Skip to main content

Linear Elastic Fracture Mechanics (LEFM) and Applications

  • Chapter
  • 1006 Accesses

Abstract

In brittle fracture it is assumed that failure in an elastic material takes place when the available elastic energy is adequate to overcome the energy necessary to propagate a crack and to create new crack surfaces. At the instant of instability, the stresses at the apex of an elastic crack must have sufficient magnitude, capable of driving the crack to failure. In other words, one must assume the presence of either one single crack of sufficient length, or a group of smaller cracks in the material, that will eventually join together to form one large crack, capable of creating brittle fracture. The fundamental mechanism by which pre-existing flaws are formed, which ultimately grow and become critical upon application of increasing monotonic load, is not well defined. An understanding of elastic fracture behavior in material may be reached through a microscopic approach to fracture mechanics [1], where the formation of microcracks within grains of the material is assumed upon application of tensile load. The formation of microcracks within the grain, having length much smaller than the grain diameter, is a result of microscopic stress risers, which are created due to the presence of pile up dislocations forming cavities. These cavities are suitable locations for crack initiation [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. S. Manson, “Metal Fatigue Damage, Mechanism, Detection, Avoidance, and Repair, "” ASTM, STP495, 1971, pp. 61–115

    Book  Google Scholar 

  2. B. L. Averback, D. L. Felbeck, G. T. Hahn, D. A. Thomas, “Fracture,” Proceeding of an International Conference on the Atomic Mechanism of Fracture, April 12–16, 1959, pp. 1–160.

    Google Scholar 

  3. A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philos. Trans., R. Soc. Lond., Ser. A., Vol. 221, 1920.

    Google Scholar 

  4. Inglis

    Google Scholar 

  5. H. Liebowitz, “Fracture, An Advance Treatise,” Volume II, Acadamic Press, 1968, Ch. 1

    Google Scholar 

  6. H. L. Ewalds and R. J. H Wanhill, “Fracture Mechanics,” Edward Arnold, 1986, Ch.2

    Google Scholar 

  7. A. S. Tetelman, and A. J. McEvily, JR., “Fracture of Structural Materials”, John Wiley& Sons Inc., 1967, pp 39–48.

    Google Scholar 

  8. G. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Trans. ASME, J. Appl. Mech.Vol. 24, 1957, p. 361.

    Google Scholar 

  9. C. P. Paris and G. C. Sih, “Stress Analysis of Cracks,” in “Fracture Toughness Testing and Its Applications,” ASTM STP No. 381, ASTM, Philodelphia, 1965.

    Google Scholar 

  10. H. M. Westergaard, “Bearing Pressures and Cracks,” Transactions, ASME, Journal of Applied Mechanics, 1939.

    Google Scholar 

  11. S. P. Timoshenko, and J. N. Goodier, Theory of Elasticity, 3rd Edition, McGraw-Hill (1970).

    MATH  Google Scholar 

  12. N. I. Muskhelishvili, “Some Basic Problems of the Mathematical Theory of Elasticity,” (1933), English Translation, Noordhoff (1953).

    Google Scholar 

  13. G. c. Sih, “On the Westergaard Method of Crack Analysis,” International Journal of Fracture Mechanics, Vol. 2, 1966, pp. 628–631

    Article  Google Scholar 

  14. J. Eftis, and H. Liebowitz, “On the Modified Westergaard Equations for Certain Plane Crack Problems,” International Journal of Fracture Mechanics, Vol. 8, 1972, pp. 383–392

    Article  Google Scholar 

  15. G. R. Irwin, Fracture Handbuch der Physik, Springer-Verlag, Heidelberg, VI, 1958,

    Google Scholar 

  16. H. Tada, P. C. Paris and G. R. Irwin, ed. Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pa., 1973

    Google Scholar 

  17. G. C. Sih, Handbook of Stress Intensity Factors for Researchers and Engineers, Institute of Fracture and Solid Mechanics, 31, Series E. No 2, June 1964.

    Google Scholar 

  18. Annual Book of ASTM Standards, “Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials,” Vol. 03.01, 1999, pp. 413–443

    Google Scholar 

  19. Annual Book of ASTM Standards, “Standard Practice for R-Curve Determination,” Vol. 03.01, 1999, pp. 494–506

    Google Scholar 

  20. A. S. Tetelman, and A. J. McEvily, JR., “Fracture of Structural Materials”, John Wiley& Sons Inc., 1967, pp 132–139.

    Google Scholar 

  21. J. M. Craft, A. M. Sullivan, R. W. Boyle, “Effects of Dimensions on Fast Fracture Instability of Notched Sheet,” Crack Propagation Symposium, Cranfield 1961, Paper 1.

    Google Scholar 

  22. M. F. Kanninen, and A. T. Hopper, “Advance Fracture Mechanics,” Oxford Engineering cience Series, 1985, pp. 150–200

    Google Scholar 

  23. J. M. Barsom, “The Development of AASHTO Fracture Toughness Requirement for Bridge Steel,” Engineering Fracture Mechanics, Vol. 7, No. 3, September 1975.

    Google Scholar 

  24. 19. J. M. Barsom, “The Development of AASHTO Fracture Toughness Requirement for Bridge Steel,” American Iron and Steel Institute, Washington, D. C, February 1975.

    Google Scholar 

  25. Fatigue Crack Growth Computer Program “NASA/FLAGRO”, Developed by R. G. Forman, V. Shivakumar, J. C. Newman. JSC-22267A, January 1992.

    Google Scholar 

  26. H. O. Fuchs and R. I. Stephens, “Metal Fatigue in Engineering,” John Wiley and Sons, 1980, pp. 217–255.

    Google Scholar 

  27. The Making, Shaping and Treating of Steel, Edited by H. E. McGannon, Ninth Edition, United State Steel, Pittsburgh, Pennsylvania, December, 1970.

    Google Scholar 

  28. American Association of State Highway and Transportation Officials (AASHTO) Material Toughness Requirement, Association General Offices, Washington, D. DC, 1972.

    Google Scholar 

  29. S. T. Rolfe and J. M. Barsom, “Fracture and Fatigue Control in Structures, Applications of Fracture Mechanics," Prentice-Hall, Inc., Englewood Cliffs, New Jersy.

    Google Scholar 

  30. A. S. Tetelman, and A. J. McEvily, JR., “Fracture of Structural Materials”, John Wiley& Sons Inc., 1967, pp 3–82.

    Google Scholar 

  31. B. L. Averback, D. L. Felbeck, G. T. Hahn, D. A. Thomas, “Fracture,” Proceeding of an International Conference on the Atomic Mechanism of Fracture, April 12-16, 1959, pp. 20–43.

    Google Scholar 

  32. R. A. Flinn, P. K. Trojan, “Engineering Materials and Their Applications”, Third Edition, Houghton Mifflin Company, 1986, PP. 321–322.

    Google Scholar 

  33. W. S. Margolis and F. C. Nordquist, “Plane Stress Fracture Toughness of Aluminum Alloy 7475-1/2in. Plate, Temperes- T7651 and T7351 and of Aluminum Alloy 2024-1/8 in. Sheet - T81 and T62 Temper,” general Dynamics, Forth Worth Div., F-16 Air Combat Fighter Technical Report TIS GA2300, CDRL A031, USAF Contract F33657-75-C-0310.

    Google Scholar 

  34. J. E. Srawley and W. F. Brown, “Fracture Toughness Testing Method,” ASTM STP 381, (1965), PP. 133–195.

    Google Scholar 

  35. J. M. Krafft, A. M. Sullivan and R. W. Boyle, “Effect of Dimensions on Fast Fracture Instability of Notched Sheets,” Cranfield Crack Propagation Symposium, Vol. 1, (1961), pp. 8–28.

    Google Scholar 

  36. H. Vlieger, “Residual Strength of Cracked Stiffened Panel,” Engineering Fracture Mechanics, Vol. 5, 1973, 447–478.

    Article  Google Scholar 

  37. T. Swift, and D. Y. Wang, “Damage Tolerant Design Analysis Method and Test Verification of Fuselage Structure, Air force Conference on Fatigue and Frcature,” AFFDL-TR-70-144, 1970, PP. 653–683.

    Google Scholar 

  38. T. Swift, “Development of Fail-Safe Design Features of DC-10, ASTM STP 486, 1971, PP. 653–683.

    Google Scholar 

  39. M. P. Kaplan, and J. A. Reiman, “Use of Fracture Mechanics in Estimating Structural Life and Inspection Intervals,” Journal of Aircraft, Vol. 13, No. 2, Feb. 1976, pp. 99–102.

    Article  Google Scholar 

  40. E. Orowan, “Fracture and Strength of Solids,” Rep. Prog. Physics, Vol. 12, (1949), pp. 185–232.

    Article  ADS  Google Scholar 

  41. F. A. McClintock and G. R. Irwin, “Plasticity Aspects of Fracture Mechanics,” ASTM STP 381, (1965) pp. 84–112.

    Google Scholar 

  42. W. Johnson, and P. B. Mellor, (1962), Plasticity for Mechanical Engineers, Van Nostrand, New York.

    Google Scholar 

  43. G. S. Spencer (1968), An Introduction to Plasticity, Chapman and Hall, London.

    Google Scholar 

  44. G. R. Irwin, “Crack Extension Force for a Part Through Crackin a Plate,” Journal of Applied Mechanics, December 1962, pp. 651–654.

    Google Scholar 

  45. J. C. Newman, Jr. “Fracture Analysis of Surface-and Through Crack Sheets and Plates,” Engineering Fracture Mechanics, Vol. 5 No. 3, Sept. 1973, pp. 667–685.

    Article  Google Scholar 

  46. R. M. Engle, Jr., “Aspect Ratio Variability in Part-Through Crack Life Prediction, “ASTM STP 687, Am. Society for Testing and Materials, 1979, pp. 74–88.

    Book  Google Scholar 

  47. J. C. Newman, Jr. and I. S. Raju, “Stress Intensity Factor Equations for Cracks in Three Dimensional Finite Bodies,” NASA TM 83200, NASA Langley Research Center, Aug. 1981.

    Google Scholar 

  48. J. C. Newman and I. S. Raju, “Analysis of Surface Cracks in Finite Plates Under Tension or Bending,” NASATP-1578, 1979.

    Google Scholar 

  49. w. g. Reuter, J. C. Newman, B. D. Macdonald, and S. R. Powell, “Fracture Criterion for Surface Cracks in a Brittle Material,” Fracture Mechanics, ASTM STP 1207, American Society for Testing Material, 1994, pp. 614–635.

    Google Scholar 

  50. W. G. Reuter, N. C. Elfer, D. A. Hull, J. C. Newman, D. Munz, and T. L. Panontin, “Fracture Toughness Results and Preliminary Analysis for International Cooperative test Program on Specimen Containing Surface Cracks,” Fatigue and Fracture Mechanics: ASTM STP 1321, Vol. 28, 1997.

    Google Scholar 

  51. ASTM Committee, “The Slow Growth and Rapid Propagation of Cracks,” Material Res. and Standards, 1 (1961) pp. 389–394.

    Google Scholar 

  52. G. R. Irwin, “Fracture of Pressure Vessels,” Materials for Missiles and Spacecraft, pp. 204–229, McGraw-Hill (1963).

    Google Scholar 

  53. J. E. Srawley, “Wide Range Stress Intensity Factor Expressions for ASTM E 399 Standard Fracture Toughness Specimens,” International Journal of Fracture Mechanics, Vol 12, June 1976 p. 475.

    Google Scholar 

  54. B. Farahmand, “Fatigue and Fracture Mechanics of High Risk Parts,"” Chapman and Hall, 1997, Appendix A

    Book  Google Scholar 

  55. B. Farahmand, “Fatigue and Fracture Mechanics of High Risk Parts"” Xhapman and Hall, 1997, 316–317

    Book  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farahmand, B. (2001). Linear Elastic Fracture Mechanics (LEFM) and Applications. In: Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1585-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1585-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5627-1

  • Online ISBN: 978-1-4615-1585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics