of germination rate of aged seeds by ethylene. Plant Physiology 47:521–524.

    Article  PubMed  CAS  Google Scholar 

  • Tappel, A. L. 1962. Hematin compounds and lipoxidase as biocatalysts. In: Symposium on Foods: Lipids and Their Oxidation, pp. 122–138. Corvallis, Oregon: Oregon State University.

    Google Scholar 

  • Throneberry, G. O., and F. G. Smith. 1954. Seed viability in relation to respiration and enzymatic activity. Proceedings of the Association of Official Seed Analysts 44:91–95.

    Google Scholar 

  • Toole, E. H. 1950. Relation of seed processing and of conditions during storage on seed germination. Proceedings of the International Seed Testing Association 16:214–227.

    Google Scholar 

  • Toole, E. H. 1957. Storage of vegetable seeds. U.S. Department of Agriculture Leaflet 220.

    Google Scholar 

  • Toole, E. H., and E. Brown. 1946. Final results of the Duvel buried seed experiment. Journal of Agricultural Research 72:201–210.

    Google Scholar 

  • Toole, E. H., and V. K. Toole. 1953. Relation of storage conditions to germination and to abnormal seedlings of bean. Proceedings of the International Seed Testing Association 18:123–129.

    Google Scholar 

  • Tortora, P., G. M. Hanozet, A. Guerritoe, M. T. Vincenzini, and P. Vanni. 1978. Selective denaturation of several yeast enzymes by free fatty acids. Biochim Biophys Acta 522:297–306.

    Google Scholar 

  • Vaughan, C. E., and J. C. Delouche. 1968. Physical properties of seeds associated with viability in small-seeded legumes. Proceedings of the Association of Seed Analysts 58:128–141.

    Google Scholar 

  • Vertucci, C. W., and A. C. Leopold. 1986. Physiological activities associated with hydration level in seeds. In: Membranes, Metabolism, and Dry Organisms, ed. A. C. Leopold, pp. 35–50. Ithaca, N.Y.; Cornell University Press.

    Google Scholar 

  • Walter, H. 1963. Chemical reactivity of a macromolecule as a function of its age. Biochemica et Biophysica Acta 69:410–411.

    Article  CAS  Google Scholar 

  • Ward, F. A., and A. A. Powell. 1983. Evidence for repair processes in onion seeds during storage at high seed moisture contents. Journal of Experimental Botany 34:277–282.

    Article  Google Scholar 

  • Weidner, S., and K. Zalewski. 1982. Ribonucleic acids and ribosomal protein synthesis during germination of unripe and aged wheat caryopses. Acta Society Botanica Poland 51:291–300.

    CAS  Google Scholar 

  • Weinbach, E. C, H. Sheffield, and J. Garbus. 1963. Restoration of oxidative phosphorylation and morphological integrity of swollen, uncoupled rat liver mitochondria. Proceedings of the National Academy of Science 50:561–568.

    Article  CAS  Google Scholar 

  • Weiss, J., and A. I. Lansing. 1953. Age changes in the time structure of the anterior pituitary of the mouse. Proceedings of the Society of Experimental Biology and Medicine Journal 82:460–466.

    CAS  Google Scholar 

  • Welch, G. B., and J. C. Delouche. 1974. Conditioned storage of seed. Proceedings and Reports of the Southern Seedsmen&s Association 1974:30–40.

    Google Scholar 

  • West, S. H., ed. 1986. Physiological-PathologicalInteractions Affecting SeedDeterioration. Madison, WI; Crop Science Society of America.

    Google Scholar 

  • Wester, H. V. 1973. Further evidence of age of ancient viable Lotus seeds from Pulantien Deposit, Manchuria. Horticultural Science 5:371–377.

    Google Scholar 

  • Wien, H. C, and E. A. Kueneman. 1981. Soybean seed deterioration in the tropics, n. Varietal differences and techniques for screening. Field Crops Research 4:123–132.

    Article  Google Scholar 

  • Wilson, D. O., Jr., and M. B. McDonald. 1986a. A convenient volatile aldehyde assay for measuring seed vigour. Seed Science and Technology 14:259–268.

    CAS  Google Scholar 

  • Wilson, D. O., Jr., and M. B. McDonald. 1986b. The lipid peroxidation model of seed aging. Seed Science and Technology 14:269–300.

    CAS  Google Scholar 

  • Wilson, D. O., Jr., and M. B. McDonald. 1989. A probit planes method for analyzing seed deterioration data. Crop Science 29:471–476.

    Article  Google Scholar 

  • Wilson, R. F., J. W. Burton, and C. A. Brim. 1981. Progress in selection for altered fatty acid composition in soybeans. Crop Science 21:788–791.

    Article  CAS  Google Scholar 

  • Witkin, E. M. 1966. Radiation-induced mutations and their repair. Science 152:1345–1353.

    Article  PubMed  CAS  Google Scholar 

  • Wojtczak, L., and A. B. Wojtczak. 1960. Uncoupling of oxidative phosphorylation and inhibition of ATP-Pj exchange by a substance from insect mitochondria. Biochemica and Biophysica Acta 39:277–289.

    Article  CAS  Google Scholar 

  • Woodstock, L. W., and M. F. Combs. 1965. Effects of gamma-irradiation of corn seed on the respiration and growth of the seedlings. American Journal of Botany 52:563–569.

    Article  Google Scholar 

  • Woodstock, L. W. and I. Feeley. 1965. Early seedling growth and initial respiration rates as potential indicators of seed vigor in corn. Proceedings of the Association of Official Seed Analysts. 55:131-139.

    Google Scholar 

  • Woodstock, L. W., K. Furman, and T. Solomos. 1984. Changes in respiratory metabolism during aging in seeds and isolated axes of soybean. Plant Cell Physiology 25:15-26.

    CAS  Google Scholar 

  • Woodstock, L. W., and D. F. Grabe. 1967. Relationship between seed respiration during imbibition and subsequent seedling growth in Zea mays L. Plant Physiology 42:1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Woodstock, L. W., and O. L. Justice. 1967. Radiation-induced changes in respiration of corn, wheat, sorghum, and radish seeds during initial stages of germination in relation to subsequent seedling growth. Radiation Botany 7:129–136.

    Article  Google Scholar 

  • Woodstock, L. W., S. Maxon, K. Faul, and L. Bass. 1983. Use of freeze-drying and acetone impregnations with natural and synthetic anti-oxidants to improve storability of onion, pepper, and parsley seeds. Journal of American Society of Horticultural Science 108:692–696.

    CAS  Google Scholar 

  • Woodstock, L. W., and B. M. Pollock. 1965. Physiological predetermination: imbibition, respiration, and growth of lima bean seed. Science 150:1031–1032.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S. F., and Y. B. Yu. 1982. Lipid peroxidation in relation to aging and loss of seed viability. Search 16(l):2–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Copeland, L.O., McDonald, M.B. (2001). Seed Storage and Deterioration. In: Principles of Seed Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1619-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1619-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5644-8

  • Online ISBN: 978-1-4615-1619-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics