Advertisement

The Molecular Basis of Insulin Action and Insulin Resistance

  • Joseph Avruch
Part of the Endocrine Updates book series (ENDO, volume 10)

Abstract

Type 2 diabetes (previously called non-insulin dependent diabetes, NIDDM) is a common, phenotypically heterogeneous syndrome that has a strong genetic basis, most clearly indicated by the roughly 70% concordance in identical sibs, a concordance at least twice as high as in nonidentical sibs, and also considerably higher than the 30-40% concordance observed in identical twins sets, wherein one sib has autoimmune Type 1 diabetes (1). Despite this convincing evidence for heritability, it is clear that environmental factors greatly affect the penetrance of the Type 2 diabetic phenotype. In particular, dietary composition, overall calorie excess leading to weight gain in adult life, and low physical activity each strongly promote the expression of Type 2 diabetes (2). Moreover, epidemiologic evidence points to strong correlations between several aspects of the intrauterine environment and prenatal nutritional experience and the occurrence of Type 2 diabetes as an adult. This has been well described in the Native American population known as the Pima Indians of Arizona; in comparing the offspring of Type 2 diabetic mothers, the presence of hyperglycemia in utero is associated with a much higher prevalence of diabetes in adult life than occurs if the mother became hyperglycemic only after the pregnancy. Infants of hyperglycemic diabetic mothers are hyperinsulinemic in utero and large at birth, reflecting the strong positive influence of insulin on fetal growth. Conversely, evidence both in the Pima and several other populations (UK, Hispanic-American) indicates that low birth weight (<2500gms) and low weight at one year also correlate positively with the emergence in adult life of a syndrome of insulin resistance, hypertension and excess atherosclerotic vascular disease (2, 3, 4, 5, 6, 7).

Keywords

Insulin Resistance Insulin Receptor Insulin Action Insulin Receptor Substrate GLUT4 Translocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reeves M and Hamman RF. “Risk factors for non-insulin dependent diabetes. In: ”Diabetes in America 2“d. pp 179–220. National Institutes of Health NIDDK/Bethesda MD, National Diabetes Data Group, ed., 1995.Google Scholar
  2. 2.
    Pratley RE. Gene Environment interactions in the pathogenesis of Type 2 diabetes mellitus: Lesson learned from the PIMA Indians Proc Nutr Soc 1988; 57:175–178.Google Scholar
  3. 3.
    Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991;303:1019–1022.PubMedCrossRefGoogle Scholar
  4. 4.
    Rich-Edward JW, Codlitz GA, Stampfer MJ, et. al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med 1999;130:278–284.Google Scholar
  5. 5.
    Carlsson S, Persson PG, Alvarsson M, Efendic S, Norman A, Svanstrom L, Ostenson CG, Grill V. Low birth weight, family history of diabetes, and glucose intolerance in Swedish middle-aged men. Diabetes Care 1999; 22:1043–1047.PubMedCrossRefGoogle Scholar
  6. 6.
    Mi J, Law C, Zhang KL, Osmond C, Stein C, Barker D. Effects of infant birth weight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med 2000; 32:253–260.Google Scholar
  7. 7.
    Lindsay RS, Dabelea D, Roumain J, et al. Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 2000; 49:445–449.PubMedCrossRefGoogle Scholar
  8. 8.
    Hattersley AT and Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birth weight with diabetes and vascular disease. Lancet 1999; 353:1789–1792.PubMedCrossRefGoogle Scholar
  9. 9.
    Barker DJP. The fetal origins of type 2 diabetes mellitus. Ann of Int Med 1999;130:322–324.Google Scholar
  10. 10.
    Neel JV, Weder AB, Julius S. Type II diabetes, essential hypertension and obesity as “syndromes of impaired genetic homeostasis”. The “Thrifty Genotype: hypothesis enters the 21st century. Persp Biol Med 1998; 42:44–74.Google Scholar
  11. 11.
    North MA. Advances in the molecular genetics of obesity. Curr Opin Gen Develop 1999; 9:283–288.CrossRefGoogle Scholar
  12. 12.
    Hattersley AT, Beards F, Ballentype E, Appleton M, Harvey R, Ellard S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 1998; 19:268–270.PubMedCrossRefGoogle Scholar
  13. 13.
    Ravussin E, Gautier JF. Metabolic predictors of weight gain. Int J Obes Relat Metab Disord 1999; 1:37–41.CrossRefGoogle Scholar
  14. 14.
    Rosetti L, Ciaccari A, DeFronzo RA. Glucotoxicity. Diabetes Care 1990;13:610–630.Google Scholar
  15. 15.
    Ferrannini E. Insulin resistance vs. insulin deficiency in NIDDM: Problems and prospects. Endo Rev 1998; 19:477–490.Google Scholar
  16. 16.
    Gerich JE. The genetic basis of type 2 diabetes mellitus: Impaired insulin secretion versus impaired insulin sensitivity. Endo Rev 1998; 19:491–503.Google Scholar
  17. 17.
    Leibiger IB, Leibiger B, Moede T, Berggren PO. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI 3-kinase/p70 S6 kinase and CaM kinase. Mol Cell 1998;1:933–938.PubMedCrossRefGoogle Scholar
  18. 18.
    Kulkarni RN, Bruning JC, Ninnay JN, Posti C, Magnuson MA Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999; 96:329–339.PubMedCrossRefGoogle Scholar
  19. 19.
    Cahill GF. The physiology of insulin in man. Diabetes 1971; 20:785–799.PubMedGoogle Scholar
  20. 20.
    Pessin JE, Thurmon DC, Elmendorf JS, Coker KJ, Okada S. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. J Biol Chem 1999; 274:2593–2596.PubMedCrossRefGoogle Scholar
  21. 21.
    Proud CG, Denton RM. Molecular mechanisms for the control of translation by insulin. Biochem J 1997; 328: 329–341.PubMedGoogle Scholar
  22. 22.
    Londos G, Honnor RC, Dhillon GS. CAMP-dependent protein kinase and lipolysis in rat adipocytes: III. Multiple modes of insulin regulation of lipolysis and regulation of insulin responses by adenylate cyclase regulators. J Biol Chem 1985;260:15139–15145.Google Scholar
  23. 23.
    Fain JN, Kovacev VP, Scow RO. Antilipolytic effect of insulin in isolated fat cells of the rat. Endocrinology 1966; 78:773–778.PubMedCrossRefGoogle Scholar
  24. 24.
    Campbell PJ, Carlson MG, Hill JO, Nurjhan N. Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am J Physiol 1992; 263;1063–1069.Google Scholar
  25. 25.
    Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of Type 2 diabetes mellitus. J Clin Invest 1999;104:787–794.PubMedCrossRefGoogle Scholar
  26. 26.
    Moller DE, Yokata A, Caro JF, Flier JS. Tissue specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endo 1989; 3:1263–1269.CrossRefGoogle Scholar
  27. 27.
    Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A, Vigneri R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999;19:3278–3288.PubMedGoogle Scholar
  28. 28.
    Chen H, Yan GC, Gishizky ML. Identification of structural characteristics that contribute to a difference in antiapoptotic function between human insulin and insulin-like growth factor I receptors. Cell Growth Diff 1998; 9:939–947.PubMedGoogle Scholar
  29. 29.
    Blakesley VA, Scrimgeour A, Esposito D, LeRoith D. Signaling via the insulin-like growth factor-I receptor: Does it differ from insulin receptor signaling? Cytokine Growth Factor Rev 1996; 7:153–159.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee J, Pilch LJ. The insulin receptor: structure, function, and signaling. Am J Physiol 1994; 266:C319–334.PubMedGoogle Scholar
  31. 31.
    White MF, Kahn CR. The insulin signaling system. J Biol Chem 1994; 269: 1–4.PubMedGoogle Scholar
  32. 32.
    Avruch J. The insulin receptor kinase: Structure-function relationships. In: Molecular and Cellular Biology of Diabetes Mellitus, Vol II: Insulin Action, Draznin B, Melmed S, LeRoith D, eds, New York:Alan R. Liss, 1989, pp. 65–77.Google Scholar
  33. 33.
    Hubbard SR, Mohammadi M, Schlessinger J. Autoregulatory mechanisms in protein tyrosine kinases. J Biol Chem 1998; 11987–11990Google Scholar
  34. 34.
    Fantl WJ, Johnson De, Williams LT. Signaling by receptor tyrosine kinases. Annu Rev Biochem 1993; 62:453–481.PubMedCrossRefGoogle Scholar
  35. 35.
    Pawson T. Protein modules and signaling networks. Nature 1995; 373:573–580.PubMedCrossRefGoogle Scholar
  36. 36.
    Kavanaugh WM, Williams LT. An alternative to SH2 domains for binding tyrosinephosphorylated proteins. Science 1994; 266:1862–1865.PubMedCrossRefGoogle Scholar
  37. 37.
    Blaikie P, Immanuel D, Wu J, Li N, Yajnik V, Margolis B. A region in Shc distinct from the SH2 domain can bind tyrosine phosphorylated growth factor receptors. J Biol Chem 1994; 269:32031–32034.PubMedGoogle Scholar
  38. 38.
    Yenush L, White MF. The IRS-signalling system during insulin and cytokine action, Bioessays 1997; 19:491–500.PubMedCrossRefGoogle Scholar
  39. 39.
    Tzahar E, Yarden Y. The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: From orphanhood to multiple stromal ligands. Biochim Biophys Acta 1998; 1377: 2537Google Scholar
  40. 40.
    Myers MG Jr, Grammer TC, Wang LM, Sun XJ, Pierce JH, Blenis J, White MF. Insulin receptor substrate-1 mediates phosphatidylinositol 3’ - kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. J. Biol Chem 1994; 269:28783–28789.PubMedGoogle Scholar
  41. 41.
    Taylor SI. Lilly lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes 1992; 41:1473–1490.PubMedCrossRefGoogle Scholar
  42. 42.
    Songyang Z, Cantley L. Recognition and specificity in protein tyrosine kinase-mediated signalling. TIBS 195; 20:470–475.Google Scholar
  43. 43.
    Kayali AG, Eichhorn J, Haruta T, Morris AJ, Nelson JG, Vollenweider P, Olefsky JM, Webster JG. Association of the insulin receptor with phospholipase C-y (PLCy) in 3T3 LI adipocytes suggests a role for PLCy in metabolic signaling by insulin. J Biol Chem 1998; 273:13808–13813.PubMedCrossRefGoogle Scholar
  44. 44.
    Lamothe B, Baudry A, Desbois, Lamotte L, Bucchini D, DeMeyts P, Joshi RL. Genetic engineering in mice: impact on insulin signalling and action. Biochem J 1998; 335:193–204.PubMedGoogle Scholar
  45. 45.
    Liu SC, Wang Q, Lienhard GE, Keller SR. Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem 1999; 274:18093–18099.PubMedCrossRefGoogle Scholar
  46. 46.
    Fantin VR, Wang Q, Lienhard GE, Keller SR. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol 2000; 278:E127–133.Google Scholar
  47. 47.
    Zhou L, Chen H, Xu P, Cong LN, Sciacchitano S, Li Y, Graham D, Jacobs AR, Taylor SI, Quon MJ: Action of insulin receptor substrate-3 (IRS-3) and IRS-4 to stimulate translocation of GLUT4 in rat adipose cells. 1999; Mol Endocrinol 13:505–514.Google Scholar
  48. 48.
    Myers MG Jr., Zhang Y, Aldaz GAI, Grammer T, Glasheen EM, Yenush L, Wang LM, Sun XJ, Blenis J, Pierce JH, White M. YMXM motifs and signaling by an insulin receptor substrate 1 molecule without tyrosine phosphorylation sites. Mol Cell Biol 1996;16:4147–4155.PubMedGoogle Scholar
  49. 49.
    Yenush L, Zanella C, Uchica T, Bernal D, White MF. The pleckstrin homology and phosphotyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin. Mol Cell Biol 1998; 18:6784–6794.PubMedGoogle Scholar
  50. 50.
    Isakoff SJ, Taha C, Rose E, Marcusohn J, Klip A, Skolnik EY. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake. Proc Natl Acad Sci 1995;92:10247–10251.PubMedCrossRefGoogle Scholar
  51. 51.
    Morris RI, Martin SS, Haruta T, Nelson JG, Vollenwieder P, Gustafson TA, Mueckler M, Rose DW Olefsky JM. Evidence for an insulin receptor substrate 1 independent insulin signaling pathway that mediates insulin-responsive glucose transporter (GLUT4) translocation. Proc Natl Acad Sci 1996; 93: 8401–8406.PubMedCrossRefGoogle Scholar
  52. 52.
    Sharma PM, Egawa K, Gustafson TA, Martin JL, Olefsky JM. Adenovirus-mediated overexpression of IRS-1 interacting domains abolishes insulin-stimulated mitogenesis without affecting glucose transport in 3T3 Ll adipocytes. Mol Cell Biol 1997; 17:7386–7389.PubMedGoogle Scholar
  53. 53.
    Sharma PM, Eqawa K, Huang Y, Martin JL, Huvar I, Boss GR, Olefsky JM. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J. Biol Chem 1998; 17:18528–18537.CrossRefGoogle Scholar
  54. 54.
    Elmendorf JS, Chen D, Pessin JE. Guanosine 5’-O (3-thiotriphosphate) GTPyS stimulation of GLUT4 translocation is tyrosine kinase-dependent. J Biol Chem 1998; 273: 13289–13296.PubMedCrossRefGoogle Scholar
  55. 55.
    Kishi K, Hayashi H, Wang L, Kamohara S, Tamaoka K, Shimizu T, Ushikubi F, Narumiya S, Ebina Y. G-q-coupled receptors transmit the signal for GLUT4 translocation via an insulin-independent pathway. J Biol Chem 1996; 271: 26561–26568.Google Scholar
  56. 56.
    Imamura T, Ishibashi K-1, Dalle S, Ugi S, Olefsky JM. Endothelin-1-induced GLUT4 translocation is mediated via Gq/11 protein and phosphatidylinositol 3-kinase in 3T3Ll adipocytes. J Biol Chem 1999; 274:33691–33695.PubMedCrossRefGoogle Scholar
  57. 57.
    Imamura T, Vollenweider P, Egawa K, Clodi M, Ishibashi K, Nakashima N, Ugi S, Adams JW, Brown JH, Olefsky JM. G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3–L1 adipocytes. Mol Cell Biol 1999; 19:6765–6774.PubMedGoogle Scholar
  58. 58.
    Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by Gprotein-coupled receptors. Curr Opin Cell Biol 1999; 11:177–183.PubMedCrossRefGoogle Scholar
  59. 59.
    Kanzaki M, Watson RT, Artemyev NO, Pessin JE. The trimeric GTP-binding protein (G(q)/G(11)) alpha subunit is required for insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes. J Biol Chem 2000; 275:7167–7175.PubMedCrossRefGoogle Scholar
  60. 60.
    Denton RM, Tavare JM. Does mitogen-activated-protein kinase have a role in insulin action? The cases for and against. Eur J. Biochem. 1995;227:597–611.PubMedCrossRefGoogle Scholar
  61. 61.
    Yano H, Nakanishi S, Kimura K, et al. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J. Biol. Chem. 1993;268:25846–25856.PubMedGoogle Scholar
  62. 62.
    Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 1994;14:4902–4911.PubMedGoogle Scholar
  63. 63.
    Sakaue H, Hara K, Noguchi T, Matozaki T, Kotani K, Ogawa W, Yonezawa K, Waterfield MD, Kasuga M. Ras-independent and wortmannin sensitive activation of glycogen synthase by insulin in Chinese hamster ovary cells. J Biol Chem 1995; 270:11304–11309.PubMedCrossRefGoogle Scholar
  64. 64.
    Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochem. J. 1998;333:471–490.PubMedGoogle Scholar
  65. 65.
    Kimura K, Tissenbaum HA, Liu Y, Ruvkun. Daf-2, an insulin-receptor like gene that regulates longevity and diapause in caenorhabditis elegans. Science 1997;277:942–946.Google Scholar
  66. 66.
    Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996;382:536–538.PubMedCrossRefGoogle Scholar
  67. 67.
    Ogg S, Ruvkun S. The C. elegans PTEN homolog, DAF-8, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 1998;2:887–893.Google Scholar
  68. 68.
    Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1P13 kinase signals that regulate diapause in Caenorhabditis elegans. Genes & Devel. 1999;13:1438–1452.CrossRefGoogle Scholar
  69. 69.
    Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 1998;12:2488–2498.PubMedCrossRefGoogle Scholar
  70. 70.
    Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS-4. Cell 1999; 97:865–875.PubMedCrossRefGoogle Scholar
  71. 71.
    Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G. The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997;389:994–999.PubMedCrossRefGoogle Scholar
  72. 72.
    Brunet A, Bonni A, Zigmond Mi, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J. Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.PubMedCrossRefGoogle Scholar
  73. 73.
    Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL. Burgering BM. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999;398:630–634.PubMedCrossRefGoogle Scholar
  74. 74.
    Rena G, Guo S, Cichy SC, Unterman TG, Cohen P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 1999;274:17179–17183.PubMedCrossRefGoogle Scholar
  75. 75.
    Biggs WH 3’d, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. 1999;96:7421–7426.Google Scholar
  76. 76.
    Gu S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 1999;274:17184–17192.CrossRefGoogle Scholar
  77. 77.
    Tang ED, Nunez G, Barr FG, Guan K-L. Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem. 1999; 274:16741–16746.PubMedCrossRefGoogle Scholar
  78. 78.
    Moule SK, Edgell NJ, Welsh GI, Diggle TA, Foulstone EJ, Heesom KJ, Proud CG, Denton RM. Multiple signaling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem. J. 1995;311:595–601.PubMedGoogle Scholar
  79. 79.
    Katagiri H, Asano T, Ishihara H, Inukai K, Shibasaki Y, Shibasaki Y, Kikuchi M, Yazaki Y, Oka Y. Overexpression of catalytic subunit pl l0aof phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3–L1 adipocytes. J Biol Chem 1996; 271: 16987–16990.PubMedCrossRefGoogle Scholar
  80. 80.
    Martin SS, Haruta T, Morris AJ, Klippel A, Williams LT, Olefsky JM. Activated phosphatidylinositol 3-kinse is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3–L1 adipocytes. J Biol Chem 1996; 271:17605–17608.PubMedCrossRefGoogle Scholar
  81. 81.
    Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo M-A, Williams LT. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 1996; 16:4117–4127.PubMedGoogle Scholar
  82. 82.
    Tanti J-F, Gremeaux T, Grillo S, Calleja V, Klippel A, Williams LT, Van Obberghen E, Le Marchand-Brustel Y. Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote GLUT4 translocation in adipocytes. J Biol Chem 1996; 271:25227–25232.PubMedCrossRefGoogle Scholar
  83. 83.
    Frevert EU, Kahn BB. Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3 -LI adipocytes. Mol Cell Biol 1997; 17:190–198.PubMedGoogle Scholar
  84. 84.
    Robinson U, Razzack ZF, Lawrence JC Jr., James DE. Mitogen-activated protein kinase activation is not sufficient for stimulation of glucose transport or glycogen synthase in 3T3–L1 adipocytes. J. Biol. Chem. 1994;268:26422–26427.Google Scholar
  85. 85.
    Staubs PA, Nelson JG, Reichart DR,Olefsky JM. Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-l-associated phosphatidylinositol 3-kinase in 3T3–L1 adipocytes without affecting glucose transport. J. Biol. Chem. 1998;273:25139–25147.Google Scholar
  86. 86.
    Nave BT, Haigh RJ, Hayward AC, Siddle K, Shepherd PR. Compartment-specific regulation of phosphoinositide 3-kinase by platelet-derived growth factor and insulin in 3T3–L1 adipocytes. Biochem. J. 1996;318:55–60.PubMedGoogle Scholar
  87. 87.
    Jiang T, Sweeney G, Rudolf MT, Klip A, Traynor-Kaplan A, Tsien RY. Membranepermeant esters of phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 1998;273:11017–11024.PubMedCrossRefGoogle Scholar
  88. 88.
    Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 1999;274:8347–8350.PubMedCrossRefGoogle Scholar
  89. 89.
    Van der Kaay J, Batty IH, Cross DAE, Downes CP. A novel, rapid, and highly sensitive mass assay for phosphatidylinositol 3,4,5-Trisphosphate (Ptd Ins (3,4,5)P- 3 production in rat skeletal muscle in Vivo. J Biol Chem 1997; 272:5477–5481.PubMedCrossRefGoogle Scholar
  90. 90.
    Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends in Biochem. Sci. 1997;22:267–272.Google Scholar
  91. 91.
    Rordorf-Nikolic T, Van Horn DJ, Cehn D, White MF, Backer JM. Regulation of phosphatidylinositol 3’-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDA regulatory subunit. J Biol Chem 1995; 24:270:3662–3662.Google Scholar
  92. 92.
    Rodriquez-Vicianna P, Warne PH, Vanhaesenbroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 1996;15:2442–2451.Google Scholar
  93. 93.
    Bondeva T, Priola L, Bulgarelli-Leva G, Rubio I, Wetzker R, Wymann MP. Bifurcation of lipid and protein kinase signals of PI-3K gamma to the protein kinases PKB and MAPK. Science 1998; 282:293–296.PubMedCrossRefGoogle Scholar
  94. 94.
    Brown RA, Domin J, Arcaro A, Waterfield MD, Shepherd PR. Insulin activates the alpha isoform of class li phosphoinositide 3-kinase. Journal of Biological Chemistry. 1999;274:14529–14532.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang X, Loijens JC, Boronenkov IV, Parker GJ, Norris FA, Chen J. Thum O.Prestwich GD, Majerus PW, Anderson RA. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem. 1997;272:17756–17761.PubMedCrossRefGoogle Scholar
  96. 96.
    Wurmser AE., Gary JD, Emr SD. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J. Biol. Chem. 1999;274:9129–9132.CrossRefGoogle Scholar
  97. 97.
    Mayer BJ, Ren R. Clark KL Baltimore D. A putative modular domain present in diverse signaling proteins. Cell. 1993;73:629–630.PubMedCrossRefGoogle Scholar
  98. 98.
    Haslam RJ, Koide HB, Hemmings BA. Pleckstrin domain homology Nature. 1993;363:309–310.Google Scholar
  99. 99.
    Rameh LE, Arvidsson AK, Carraway KL 3rd, Couvillon AD, Rathbun G, Crompton A, VanRenterghem B, Czech MP, Ravichandran KS, Burakoff SI, Wang DS, Chen CS, Cantley LC. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J. Biol. Chem. 1997;272:22059–22066.PubMedCrossRefGoogle Scholar
  100. 100.
    Fruman DA, Rameh LE, Cantley LC. Phosphoinositide binding domains: embracing 3-phosphate. Cell. 1999;97:817–820.PubMedCrossRefGoogle Scholar
  101. 101.
    Cross DA, Watt PW, Shaw M., van der Kaay J, Downes CP, Holder JC, Cohen P. Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Letters. 1997;406:211–215.PubMedCrossRefGoogle Scholar
  102. 102.
    Alessi DR, Kozlowski MT, Weng Q-P, Morrice N, Avruch J. 3-Phosphoinositidedependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitra. Curr. Biol. 1997;8:69–81.CrossRefGoogle Scholar
  103. 103.
    Pullen N. Dennis PB. Andjelkovic M. Dufner A. Kozma SC. Hemmings BA. Thomas G. Phosphorylation and activation of p70s6k by PDK1 Science. 1998;279:707–710.Google Scholar
  104. 104.
    Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA: Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci 88: 1991;4171–4175.PubMedCrossRefGoogle Scholar
  105. 105.
    Coffer PJ, Woodgett JR: Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Euro J Bioch 1991;201:475–481.CrossRefGoogle Scholar
  106. 106.
    Bellacosa A, Testa JR, Staal SP, Tsichlis PN: A retroviral oncogene, Akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991;254: 274–277.PubMedCrossRefGoogle Scholar
  107. 107.
    Franke TF, Yang SI, Chan TO, Datta K: Kazlauskas A. Morrison DK.Google Scholar
  108. 108.
    Kaplan DR, Tsichlis PN. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995;81: 727–736.PubMedCrossRefGoogle Scholar
  109. 109.
    Burgering BM, Coffer PJ: Protein kinase B (c-Akt) in phosphatidylinositol-3–0H kinase signal transduction. Nature 1995;376: 599–602.PubMedCrossRefGoogle Scholar
  110. 110.
    Kohn AD, Kovacina KS, Roth RA: Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO Journal. 1995;14:4288–4295.PubMedGoogle Scholar
  111. 111.
    Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt protooncogene product by phosphatidylinositol-3,4-bisphosphate Science. 1997;275:665–668.Google Scholar
  112. 112.
    Kohn AD, Takeuchi F, Roth RA: Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 1996;271: 21920–21926.Google Scholar
  113. 113.
    James Sr, Downs CP, Gigg R, Grove S.1, Holmes AB, Alessi DR. Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 1996; 315:709–713.PubMedGoogle Scholar
  114. 114.
    Alessi DR, Deak M. Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A. Bownes M. 3Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr. Biol. 1997;7:776–789.Google Scholar
  115. 115.
    Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P. Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO 1996;15: 6541–6551.Google Scholar
  116. 116.
    Alessi DR, James SR, Downes CP, Holmes AB, Gafrey PRJ, Reese CB, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Ba. Curr Biol 1997;7: 261–269PubMedCrossRefGoogle Scholar
  117. 117.
    Vanhaesenbroeck B, Alessi DR. The PI3K-PDKI connection: more than just a road to PKB. Biochem J 2000; 346:561–576.CrossRefGoogle Scholar
  118. 118.
    Williams MR, C Arthur JS, Balendran A, van der Kaay J, Poli V, Cohen P, Alessi DR. the role of 3-phosphoinositide -dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Cuff Biol 2000; 10:439–448.CrossRefGoogle Scholar
  119. 119.
    Bertrand L, Alessi DR, Deprez J, Deak M, Viaene E, Rider MH, Hue L. Heart 6phosphofructo-2-kinase activation by insulin results from Ser-466 and Ser-483 phosphorylation and requires 3-phosphoinositide-dependent kinase-, but not protein kinase B. J Biol Chem 1999; 274:30927–30933.PubMedCrossRefGoogle Scholar
  120. 120.
    Coffer Pl, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 1998; 335 1–13.Google Scholar
  121. 121.
    Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes & Dev 1999; 13:290–2927.Google Scholar
  122. 122.
    Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999; 253:210–229.PubMedCrossRefGoogle Scholar
  123. 123.
    Brady MJ, Bourbonais FJ, Saltiel AR. The activation of glycogen synthase by insulin switches from kinase inhibition to phosphatase activation during adipogenesis in 3T3-Ll cells. J. Biol. Chem. 1998;273:14063–14066.PubMedCrossRefGoogle Scholar
  124. 124.
    Kitamura T, Kitamura Y, Kuroda S, Hino Y, Ando M, Kotani K, Honishi H, Matsuzaki H, Kikkawa U, Ogawa W, Kasuga. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol 1999;19:6286–6296.PubMedGoogle Scholar
  125. 125.
    Cong L-N, Li Y, Zhou L, McGibbon MA, Taylor SI, Quon MJ. Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endo 1997; 11:1881–1890.CrossRefGoogle Scholar
  126. 126.
    Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 313-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271:31372–31378.PubMedCrossRefGoogle Scholar
  127. 127.
    Wang Q, Somwar R, Bilan J, Liu Z, Jin J, Woodgett JR, Klip A. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol 1999; 4008–4018.Google Scholar
  128. 128.
    Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL. A role for protein kinase Bq/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 1999; 19:7771–7781.PubMedGoogle Scholar
  129. 129.
    Kitamura T, Ogawa W, Sakaue H, Hino Y, Kuroda S, Takata M, Matsumoto M, Maeda T, Honishi H, Kikkawa U, Kasuga M. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol 1998; 18:3708–3717.PubMedGoogle Scholar
  130. 130.
    Foran PGP, Fletcher LM, Oatey PB, Mohammed N, Dolly JO, Tavare JM. Protein kinase B stimulates the translocation of GLUT4 but not GLUTI or transferrin receptors in 3T3–L1 adipocytes by a pathway involving SNAP-23, synaptobrevin-2 and/or cellubrevin. J Biol Chem 1999; 274:28087–28095.PubMedCrossRefGoogle Scholar
  131. 131.
    Mellor H, Parker Pl. The extended protein kinase C superfamily. Biochem J 1998; 332:281–292.PubMedGoogle Scholar
  132. 132.
    Toker A. Signaling through protein kinase C. Frontiers in Bioscience 1998; 3:d1134–1147.PubMedGoogle Scholar
  133. 133.
    Braiman L, Alt A, Kuroki T, Ohba M, Bak A, Tennenbaum T, Sampson SR. Protein kinase Cy mediates insulin-induced glucose transport in primary cultures of rat skeletal muscle. Mol Endo 1999; 13:2002–2012.CrossRefGoogle Scholar
  134. 134.
    Cooper DR, Watson JE, Patel N, Illingworth P, Acevedo-Duncan M, Goodnight J, Chalfant CE, Mischak H. Ectopic expression of protein kinase C-beta II,-delta, and - epsilon, but not -betaI or-zeta, provide for insulin stimulation of glucose uptake in NIH-3T3 cells. Arch Biochem Biophys 1999; 372:69–79.PubMedCrossRefGoogle Scholar
  135. 135.
    Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y, Miyake K, Sano W,Akimoto K, Ohno S, Kasuga M Requirement of atypical protein kinase C lambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3–L1 adipocytes. Mol Cell Biol 1998;18(12):6971–82.PubMedGoogle Scholar
  136. 136.
    Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, SajanMP, Cenni V, Sirri A, Moscat J, Toker A, Farese RV Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 1999 Sep 3;274(36):25308–16PubMedCrossRefGoogle Scholar
  137. 137.
    Handyopadhyay G, Standaert ML, Kikkawa U, Ono Y, Moscat J, Farese RV. Effects of transiently expressed atypical (Ç, X), conventional (c) and novel (S,e) protein kinase C isoforms on insulin-stimulated translocation of epitope-tagged GLUT4 glucose transporters in rat adipocytes: specific interchangeable effects of protein kinases C-Ç and C-X. Biochem J 1999; 33: 461–470.CrossRefGoogle Scholar
  138. 138.
    Etgen GJ, Valasek KM, Broderick CL Miller AR. In vivo adenoviral delivery of recombinant human protein kinase C-C stimulates glucose transport activity in rat skeletal muscle. J. Biol Chem 1999; 274:22139–22142.PubMedCrossRefGoogle Scholar
  139. 139.
    Bandyopadhyay G, Standaert ML, Sajan MP, Karnitz LM, Cong L, Quon MJ, Farese RV. Dependence of insulin stimulated glucose transporter 4 translocation on 3phosphoinositide-dependent protein kinse-1 and its target threonine-410 in the activation loop of protein kinase C.-C. Mol Endo 1999; 13:1766–1772.CrossRefGoogle Scholar
  140. 140.
    Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK I. Science. 1998;281:2042–2045.PubMedCrossRefGoogle Scholar
  141. 141.
    Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen CS, Newton AC, Schaffhausen BS, Toker A. Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr. BioL1998; 8:1069–1077.PubMedCrossRefGoogle Scholar
  142. 142.
    Dutil EM, Toker A, Newton AC. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr. Biol. 1998;8:1366–1375.Google Scholar
  143. 143.
    Behn-Krappa A, Newton AC. The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Curr Biol 1999; 9(14): 728–37.PubMedCrossRefGoogle Scholar
  144. 144.
    Dutil EM, Newton AC. Dual role of pseudosubstrate in the coordinated regulation of protein kinase C by phosphorylation and diacylglycerol. J Biol Chem 2000; 275(14): 10697–10701.PubMedCrossRefGoogle Scholar
  145. 145.
    Prekh DB, Ziegler W, Parker PJ. Multiple pathways control protein kinase C phosphorylation. EMBO J 2000; 19: 496–503.CrossRefGoogle Scholar
  146. 146.
    Flynn P, Mellor H, Casamassima A, Parker, P. Rho GTPase Control of Protein Kinase C-related Protein Kinase Activation by 3-Phosphoinositide-dependent Protein Kinase. J Biol Chem 2000; 275: 11064–11070.PubMedCrossRefGoogle Scholar
  147. 147.
    Nakanishi H, Brewer KA, Exton JH. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1993;268:13–16.PubMedGoogle Scholar
  148. 148.
    Toker A, Meyer M, Reddy KK, Falck JR, Aneja R, Aneja S, Parra A, Burns DJ, Ballas LM, Cantley LC. Activation of protein kinase C family members by the novel polyphosphoinositides Ptdlns-3.4-P2 and Ptdlns-3,4,5-P3. J Biol Chem 1994;269:32358–32368.PubMedGoogle Scholar
  149. 149.
    Akimoto K, Takahashi R, Moriya S, Nishioka N, Takayanagi J, Kimura K, Fukui Y, Osada S-i, Mizuno K, Hirai S-i, Kazlauskas A, Ohno S. EGF or PDGF receptors activate atypical PKC through phosphatidylinositol 3-kinase. EMBO J. 1996;15:788798.Google Scholar
  150. 150.
    Moriya S, Kazlauskas A, Akimoto K, Hirai S, Mizuno K, Takenawa T, Fukui Y, Watanabe Y, Ozaki S, Olmo S. Platelet-derived growth factor activates protein kinase C epsilon through redundant and independent signaling pathways involving phospholipase C gamma or phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. 1996;9:151–155.CrossRefGoogle Scholar
  151. 151.
    Bandyopadhyay G, Standaert ML, Zhao L, Yu B, Avignon A, Galloway L, Karnam P, Moscat J, Farese R. Activation of protein kinase (a,ß,and Ç) by insulin in 3T3/LI Cells. J Biot Chem 1997; 272:2551–2558.CrossRefGoogle Scholar
  152. 152.
    Ohmori S, Shirai Y, Sakai N, Fujii M, Konishi H, Kikkawa U, Saito N. Three distinct mechanisms for translocation and activation of the S subspecies of protein kinase C. Mol Cell Biol 1998; 18:5263–5271.PubMedGoogle Scholar
  153. 153.
    Mendez R, Kollmorgen G, White MF, Rhoads RE. Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol Cell Bio1 1997;17:5184–92.Google Scholar
  154. 154.
    Pessin J, Thurmond D, Elmendorf J, Coker K, Okada S. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. J Biol Chem 1999; 274:2593–2596.PubMedCrossRefGoogle Scholar
  155. 155.
    Czech M, Corvera S. Signaling mechanisms that regulate glucose transport J Biol Chem 1999; 274: 1865–1868.Google Scholar
  156. 156.
    Whitehead JP, Clark SF, Urso B, James DE. Signaling through the insulin receptor. Curr Opin Cell Biol. 2000 Apr;12:222–228.PubMedCrossRefGoogle Scholar
  157. 157.
    Moss J, Vaughan M. Molecules in the ARF Orbit. J Biol Chem 1998;273:21431–21434.Google Scholar
  158. 158.
    Springer, S, Spang A, Schekman R. A Primer on Vesicle Budding. Cell 1999; 97: 145–148.PubMedCrossRefGoogle Scholar
  159. 159.
    Novick P, Zerial, M. The diversity of Rab proteins in vesicle transport. Curr Opin Biol 1997; 496–504.Google Scholar
  160. 160.
    Schimmoller F, Simon I, Pfeffer, S. Rab GTPases, directors of vesicle docking J Biol Chem 1998; 273: 22161–22164.Google Scholar
  161. 161.
    Pfeffer, S. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biology 1999; E17–E22.Google Scholar
  162. 162.
    Hay J, Scheller, R. SNAREs and NSF in targeted membrane fusion. Curr Opin Cell Biol 1997; 9:505–512.PubMedCrossRefGoogle Scholar
  163. 163.
    Bock JB, Scheller RH. SNARE proteins mediate lipid bilayer fusion. Proc Natl Acad Sci 1999; 96:1227–12229.Google Scholar
  164. 164.
    Kawanishi M, Tamori Y, Okazawa H, Araki A, Shinoda H, Kasuga M. Role of SNAP23 in insulin-induced translocation of GLUT4 in 3T3–L1 adipocytes. J Biol Chem 2000; 275:8240–8247.PubMedCrossRefGoogle Scholar
  165. 165.
    Min J, Okada S, Kanzaki M, Elmendorf JS, Coker KH, Ceresa BP, Syu L-1 Noda Y, Saltiel AR, Pessin JE. Synip: A novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes. Mol Cell 1999; 3:751–760.PubMedCrossRefGoogle Scholar
  166. 166.
    Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A, Czech MP. Signaling by phosphoinositide-3,4,5-tirsphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 1997; 275:1927–1930.PubMedCrossRefGoogle Scholar
  167. 167.
    Emoto M, Klarlund JK, Waters SB, Hu V, Buxton JM, Chawla A, Czech MP. The role for phospholipase D in GLUT4 glucose transporter translocation. J Biol Chem 2000; 275:7144–7151.PubMedCrossRefGoogle Scholar
  168. 168.
    Kao AW, Ceresa BP, Santeler SR, Pessin JE. Expression of a dominant interfering dynaniin mutant in 3T3L1 adipocytes inhibits GLUT4 endoyctosis without affecting insulin signaling. J Biol Chem 1998; 273:25450–25457.PubMedCrossRefGoogle Scholar
  169. 169.
    Hausdorff SF, Fingar DC, Morioka K, Garza LA, Whiteman EL, Summers SA, Birnbaum MJ. Identification of wortmannin-sensitive targets in 313-L1 adipocytes. J Biol Chem 1999; 274:24677–24684.PubMedCrossRefGoogle Scholar
  170. 170.
    Mackay DJG, Hall A. Rho GTPases. J Biol Chem 1998; 273: 20685–20688.PubMedCrossRefGoogle Scholar
  171. 171.
    Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transporter translocation in 3T3–L1 adipocytes and L6 myotubes. J Biol Chem 1999; 274:10071–10078.Google Scholar
  172. 172.
    Geiger D Carpentier JL, Gorden P, Orci L. Down-regulation of insulin receptors is related to insulin internalization. Exp Cell Res 1989;185:33–40.PubMedCrossRefGoogle Scholar
  173. 173.
    Backer JM, Shoelson SE, Haring E, White MF. Insulin receptors internalize by a rapid saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region. J Cell Biol 1991;115:1535–1545.PubMedCrossRefGoogle Scholar
  174. 174.
    Carpentier IL, Paccaud JP, Backer J, Gilbert A, Orci L, Kahn CR, Baecker J. Two steps of insulin receptor internalization depend on different domains of the beta-subunit. J Cell Biol 1993;122:1243–1252.PubMedCrossRefGoogle Scholar
  175. 175.
    Carpentier JL, Paccaud JP Gorden P, Rutter WI, Orci L. Insulin-induced surface redistribution regulates internalization of the insulin receptor and requires its autophosphorylation. Proc Natl Acad Sci 1992; 89:162–166.PubMedCrossRefGoogle Scholar
  176. 176.
    Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. The tyrosine kinase negative regulator c-Cbl is a RING -type, E2 -dependent ubiquitin-protein ligase. Science 1999;286:309–312.PubMedCrossRefGoogle Scholar
  177. 177.
    Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz, Yarden Y. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by cCblJSli-1. Mol Cell 1999;4:1029–1040.PubMedCrossRefGoogle Scholar
  178. 178.
    Clark SF, Molero JC, James DE. Release of insulin receptor substrate proteins from an intracellular complex coincides with the development of insulin resistance. J Biol Chem 2000; 275:3819–3826.PubMedCrossRefGoogle Scholar
  179. 179.
    Freidenberg GR, Suter SL, Henry RR, Reichart D, Olefsky JM. In vivo stimulation of the insulin receptor kinase in human skeletal muscle. Correlation with insulin-stimulated glucose disposal during euglycemic clamp studies. J Clin Invest 1991; 87:2222–2229.PubMedCrossRefGoogle Scholar
  180. 180.
    Thies RS, Molina JM, Ciaraldi TP, Friedenberg GR, Olefsky JM. Insulin-receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese, and NIDDM subjects. Diabetes 1990;39:250–259.PubMedCrossRefGoogle Scholar
  181. 181.
    Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR. In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 1995; 153:217–231.PubMedCrossRefGoogle Scholar
  182. 182.
    Di Guglielmo GM, Drake PG, Baass PC, Authier F, Posner BI, Bergeron JJM. Insulin receptor internalization and signaling. Mol Cell Biochem 1998; 182:59–63.PubMedCrossRefGoogle Scholar
  183. 183.
    Calera MR, Vallega G, Pilch PF. Dynamics of protein-tyrosine phosphates in rat adipocytes. J Biol Chem 2000;275:6308–6312.PubMedCrossRefGoogle Scholar
  184. 184.
    Goldstein BJ, Ahmad F, Ding W, Li PM, Zhang WR. Regulation of the insulin signaling pathway by cellular protein-tyrosine phosphatases. Mol Cell Biochem 1998; 182:91–99.PubMedCrossRefGoogle Scholar
  185. 185.
    Walchli S, Churchod M-L, Pescini Gobert R, Arkinstall S, Hooft van Huijsduijnen. Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. 2000; 275:9792–9796.Google Scholar
  186. 186.
    Kenner KA, Anyanwu W, Olefsky JM, Kusari J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin-and insulin-like growth factor-I-stimulated signaling. J Biol Chem 1996; 19810–19816.Google Scholar
  187. 187.
    Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Burn P, Quon MJ. Protein-tyrosine phosphatases PTP1B and Syp are modulators of insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. J Biol Chem 1997; 272:8026–8031.PubMedCrossRefGoogle Scholar
  188. 188.
    Amott CH, Sale EM, Miller J, Sale GJ. Use of an antisense strategy to dissect the signaling role of protein-tyrosine phosphatase alpha. J Biol Chem 1999;274:26105–26112.Google Scholar
  189. 189.
    Bleyle LA, Peng Y, Ellis C, Mooney RA. Dissociation of PTPase levels from their modulation of insulin receptor signal transduction. Cell Signal 1999; 11:719–725.PubMedCrossRefGoogle Scholar
  190. 190.
    Ren JM, Li PM, Zhang WR, Sweet LJ, Gline G, Shulman GI, Livingston JN, Goldstein BJ. Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis. Diabetes 1998;47:493–497.PubMedCrossRefGoogle Scholar
  191. 191.
    Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson TA, Kusari J. Protein-tyrosine phosphatase IB complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J Biol Chem. 1997; 272:16391645.Google Scholar
  192. 192.
    Elchebly M., Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. XXX Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene Science 1999; 283:1544–1548.Google Scholar
  193. 193.
    Moxham CM, Malbon CC, Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature 1996; 379:840–844.PubMedCrossRefGoogle Scholar
  194. 194.
    Vasquez F, Sellers WR. The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim et Biophy Acta 2000;1470:M21–M35.Google Scholar
  195. 195.
    Maehama T, Dizon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 1999; 9:125–128.PubMedCrossRefGoogle Scholar
  196. 196.
    Goberdhan DC, Paricio N, Goodman EC, Mlodzik M., Wilson C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 1999; 13:3244–3258.PubMedCrossRefGoogle Scholar
  197. 197.
    Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Inv 1995: 96:801–810.CrossRefGoogle Scholar
  198. 198.
    Chin JE, Dickens M, Tavare JM, Roth RA. Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J Biol Chem. 1993; 268:6338–6347.PubMedGoogle Scholar
  199. 199.
    Chin JE, Liu F, Roth RA. Activation of protein kinase Ca inhibits insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. Mol Endo 1994; 8:51–58.CrossRefGoogle Scholar
  200. 200.
    De Fea K, Roth RA. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochem 1997; 36:12939–12947.CrossRefGoogle Scholar
  201. 201.
    De Fea K, Roth RA. Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem. 1997; 272:31400–31406.PubMedCrossRefGoogle Scholar
  202. 202.
    Li J DeFea K, Roth RA. Modulation of insulin receptor asubstarte-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3 kinase pathway.) Biol Chem 1999; 274:9351–9356.CrossRefGoogle Scholar
  203. 203.
    Delahaye L, Mothe-Satney I, Myers MG, White MF, Van Obberghen E. Interaction of insulin receptor substrate-1(IRS-1) with phosphatidylinositol 3-kinase: effect of substitution of alanine for serine in potential IRS-1 serine phosphorylation sites. Endocrinology 1998 139:4911–4919.PubMedCrossRefGoogle Scholar
  204. 204.
    Peraldi P, Spiegelman B. TNF-a and insulin resistance: Summary and future prospects. Mol Cell Bichem 1998; 182:169–175.CrossRefGoogle Scholar
  205. 205.
    Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes 1999; 107:119–125.PubMedCrossRefGoogle Scholar
  206. 206.
    Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser J Biol Chem 2000; 275:9047–9054.CrossRefGoogle Scholar
  207. 207.
    Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 1997; 272:29911–29918.PubMedCrossRefGoogle Scholar
  208. 208.
    Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41: 1241–1248.PubMedCrossRefGoogle Scholar
  209. 209.
    Fernandez-Real JM, Ricart W. Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 1999; 42:1367–1374.PubMedCrossRefGoogle Scholar
  210. 210.
    Uysal KT, Wiesbrock SM., Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389:610–614.PubMedCrossRefGoogle Scholar
  211. 211.
    Schreyer SA, Chua SC Jr., LeBoeuf RC. Obesity and diabetes in TNF-alpha receptor-deficient mice. J Clin Invest 1998; 102:402–411.PubMedCrossRefGoogle Scholar
  212. 212.
    Paquot N, Castillo MJ, Lefebvre PJ, Scheen AJ. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab 2000; 85:1316–1319.PubMedCrossRefGoogle Scholar
  213. 213.
    Paz K, Liu YF, Shorer H, Hemi R, LeRoith D, Quan M. Kanety H, Seger R, Zick Y. Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 1999; 274:28816–228822.PubMedCrossRefGoogle Scholar
  214. 214.
    Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci 1997; 94:9660–9664.PubMedCrossRefGoogle Scholar
  215. 215.
    Eldar-Finkelman H, Schreyer SA, Shinohara MM, LeBoeuf RC, Krebs EG. Increased glycogen sythase kinase-3 activity in diabetes-and obesity-prone C57BLI6J mice. Diabetes 1999; 48:1662–1666.PubMedCrossRefGoogle Scholar
  216. 216.
    Cengel KA, Kason RE, Freund GG. Phosphatidylinositol 3’-kinase associates with an insulin receptor substrate-1 serine kinase distinct from its intrinsic serine kinase. Biochem J 1998; 335:397–404.PubMedGoogle Scholar
  217. 217.
    Qiao LY, Goldberg JL, Russell JC, Sun XJ. Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem 1999; 274:10625–10632.PubMedCrossRefGoogle Scholar
  218. 218.
    Craparo A, Freund R, Gustafson TA. 14–3–3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J Biol Chem 1997; 272:11663–11669.Google Scholar
  219. 219.
    Ogihara T, Isobe T, Ichimura T, Taoka M, Funaki M, Sakoda H, Onishi Y, Inukai K, Anai M, Fukushima Y, Kikuchi M, Yazaki Y, Oka Y.Asano T. 14–3–3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem 1997; 272:25267–25274.PubMedCrossRefGoogle Scholar
  220. 220.
    Kosaki A, Yamada K, Suga J, Otaka A, Kuzuya H. 14–3–3beta protein associates with insulin receptor substrate 1 and decreases insulin-stimulated phosphatidylinositol 3’-kinase activity in 3T3L1 adipocytes. J Biol Chem 1998; 273:940–944.PubMedCrossRefGoogle Scholar
  221. 221.
    Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43:527–550.PubMedCrossRefGoogle Scholar
  222. 222.
    Barroso I, Gumell M., Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, Chatterjee VK, O’Rahilly S. Dominant negative mutations in human PPAR gamma associated with severe insulin resistance, diabetes mellitus and hypertension Nature 1999; 402:880–883.Google Scholar
  223. 223.
    Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998; 339:953–959.PubMedCrossRefGoogle Scholar
  224. 224.
    Kubota N, Terauchi Y, Mild H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T. PPAR y mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4:597–609.PubMedCrossRefGoogle Scholar
  225. 225.
    Miles PDG, Barak Y, He W, Evans RM, Olefsky JM. Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000;105:287–292.PubMedCrossRefGoogle Scholar
  226. 226.
    Deeb SS, Fajas L, Nemoto M., Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Prol2Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998 20:284–287.PubMedCrossRefGoogle Scholar
  227. 227.
    Masugi J, Tamori Y, Mori H, Koike T, Kasuga M. Inhibitory effect of a proline-toalanine substitution at codon 12 of peroxisome proliferator-activated receptor-gamma 2 on thiazolidinedione-induced adipogenesis. Biochem Biophys Res Commun 2000;268:178–182PubMedCrossRefGoogle Scholar
  228. 228.
    Chen D, Garg A. Monogenic disorders of obesity and body fat distribution. J Lipid Res 1999; 40:1735–1746.PubMedGoogle Scholar
  229. 229.
    Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, Brown MS. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-lc in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 1998; 12:3182–314.PubMedCrossRefGoogle Scholar
  230. 230.
    Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance anddiabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401:73–76.PubMedCrossRefGoogle Scholar
  231. 231.
    Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, Feigenbaum L, Lee E, Aoyama T, Eckhaus M., Reitman ML, Vinson C. Life without white fat: a transgenic mouse. Genes & Development. 1998; 12:3168–3181.CrossRefGoogle Scholar
  232. 232.
    Gavrilova O, Marcus-Samuels B, Leon LR, Vinson C, Teitman ML. Leptin and diabetes in lipoatrophic mice. Nature 2000; 24:850–851.Google Scholar
  233. 233.
    Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, Vinson C, Eckhaus M, Reitman ML. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105:271–278.PubMedCrossRefGoogle Scholar
  234. 234.
    Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI Mechanisms of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 2000; 275:8456–8460.PubMedCrossRefGoogle Scholar
  235. 235.
    Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE. Spiegelman BM. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 1996; 274:1377–1379.PubMedCrossRefGoogle Scholar
  236. 236.
    Marshall S, Garvey WT, Traxinger RR. New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids. FASEB J 1991; 5:3031–3036.PubMedGoogle Scholar
  237. 237.
    Hawkins M., Barzilai N, Liu R, Hu M,. Chen W, Rossetti L. Role of the glucosamine pathway in fat-induced insulin resistance. J Clin Invest 1997; 99:2173–2182.PubMedCrossRefGoogle Scholar
  238. 238.
    Hebert LF Jr, Daniels MC, Zhou J, Crook ED, Turner RL, Simmons ST, Neidigh JL, Zhu JS, Baron AD, McClain DA. Overexpression of glutamine: fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest 1996; 98:930–936.PubMedCrossRefGoogle Scholar
  239. 239.
    Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A. nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 1998; 393:684–688.PubMedCrossRefGoogle Scholar
  240. 240.
    Liu F, Roth RA. Binding of SH2 containing proteins to the insulin receptor: a new way for modulating insulin signaling. Mol Cell Biochem 182:73–78.Google Scholar
  241. 241.
    He W, Rose DW, Olefsky JM., Gustafson TA. Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2(SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J Biol Chem 1998; 273:6860–6867.PubMedCrossRefGoogle Scholar
  242. 242.
    Maddux BA, Sbraccia P, Kumakura S, Sasson S, Youngren J, Fisher A, Spencer S, Grupe A, Henze! W, Stewart TA, Reaven GM, Goldfine IR. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus Nature. 1995; 373:448–451Google Scholar
  243. 243.
    Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, Fukushima Y, Onishi Y, Ono H, YazakiY, Kikuchi M, Oka Y, Asano T. No correlation of plasma cell 1 overexpression with insulin resistance in diabetic rats and 3T3–L1 adipocytes. Diabetes 1999; 48:1365–1371.PubMedCrossRefGoogle Scholar
  244. 244.
    Condorelli G, Vigliotta G, Iavarone C, Caruso M,. Tocchetti CG,. Andreozzi F, Cafieri A, Tecce MF, Formisano P, Beguinot L, Beguinot F. PED/PEA-15 gene controls glucose transport and is overexpressed in type2 diabetes mellitus. EMBO J 1998; 17:3858–3866.PubMedCrossRefGoogle Scholar
  245. 245.
    DeFronzo RA, Tobin JD, Andres R Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237:E214–223PubMedGoogle Scholar
  246. 246.
    Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999; 22:1462–7140.PubMedCrossRefGoogle Scholar
  247. 247.
    Soop M, Nygren J, Brismar K, Thorell A, Ljungqvist O. The hyperinsulinaemiceuglycaemic glucose clamp: reproducibility and metabolic effects of prolonged insulin infusion in healthy subjects. Clin Sci 2000; 98:367–374.PubMedCrossRefGoogle Scholar
  248. 248.
    Hanson RL, Pratley RE, Bogardus C, Venkat Narayan KM, Roumain JM, Imperatore G,Fagot-Campagna A, Pettitt DJ, Bennett PH, Knowler WC Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am J Epidemiol 2000; 151:190–198PubMedCrossRefGoogle Scholar
  249. 249.
    Rizza RA, Mandarin LJ, Gerich JE. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Amer J Physiol 1981; 240(6):E630–639.PubMedGoogle Scholar
  250. 250.
    Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange J Appl Physiol 1983; 55:628–634.PubMedGoogle Scholar
  251. 251.
    Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulindependent diabetes by 13C nuclear magnetic resonance spectroscopy N Engl J Med 1990; 322:223–238.PubMedCrossRefGoogle Scholar
  252. 252.
    Petersen KF, Hendler R, Price T, Perseghin G, Rothman DL, Held N, Amatruda JM, Shulman GI. 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 1998; 47:381–386PubMedCrossRefGoogle Scholar
  253. 253.
    Olefsky JM, Kolterman OG, Scarlett JA Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus. Am J Physiol 1982; 243:E15–30.PubMedGoogle Scholar
  254. 254.
    Kolterman OG, Insel J, Saekow M, Olefsky JM. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects. J Clin Invest. 1980;65:1272–1284.PubMedCrossRefGoogle Scholar
  255. 255.
    Kolterman OG, Gray RS, Griffin J, Burstein P, Insel J, Scarlett JA, Olefsky JM. Receptor and postreceptor defects contribute to the insulin resistance in noninsulindependent diabetes mellitus. J Clin Invest. 1981; 68:957–969.PubMedCrossRefGoogle Scholar
  256. 256.
    Baron AD, Clark MG. Role of blood flow in the regulation of muscle glucose uptake. Annu Rev Nutr. 1997;17:487–499.PubMedCrossRefGoogle Scholar
  257. 257.
    Laakso M., Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest 1990; 85:1844–1852.PubMedCrossRefGoogle Scholar
  258. 258.
    Laakso M, Edelman SV, Brechtel G, Baron AD. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 1992; 41:1076–1083.PubMedCrossRefGoogle Scholar
  259. 259.
    Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996; 97:2601–2610.PubMedCrossRefGoogle Scholar
  260. 260.
    Rothman DL, Shulman RG, Shulman GI. 31P nuclear magnetic resonance measurements of muscleglucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulindependent diabetes mellitus. J Clin Invest 1992; 89:1069–1075.PubMedCrossRefGoogle Scholar
  261. 261.
    Cline GW, Magnusson I, Rothman DL, Petersen KF, Laurent D, Shulman GI. Mechanism of impaired insulin-stimulated muscle glucose metabolism in subjects with insulin-dependent diabetes mellitus. J Clin Invest 1997; 99:2219–2224.PubMedCrossRefGoogle Scholar
  262. 262.
    Cline GW, Jucker BM, Trajanoski Z, Rennings AJ, Shulman GI. A novel 13C NMR method to assess intracellular glucose concentration in muscle, in vivo. Amer J Physiol Soc 1998; 274:E381–389.Google Scholar
  263. 263.
    Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999; 341:240–246.PubMedCrossRefGoogle Scholar
  264. 264.
    Jucker BM, Barucci N, Shulman GI. Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle. Am J Physiol 1999; 277:E505–512.PubMedGoogle Scholar
  265. 265.
    Levine R and Goldstein M. On the mechanism of action of insulin. Recent Progress Hormone Research. 1955;11:343–380.Google Scholar
  266. 266.
    Goodyear Li, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Ann Rev Med 1998; 49:235–261.CrossRefGoogle Scholar
  267. 267.
    Shepherd PR, Kahn BB. Glucose transporters and insulin action — implications for insulin resistance and diabetes mellitus. N Engl J Med 1999; 341:248–257.PubMedCrossRefGoogle Scholar
  268. 268.
    Beck-Nielsen H, Groop LC. Metabolic and genetic characterization of prediabetic states. J Clin Invest 1994; 94:1714–1721.PubMedCrossRefGoogle Scholar
  269. 269.
    Groop LC. Early metabolic defects in persons at increased risk for non-insulindependent diabetes mellitus. N Engl J Med 1989; 321:337–343.PubMedCrossRefGoogle Scholar
  270. 270.
    Kim YB, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes J Clin Invest 1999; 104:733–471.Google Scholar
  271. 271.
    Cusi K, Maezono K, Osman A, Pendergrass M, Patti MEk Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino U..Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105:311–320.PubMedCrossRefGoogle Scholar
  272. 272.
    Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103:253–259.PubMedCrossRefGoogle Scholar
  273. 273.
    Boden G. Free fatty acids, insulin resistance, and Type 2 diabetes mellitus. Proc Assoc Am Physicians 1999; 111:241–248.Google Scholar
  274. 274.
    Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle: Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 1963;785–789.PubMedCrossRefGoogle Scholar
  275. 275.
    Griffin ME, Marcucci MJ Cline GW, Bell K, Barucci N, Lee D, Goodyear U Kraegen EW, White MF, Shulman Gl. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999; 48:1270–1274.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Joseph Avruch
    • 1
  1. 1.Massachusetts General HospitalHarvard Medical SchoolBoston

Personalised recommendations