In response to infection or tissue injury, leukocytes roll along the endothelial lining of blood vessels, then stick more firmly, and finally migrate through the vessel wall into the underlying tissues. During the past fifteen years, remarkable progress has been made in elucidating the molecular mechanisms that underlie this multistep pathway of leukocyte recruitment. Specific combinations of adhesion and signaling molecules regulate the accumulation of distinct subsets of leukocytes into lymphatic tissues or inflammatory sites. Locally generated cytokines or other mediators induce the expression of adhesion molecules on the endothelial cell surface that promote the initial tethering and rolling of leukocytes on the vessel wall. The relatively slow velocity of rolling leukocytes allows them to become activated by locally generated chemokines or lipid autacoids. The activated leukocytes express other adhesion molecules that stabilize adhesion and promote emigration in response to chemotactic gradients. Adhesive interactions of leukocytes with other leukocytes or with platelets may enhance leukocyte accumulation.


Cytoplasmic Domain Leukocyte Adhesion Leukocyte Recruitment Endothelial Cell Surface High Endothelial Venule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlos, T.M. and Harlan, J.M. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068–2101.PubMedGoogle Scholar
  2. 2.
    Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu.Rev.Physiol. 1995; 57: 827–872.PubMedCrossRefGoogle Scholar
  3. 3.
    Butcher, E.C. and Picker, L.J. Lymphocyte homing and homeostasis. Science 1996; 272: 60–66.PubMedCrossRefGoogle Scholar
  4. 4.
    McEver, R.P., Moore, K.L., and Cummings, R.D. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J.Biol.Chem. 1995; 270: 11025–11028.PubMedCrossRefGoogle Scholar
  5. 5.
    Kansas, G.S. Selectins and their ligands: current concepts and controversies. Blood 1996; 88: 3259–3287.PubMedGoogle Scholar
  6. 6.
    Graves, B.J., Crowther, R.L., Chandran, C, Rumberger, J.M., Li, S., Huang, K.-S., Presky, D.H., Familletti, P.C., Wolitzky, B.A., and Burns, D.K. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 1994;367:532–538.PubMedCrossRefGoogle Scholar
  7. 7.
    Erbe, D.V., Watson, S.W., Presta, L.G., Wolitzky, B.A., Foxall, C, Brandley, B.K., and Lasky, L.A. P- and E-selectin use common sites for carbohydrate ligand recognition and cell adhesion. J.Cell Biol. 1993;120:1227–1235.PubMedCrossRefGoogle Scholar
  8. 8.
    Erbe, D.V., Wolitzky, B.A., Presta, L.G., Norton, C.R., Ramos, R.J., Burns, D.K., Rumberger, J.M., Rao, B.N.N., Foxall, C, Brandley, B.K. et al. Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion. J.Cell Biol. 1992;119:215–227.PubMedCrossRefGoogle Scholar
  9. 9.
    Hollenbaugh, D., Bajorath, J., Stenkamp, R., and Aruffo, A. Interaction of P-selectin (CD62) and its cellular ligand: Analysis of critical residues. Biochemistry 1993;32:2960–2966.PubMedCrossRefGoogle Scholar
  10. 10.
    Bajorath, J., Hollenbaugh, D., King, G., Harte, W.Jr., Eustice, D.C., Darveau, R.P., and Aruffo, A. CD62/P-selectin binding sites for myeloid cells and sulfatides are overlapping. Biochemistry 1994;33:1332–1339.PubMedCrossRefGoogle Scholar
  11. 11.
    Revelle, B.M., Scott, D., Kogan, T.P., Zheng, J.H., and Beck, P.J. Structure-function analysis of P-selectin-sialyl Lewisx binding interactions Mutagenic alteration of ligand binding specificity. J.Biol.Chem. 1996;271:4289–4297.PubMedCrossRefGoogle Scholar
  12. 12.
    Pigott, R., Needham, L.A., Edwards, R.M., Walker, C., and Power, C. Structural and functional studies of the endothelial activation antigen endothelial leucocyte adhesion molecule-1 using a panel of monoclonal antibodies. J.Immunol. 1991;147:130–135.PubMedGoogle Scholar
  13. 13.
    Bowen, B.R., Fennie, C, and Lasky, L.A. The Mel 14 antibody binds to the lectin domain of the murine peripheral lymph node homing receptor. J.Cell Biol. 1990;110:147–153.PubMedCrossRefGoogle Scholar
  14. 14.
    Kansas, G.S., Saunders, K.B., Ley, K., Zakrzewicz, A., Gibson, R.M., Furie, B.C., Furie, B., and Tedder, T.F. A role for the epidermal growth factor-like domain of P-selectin in ligand recognition and cell adhesion. J.Cell Biol. 1994;124:609–618.PubMedCrossRefGoogle Scholar
  15. 15.
    Gibson, R.M., Kansas, G.S., Tedder, T.F., Furie, B., and Furie, B.C. Lectin and epidermal growth factor domains of P-selectin at physiologic density are the recognition unit for leukocyte binding. Blood 1995;85:151–158.PubMedGoogle Scholar
  16. 16.
    Tu, L.L., Chen, A.J., Delahunty, M.D., Moore, K.L., Watson, S.R., McEver, R.P., and Tedder, T.F. L-selectin binds to P-selectin glycoprotein ligand-1 on leukocytes. J.Immunol. 1996;157:3995–4004.PubMedGoogle Scholar
  17. 17.
    Kolbinger, F., Patton, J.T., Geisenhoff, G., Aenis, A., Li, X.H., and Katopodis, A.G. The carbohydrate-recognition domain of E-selectin is sufficient for ligand binding under both static and flow conditions. Biochemistry 1996;35:6385–6392.PubMedCrossRefGoogle Scholar
  18. 18.
    Dwir, O., Kansas, G.S., and Alon, R. An activated L-selectin mutant with conserved equilibrium binding properties but enhanced ligand recognition under shear flow. J.Biol Chem. 2000;275:18682–18691.PubMedCrossRefGoogle Scholar
  19. 19.
    Watson, S.R., Imai, Y., Fennie, C, Geoffrey, J., Singer, M., Rosen, S.D., and Lasky, L.A. The complement binding-like domains of the murine homing receptor facilitate lectin activity. J.Cell Biol. 1991;115:235–243.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, S.H., Burns, D.K., Rumberger, J.M., Presky, D.H., Wilkinson, V.L., Anostario, M.Jr., Wolitzky, B.A., Norton, C.R., Familletti, P.C., Kim, K.J. et al. Consensus repeat domains of E-selectin enhance ligand binding. J.Biol Chem. 1994;269:4431–4437.PubMedGoogle Scholar
  21. 21.
    Ushiyama, S., Laue, T.M., Moore, K.L., Erickson, H.P., and McEver, R.P. Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J.Biol Chem. 1993;268:15229–15237.PubMedGoogle Scholar
  22. 22.
    Moore, K.L., Eaton, S.F., Lyons, D.E., Lichenstein, H.S., Cummings, R.D., and McEver, R.P. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J.Biol Chem. 1994;269:23318–23327.PubMedGoogle Scholar
  23. 23.
    Hensley, P., McDevitt, P.J., Brooks, I., Trill, J.J., Feild, J.A., McNulty, D.E., Connor, J.R., Griswold, D.E., Kumar, N.V., Kopple, K.D. et al. The soluble form of E-selectin is an asymmetric monomer. Expression, purification, and characterization of the recombinant protein. J.Biol Chem. 1994;269:23949–23958.PubMedGoogle Scholar
  24. 24.
    Mehta, P., Cummings, R.D., and McEver, R.P. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J.Biol Chem. 1998; 273: 32506–32513.PubMedCrossRefGoogle Scholar
  25. 25.
    Varki, A. Selectin ligands. Proc.Natl.Acad.Sci.USA 1994; 91: 7390–7397.PubMedCrossRefGoogle Scholar
  26. 26.
    Jacob, G.S., Kirmaier, C, Abbas, S.Z., Howard, S.C., Steininger, C.N., Welply, J.K., and Scudder, P. Binding of sialyl Lewis x to E-selectin as measured by fluorescence polarization. Biochemistry 1995;34:1210–1217.PubMedCrossRefGoogle Scholar
  27. 27.
    Cooke, R.M., Hale, R.S., Lister, S.G., Shah, G., and Weir, M.P. The conformation of the sialyl Lewis X ligand changes upon binding to E-selectin. Biochemistry 1994;33:10591–10596.PubMedCrossRefGoogle Scholar
  28. 28.
    Aruffo, A., Kolanus, W., Walz, G., Fredman, P., and Seed, B. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell 1991;67:35–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Norgard-Sumnicht, K.E., Varki, N.M., and Varki, A. Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science 1993; 261: 480–483.PubMedCrossRefGoogle Scholar
  30. 30.
    Moore, K.L., Stults, N.L., Diaz, S., Smith, D.L., Cummings, R.D., Varki, A., and McEver, R.P. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J.Cell.Biol. 1992;118:445–456.PubMedCrossRefGoogle Scholar
  31. 31.
    Steegmaier, M., Levinovitz, A., Isenmann, S., Borges, E., Lenter, M., Kocher, H.P., Kleuser, B., and Vestweber, D. The E-selectin-ligand ESL-1 is a variant of an FGF-receptor. Nature 1995;373:615–620.PubMedCrossRefGoogle Scholar
  32. 32.
    Sako, D., Chang, X.-J., Barone, K.M., Vachino, G., White, H.M., Shaw, G., Veldman, G.M., Bean, K.M., Ahern, T.J., Furie, B. et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 1993;75:1179–1186.PubMedCrossRefGoogle Scholar
  33. 33.
    Levinovitz, A., Muhlhoff, J., Isenmann, S., and Vestweber, D. Identification of a glycoprotein ligand for E-selectin on mouse myeloid cells. J.Cell Biol. 1993;121:449–459.PubMedCrossRefGoogle Scholar
  34. 34.
    Patel, T.P., Goelz, S.E., Lobb, R.R., and Parekh, R.B. Isolation and characterization of natural protein-associated carbohydrate ligands for E-selectin. Biochemistry 1994;33:14815–14824.PubMedCrossRefGoogle Scholar
  35. 35.
    Lenter, M., Levinovitz, A., Isenmann, S., and Vestweber, D. Monospecific and common glycoprotein ligands for E- and P-selectin on myeloid cells. J.Cell Biol. 1994;125:471–481.PubMedCrossRefGoogle Scholar
  36. 36.
    Mebius, R.E. and Watson, S.R. L- and E-selectin can recognize the same naturally occurring ligands on high endothelial venules. J.Immunol. 1993;151:3252–3260.PubMedGoogle Scholar
  37. 37.
    Baumhueter, S., Singer, M.S., Henzel, W., Hemmerich, S., Renz, M., Rosen, S.D., and Lasky, L.A. Binding of L-selectin to the vascular sialomucin CD34. Science 1993;262:436–438.CrossRefGoogle Scholar
  38. 38.
    Lasky, L.A., Singer, M.S., Dowbenko, D., Imai, Y., Henzel, W.J., Grimley, C, Fennie, C, Gillett, N., Watson, S.R., and Rosen, S.D. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 1992;69:927–938.PubMedCrossRefGoogle Scholar
  39. 39.
    Briskin, M.J., McEvoy, L.M., and Butcher, E.C. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature 1993;363:461–463.PubMedCrossRefGoogle Scholar
  40. 40.
    Imai, Y., Singer, M.S., Fennie, C, Lasky, L.A., and Rosen, S.D. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor. J.Cell Biol. 1991;113:1213–1222.PubMedCrossRefGoogle Scholar
  41. 41.
    Norgard, K.E., Moore, K.L., Diaz, S., Stults, N.L., Ushiyama, S., McEver, R.P., Cummings, R.D., and Varki, A. Characterization of a specific ligand for P-selectin on myeloid cells. A minor glycoprotein with sialylated O-linked oligosaccharides. J.Biol.Chem. 1993;268:12764–12774.PubMedGoogle Scholar
  42. 42.
    Li, F., Wilkins, P.P., Crawley, S., Weinstein, J., Cummings, R.D., and McEver, R.P. Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin. J.Biol.Chem. 1996;271:3255–3264.PubMedCrossRefGoogle Scholar
  43. 43.
    Imai, Y., Lasky, L.A., and Rosen, S.D. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 1993;361:555–557.PubMedCrossRefGoogle Scholar
  44. 44.
    Hemmerich, S., Butcher, E.C, and Rosen, S.D. Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, an adhesion-blocking monoclonal antibody. J.Exp.Med. 1994;180:2219–2226.PubMedCrossRefGoogle Scholar
  45. 45.
    Wilkins, P.P., Moore, K.L., McEver, R.P., and Cummings, R.D. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J.Biol.Chem. 1995;270:22677–22680.PubMedCrossRefGoogle Scholar
  46. 46.
    Pouyani, T. and Seed, B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell 1995;83:333–343.PubMedCrossRefGoogle Scholar
  47. 47.
    Sako, D., Comess, K.M., Barone, K.M., Camphausen, R.T., Cumming, D.A., and Shaw, G.D. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell 1995;83:323–331.PubMedCrossRefGoogle Scholar
  48. 48.
    Hemmerich, S. and Rosen, S.D. 6’-sulfated sialyl Lewis x is a major capping group of GlyCAM-1. Biochemistry 1994;33:4830–4835.PubMedCrossRefGoogle Scholar
  49. 49.
    Hemmerich, S., Bertozzi, C.R., Leffler, H., and Rosen, S.D. Identification of the sulfated monosaccharides of GlyCAM-1, an endothelial-derived ligand for L-selectin. Biochemistry 1994;33:4820–4829.PubMedCrossRefGoogle Scholar
  50. 50.
    Hemmerich, S., Leffler, H., and Rosen, S.D. Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J.Biol.Chem. 1995;270:12035–12047.PubMedCrossRefGoogle Scholar
  51. 51.
    Wilkins, P.P., McEver, R.P., and Cummings, R.D. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells.J.Biol.Chem. 1996;271:18732–18742.PubMedCrossRefGoogle Scholar
  52. 52.
    Maemura, K. and Fukuda, M. Poly-N-acetyllactosaminyl O-glycans attached to leukosialin: The presence of sialyl Lex structures in O-glycans. J.Biol.Chem. 1992;267:24379–24386.PubMedGoogle Scholar
  53. 53.
    Leppanen, A., Mehta, P., Ouyang, Y.-B., Ju, T., Helin, J., Moore, K.L., van Die, I., Canfield, W.M., McEver, R.P., and Cummings, R.D. A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J.Biol.Chem. 1999;274:24838–24848.PubMedCrossRefGoogle Scholar
  54. 54.
    Crottet, P., Kim, Y.J., Varki, A. Subsets of sialylated, sulfated mucins of diverse origins are recognized by L-selectin. Glycobiology 1996;6:191–208.PubMedCrossRefGoogle Scholar
  55. 55.
    Picker, L.J., Kishimoto, T.K., Smith, C.W., Warnock, R.A., and Butcher, E.C. ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 1991;349:796–799.PubMedCrossRefGoogle Scholar
  56. 56.
    Moore, K.L. and Thompson, L.F. P-selectin (CD62) binds to subpopulations of human memory T lymphocytes and natural killer cells. Biochem. Biophys. Res. Commun. 1992;186:173–181.PubMedCrossRefGoogle Scholar
  57. 57.
    Borges, E., Tietz, W., Steegmaier, M., Moll, T., Hallmann, R., Hamann, A., and Vestweber, D. P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J. Exp. Med. 1997;185:573–578.PubMedCrossRefGoogle Scholar
  58. 58.
    Diacovo, T.G., Puri, K.D., Warnock, R.A., Springer, T.A., and Von Andrian, U.H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 1996;273:252–255.PubMedCrossRefGoogle Scholar
  59. 59.
    Frenette, P.S., Johnson, R.C., Hynes, R.O., and Wagner, D.D. Platelets roll on stimulated endothelium in vivo: An interaction mediated by endothelial P-selectin. Proc.Natl.Acad.Sci.USA 1995;92:7450–7454.PubMedCrossRefGoogle Scholar
  60. 60.
    Bargatze, R.F., Kurk, S., Butcher, E.C., and Jutila, M.A. Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J. Exp. Med. 1994;180:1785–1792.PubMedCrossRefGoogle Scholar
  61. 61.
    Simon, S.I., Rochon, Y.P., Lynam, E.B., Smith, C.W., Anderson, D.C., and Sklar, L.A. β2-Integrin and L-selectin are obligatory receptors in neutrophil aggregation. Blood 1993;82:1097–1106.PubMedGoogle Scholar
  62. 62.
    Walcheck, B., Moore, K.L., McEver, R.P., and Kishimoto, T.K. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1: a mechanism that amplifies initial leukocyte accumulation on P-selectin in vitro. J. Clin. lnvest. 1996;98:1081–1087.CrossRefGoogle Scholar
  63. 63.
    Alon, R., Fuhlbrigge, R.C., Finger, E.B., and Springer, T.A. Interactions through L-selectin between leukocytes and adherent leukocytes nucleate rolling adhesions on selectins and VCAM-1 in shear flow. J.Cell Biol. 1996;135:849–865.PubMedCrossRefGoogle Scholar
  64. 64.
    Hammer, D.A. and Apte, S.M. Simulation of cell rolling and adhesion on surfaces in shear flow: General results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 1992;63:35–57.PubMedCrossRefGoogle Scholar
  65. 65.
    Tözeren, A. and Ley, K. How do selectins mediate leukocyte rolling in venules? Biophys. J. 1992;63:700–709.PubMedCrossRefGoogle Scholar
  66. 66.
    Alon, R., Hammer, D.A., and Springer, T.A. Lifetime of the P-selectin: carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 1995;374:539–542.PubMedCrossRefGoogle Scholar
  67. 67.
    Alon, R., Chen, S.Q., Puri, K.D., Finger, E.B., and Springer, T.A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J.Cell Biol. 1997;138:1169–1180.PubMedCrossRefGoogle Scholar
  68. 68.
    Finger, E.B., Puri, K.D., Alon, R., Lawrence, M.B., Von Andrian, U.H., and Springer, T.A. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 1996;379:266–269.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen, S.Q. and Springer, T.A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J.Cell Biol. 1999;144:185–200.PubMedCrossRefGoogle Scholar
  70. 70.
    Nicholson, M.W., Barclay, A.N., Singer, M.S., Rosen, S.D., and Van der Merwe, P.A. Affinity and kinetic analysis of L-selectin (CD62L) binding to glycosylation-dependent cell-adhesion molecule-1. J.Biol.Chem. 1998;273:763–770.PubMedCrossRefGoogle Scholar
  71. 71.
    Kishimoto, T.K., Jutila, M.A., Berg, E.L., and Butcher, E.C. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 1989;245:1238–1241.PubMedCrossRefGoogle Scholar
  72. 72.
    Patecanda, A., Walcheck, B., Bishop, D.K., and Jutila, M.A. Rapid activation-independent shedding of leukocyte L-selectin induced by cross-linking of the surface antigen. Eur. J.Immunol. 1992;22:1279–1286.CrossRefGoogle Scholar
  73. 73.
    Walcheck, B., Kahn, J., Fisher, J.M., Wang, B.B., Fisk, R.S., Payan, D.G., Feehan, C, Betageri, R., Darlak, K., Spatola, A.F. et al. Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 1996;380:720–723.PubMedCrossRefGoogle Scholar
  74. 74.
    Picker, L.J., Warnock, R.A., Burns, A.R., Doerschuk, CM., Berg, E.L., and Butcher, E.C. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 1991;66:921–933.PubMedCrossRefGoogle Scholar
  75. 75.
    Von Andrian, U.H., Hasslen, S.R., Nelson, R.D., Erlandsen, S.L., and Butcher, E.C. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 1995;82:989–999.PubMedCrossRefGoogle Scholar
  76. 76.
    Patel, K.D., Nollert, M.U., and McEver, R.P. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J.Cell Biol. 1995;131:1893–1902.PubMedCrossRefGoogle Scholar
  77. 77.
    Setiadi, H., Sedgewick, G., Erlandsen, S.L., and McEver, R.P. Interactions of the cytoplasmic domain of P-selectin with clathrin-coated pits enhance leukocyte adhesion under flow. J.Cell Biol. 1998;142:859–871.PubMedCrossRefGoogle Scholar
  78. 78.
    Li, X., Steeber, D.A., Tang, M.L.K., Farrar, M.A., Perlmutter, R.M., and Tedder, T.F. Regulation of L-selectin-mediated rolling through receptor dimerization. J. Exp. Med. 1998;188:1385–1390.PubMedCrossRefGoogle Scholar
  79. 79.
    Moore, K.L., Patel, K.D., Bruehl, R.E., Fugang, L., Johnson, D.A., Lichenstein, H.S., Cummings, R.D., Bainton, D.F., and McEver, R.P. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J.Cell Biol. 1995;128:661–671.PubMedCrossRefGoogle Scholar
  80. 80.
    Patel, K.D., Moore, K.L., Nollert, M.U., and McEver, R.P. Neutrophils use both shared and distinct mechanisms to adhere to selectins under static and flow conditions. J. Clin. Invest. 1995;96:1887–1896.PubMedCrossRefGoogle Scholar
  81. 81.
    Norman, K.E., Moore, K.L., McEver, R.P., and Ley, K. Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood 1995,86:4417–4421.PubMedGoogle Scholar
  82. 82.
    Guyer, D.A., Moore, K.L., Lynam, E., Schammel, C.M.G., Rogelj, S., McEver, R.P., and Sklar, L.A. P-selectin glycoprotein ligand-1 (PSGL-1) is a ligand for L-selectin in neutrophil aggregation. Blood 1996;88:2415–2421.PubMedGoogle Scholar
  83. 83.
    Patel, K.D. and McEver, R.P. Comparison of tethering and rolling of eosinophils and neutrophils through selectins and P-selectin glycoprotein ligand-1. J.Immunol. 1997;159:4555–4565.PubMedGoogle Scholar
  84. 84.
    Li, F., Erickson, H.P., James, J.A., Moore, K.L., Cummings, R.D., and McEver, R.P. Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies. J.Biol.Chem. 1996;271:6342–6348.PubMedCrossRefGoogle Scholar
  85. 85.
    Ramachandran, V., Nollert, M.U., Qiu, H., Liu, W., Cummings, R.D., Zhu, C, and McEver, R.P. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc.Natl.Acad.Sci.USA 1999;96:13771–13776.PubMedCrossRefGoogle Scholar
  86. 86.
    Bruehl, R.E., Moore, K.L., Lorant, D.E., Borregaard, N., Zimmerman, G.A., McEver, R.P., and Bainton, D.F. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J.Leukoc.Biol. 1997;61:489–499.PubMedGoogle Scholar
  87. 87.
    Borges, E., Eytner, R., Moll, T., Steegmaier, M., Campbell, M.A., Ley, K., Mossman, H., and Vestweber, D. The P-selectin glycoprotein ligand-1 is important for recruitment of neutrophils into inflamed mouse peritoneum. Blood 1997;90:1934–1942.PubMedGoogle Scholar
  88. 88.
    Yang, J., Hirata, T., Croce, K., Merrill-Skoloff, G., Tchernychev, B., Williams, E., Flaumenhaft, R., Furie, B.C., and Furie, B. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J.Exp.Med. 1999;190:1769–1782.PubMedCrossRefGoogle Scholar
  89. 89.
    Berg, E.L., McEvoy, L.M., Berlin, C, Bargatze, R.F., and Butcher, E.C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 1993;366:695–698.PubMedCrossRefGoogle Scholar
  90. 90.
    Puri, K.D., Finger, E.B., Gaudernack, G., and Springer, T.A. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J.Cell Biol. 1995;131:261–270.PubMedCrossRefGoogle Scholar
  91. 91.
    Bargatze, R.F., Jutila, M.A., and Butcher, E.C. Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity 1995;3:99–108.PubMedCrossRefGoogle Scholar
  92. 92.
    Cheng, J., Baumhueter, S., Cacalano, G., Carver-Moore, K., Thibodeaux, H., Thomas, R., Broxmeyer, H.E., Cooper, S., Hague, N., Moore, M. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 1996;87:479–490.PubMedGoogle Scholar
  93. 93.
    Brustein, M., Kraal, G., Mebius, R.E., and Watson, S.R. Identification of a soluble form of a ligand for the lymphocyte homing receptor. J.Exp. Med. 1992;176:1415–1419.PubMedCrossRefGoogle Scholar
  94. 94.
    Hwang, ST., Singer, M.S., Giblin, P.A., Yednock, T.A., Bacon, K.B., Simon, S.I., and Rosen, S.D. GlyCAM-1, a physiologic ligand for L-selectin, activates β2 integrins on naive peripheral lymphocytes. J.Exp.Med. 1996;184:1343–1348.PubMedCrossRefGoogle Scholar
  95. 95.
    Walcheck, B., Watts, G., and Jutila, M.A. Bovine γ/δ T cells bind E-selectin via a novel glycoprotein receptor: First characterization of a lymphocyte/E-selectin interaction in an animal model. J.Exp.Med. 1993;178:853–863.PubMedCrossRefGoogle Scholar
  96. 96.
    Sassetti, C., Tangemann, K., Singer, M.S., Kershaw, D.B., and Rosen, S.D. Identification of podocalyxin-like protein as a high endothelial venule ligand for L-selectin: Parallels to CD34. J.Exp.Med. 1998;187:1965–1975.PubMedCrossRefGoogle Scholar
  97. 97.
    Lorant, D.E., Patel, K.D., Mclntyre, T.M., McEver, R.P., Prescott, S.M., and Zimmerman, G.A. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: A juxtacrine system for adhesion and activation of neutrophils. J.Cell Biol. 1991;115:223–234.PubMedCrossRefGoogle Scholar
  98. 98.
    Zimmerman, G.A., Mclntyre, T.M., and Prescott, S.M. Adhesion and signaling in vascular cell-cell interactions. J.Clin.Invest. 1996;98:1699–1702.PubMedCrossRefGoogle Scholar
  99. 99.
    Lorant, D.E., Topham, M.K., Whatley, R.E., McEver, R.P., Mclntyre, T.M., Prescott, S.M., and Zimmerman, G.A. Inflammatory roles of P-selectin. J.Clin.lnvest. 1993;92:559–570.CrossRefGoogle Scholar
  100. 100.
    Weyrich, A.S., Mclntyre, T.M., McEver, R.P., Prescott, S.M., and Zimmerman, G.A. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-a secretion. J.Clin.lnvest. 1995;95:2297–2303.CrossRefGoogle Scholar
  101. 101.
    Weyrich, A.S., Elstad, M.R., McEver, R.P., Mclntyre, T.M., Moore, K.L., Morrissey, J.H., Prescott, S.M., and Zimmerman, G.A. Activated platelets signal chemokine synthesis by human monocytes. J.Clin.lnvest. 1996;97:1525–1534.CrossRefGoogle Scholar
  102. 102.
    Abbassi, O., Kishimoto, T.K., Mclntire, L.V., Anderson, D.C., and Smith, C.W. E-selectin supports neutrophil rolling in vitro under conditions of flow. J.Clin.lnvest. 1993;92:2719–2730.CrossRefGoogle Scholar
  103. 103.
    Lawrence, M.B. and Springer, T.A. Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 1991;65:859–873.PubMedCrossRefGoogle Scholar
  104. 104.
    Lawrence, M.B. and Springer, T.A. Neutrophils roll on E-selectin. J.Immunol. 1993;151:6338–6346.PubMedGoogle Scholar
  105. 105.
    Hidari, K.I.P.J., Weyrich, A.S., Zimmerman, G.A., and McEver, R.P. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J.Biol.Chem. 1997;272:28750–28756.PubMedCrossRefGoogle Scholar
  106. 106.
    Evangelista, V., Manarini, S., Sideri, R., Rotondo, S., Martelli, N., Piccoli, A., Totani, L., Piccardoni, P., Vestweber, D., de Gaetano, G. et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: Role of PSGL-1 as a signaling molecule. Blood 1999;93:876–885.PubMedGoogle Scholar
  107. 107.
    Simon, S.I., Hu, Y., Vestweber, D., and Smith, C.W. Neutrophil tethering on E-selectin activates β2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J.Immunol. 2000;164:4348–4358.PubMedGoogle Scholar
  108. 108.
    Laudanna, C, Constantin, G., Baron, P., Scarpini, E., Scarlato, G., Cabrini, G., Dechecchi, C., Rossi, F., Cassatella, M.A., and Berton, G. Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-α and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule. J.Biol.Chem. 1994,269:4021–4026.PubMedGoogle Scholar
  109. 109.
    Waddell, T.K., Fialkow, L., Chan, C.K., Kishimoto, T.K., and Downey, G.P. Potentiation of the oxidative burst of human neutrophils. A signaling role for L-selectin. J.Biol.Chem. 1994;269:18485–18491.PubMedGoogle Scholar
  110. 110.
    Simon, S.I., Cherapanov, V., Nadra, I., Waddell, T.K., Seo, S.M., Wang, Q., Doerschuk, CM., and Downey, G.P. Signaling functions of L-selectin in neutrophils: Alterations in the cytoskeleton and colocalization with CD18. J.Immunol. 1999;163:2891–2901.PubMedGoogle Scholar
  111. 111.
    Smolen, J.E., Petersen, T.K., Koch, C., OKeefe, S.J., Hanlon, W.A., Seo, S., Pearson, D., Fossett, M.C., and Simon, S.I. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J.Biol.Chem. 2000;275:15876–15884.PubMedCrossRefGoogle Scholar
  112. 112.
    Tsang, Y.T.M., Neelamegham, S., Hu, Y., Berg, E.L., Burns, A.R., Smith, C.W., and Simon, S.I. Synergy between L-selectin signaling and chemotactic activation during neutrophil adhesion and transmigration. J.Immunol. 1997;159:4566–4577.PubMedGoogle Scholar
  113. 113.
    Yoshida, M., Westlin, W.F., Wang, N., Ingber, D.E., Rosenzweig, A., Resnick, N., and Gimbrone, M.A.Jr. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. J.Cell Biol. 1996;133:445–455.PubMedCrossRefGoogle Scholar
  114. 114.
    Lorant, D.E., McEver, R.P., Mclntyre, T.M., Moore, K.L., Prescott, S.M., and Zimmerman, G.A. Activation of polymorphonuclear leukocytes reduces their adhesion to P-selectin and causes redistribution of ligands for P-selectin on their surfaces. J.Clin.Invest. 1995;96:171–182.PubMedCrossRefGoogle Scholar
  115. 115.
    Johnston, G.I., Kurosky, A., and McEver, R.P. Structural and biosynthetic studies of the granule membrane protein, GMP-140, from human platelets and endothelial cells. J.Biol.Chem. 1989;264:1816–1823.PubMedGoogle Scholar
  116. 116.
    McEver, R.P., Beckstead, J.H., Moore, K.L., Marshall-Carlson, L., and Bainton, D.F. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J.Clin.Invest. 1989;84:92–99.PubMedCrossRefGoogle Scholar
  117. 117.
    Bonfanti, R., Furie, B.C., Furie, B., and Wagner, D.D. PADGEM (GMP 140) is a component of Weibel-Palade bodies of human endothelial cells. Blood 1989;73:1109–1112.PubMedGoogle Scholar
  118. 118.
    Stenberg, P.E., McEver, R.P., Shuman, M.A., Jacques, Y.V., and Bainton, D.F. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J.Cell Biol. 1985;101:880–886.PubMedCrossRefGoogle Scholar
  119. 119.
    Berman, C.L., Yeo, E.L., Wencel-Drake, J.D., Furie, B.C., Ginsberg, M.H., and Furie, B. A platelet alpha granule membrane protein that is associated with the plasma membrane after activation. J.Clin.Invest. 1986;78:130–137.PubMedCrossRefGoogle Scholar
  120. 120.
    Hattori, R., Hamilton, K.K., Fugate, R.D., McEver, R.P., and Sims, P.J. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J.Biol.Chem. 1989;264:7768–7771.PubMedGoogle Scholar
  121. 121.
    Hattori, R., Hamilton, K.K., McEver, R.P., and Sims, P.J. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J.Biol.Chem. 1989;264:9053–9060.PubMedGoogle Scholar
  122. 122.
    George, J.N., Pickett, E.B., Saucerman, S., McEver, R.P., Kunicki, T.J., Kieffer, N., and Newman, P.J. Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J.Clin.Invest. 1986;78:340–348.PubMedCrossRefGoogle Scholar
  123. 123.
    Michelson, A.D., Barnard, M.R., Hechtman, H.B., MacGregor, H., Connolly, R.J., Loscalzo, J., and Valeri, C.R. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc.Natl.Acad.Sci.USA 1996;93:11877–11882.PubMedCrossRefGoogle Scholar
  124. 124.
    Kuijpers, T.W., Raleigh, M., Kavanagh, T., Janssen, H., Calafat, J., Roos, D., and Harlan, J.M. Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape: A tubulin-driven process. J.Immunol. 1994;152:5060–5069.PubMedGoogle Scholar
  125. 125.
    Setiadi, H., Disdier, M., Green, S.A., Canfield, W.M., and McEver, R.P. Residues throughout the cytoplasmic domain affect the internalization efficiency of P-selectin. J.Biol.Chem. 1995;270:26818–26826.PubMedCrossRefGoogle Scholar
  126. 126.
    Green, S.A., Setiadi, H., McEver, R.P., and Kelly, R.B. The cytoplasmic domain of P-selectin contains a sorting determinant that mediates rapid degradation in lysosomes. J.Cell Biol. 1994;124:435–448.PubMedCrossRefGoogle Scholar
  127. 127.
    Bevilacqua, M.P., Stengelin, S., Gimbrone, M.A.Jr., and Seed, B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 1989;243:1160–1165.PubMedCrossRefGoogle Scholar
  128. 128.
    Smeets, E.F., de Vries, T., Leeuwenberg, J.F.M., Van den Eijnden, D.H., Buurman, W.A., and Neefjes, J.J. Phosphorylation of surface E-selectin and the effect of soluble ligand (Sialyl Lewisx) on the half-life of E-selectin. Eur.J.Immunol. 1993;23:147–151.PubMedCrossRefGoogle Scholar
  129. 129.
    Subramaniam, M., Koedam, J.A., and Wagner, D.D. Divergent fates of P- and E-selectins after their expression on the plasma membrane. Mol.Biol.Cell 1993;4:791–801.PubMedGoogle Scholar
  130. 130.
    Disdier, M., Morrissey, J.H., Fugate, R.D., Bainton, D.F., and McEver, R.P. Cytoplasmic domain of P-selectin (CD62) contains the signal for sorting into the regulated secretory pathway. Mol.Biol.Cell 1992;3:309–321.PubMedGoogle Scholar
  131. 131.
    Straley, K.S., Daugherty, B.L., Aeder, S.E., Hockenson, A.L., Kim, K., and Green, S.A. An atypical sorting determinant in the cytoplasmic domain of P-selectin mediates endosomal sorting. Mol.Biol.Cell 1998;9:1683–1694.PubMedGoogle Scholar
  132. 132.
    Chuang, P.I., Young, B.A., Thiagarajan, R.R., Cornejo, C, Winn, R.K., and Harlan, J.M. Cytoplasmic domain of E-selectin contains a non-tyrosine endocytosis signal. J.Biol.Chem. 1997;272:24813–24818.PubMedCrossRefGoogle Scholar
  133. 133.
    Hartwell, D.M., Mayadas, T.N., Berger, G., Frenette, P.S., Rayburn, H., Hynes, R.O., and Wagner, D.D. Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J.Cell Biol. 1998;143:1129–1141.PubMedCrossRefGoogle Scholar
  134. 134.
    Weller, A., Isenmann, S., and Vestweber, D. Cloning of the mouse endothelial selectins. Expression of both E- and P-selectin is inducible by tumor necrosis factor. J.Biol.Chem. 199;267:15176–15183.Google Scholar
  135. 135.
    Sanders, W.E., Wilson, R.W., Ballantyne, CM., and Beaudet, A.L. Molecular cloning and analysis of in vivo expression of murine P-selectin. Blood 199;80:795–800.Google Scholar
  136. 136.
    Mayadas, T.N., Johnson, R.C., Rayburn, H., Hynes, R.O., and Wagner, D.D. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 1993;74:541–554.PubMedCrossRefGoogle Scholar
  137. 137.
    Burns, S.A., DeGuzman, B.J., Newburger, J.W., Mayer, J.E.Jr., Neufeld, E.J., and Briscoe, D.M. P-selectin expression in myocardium of children undergoing cardiopulmonary bypass. J.Thorac.Cardiovasc.Surg. 1995;110:924–933.PubMedCrossRefGoogle Scholar
  138. 138.
    Yao, L., Pan, J., Setiadi, H., Patel, K.D., and McEver, R.P. Interleukin 4 or oncostatin M induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. J.Exp.Med. 1996;184:81–92.PubMedCrossRefGoogle Scholar
  139. 139.
    Silber, A., Newman, W., Reimann, K.A., Hendricks, E., Walsh, D., and Ringler, D.J. Kinetic expression of endothelial adhesion molecules and relationship to leukocyte recruitment in two cutaneous models of inflammation. Lab.lnvest. 1994;70:163–175.Google Scholar
  140. 140.
    Yao, L., Setiadi, H., Xia, L., Laszik, Z., Taylor, F.B., and McEver, R.P. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood 1999;94:3820–3828.PubMedGoogle Scholar
  141. 141.
    Woltmann, G., McNulty, C. A., Dewson, G., Symon, F. A., and Wardlaw, A. J. Interleukin-13 induces PSGL-1/P-selectin-dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. Blood 2000;95:3146–3152.PubMedGoogle Scholar
  142. 142.
    Symon, F.A., Walsh, G.M., Watson, S.R., and Wardlaw, A.J. Eosinophil adhesion to nasal polyp endothelium is P-selectin-dependent. J.Exp.Med. 1994;180:371–376.PubMedCrossRefGoogle Scholar
  143. 143.
    Grober, J.S., Bowen, B.L., Ebling, H., Athey, B., Thompson, C.B., Fox, D.A., and Stoolman, L.M. Monocyte-endothelial adhesion in chronic rheumatoid arthritis: in situ detection of selectin and integrin-dependent interactions. J.Clin.Invest. 1993;91:2609–2619.PubMedCrossRefGoogle Scholar
  144. 144.
    Johnson-Tidey, R.R., McGregor, J.L., Taylor, P.R., and Poston, R.N. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. Am.J.Pathol. 1994;144:952-961.PubMedGoogle Scholar
  145. 145.
    Johnston, G.I., Bliss, G.A., Newman, P.J., and McEver, R.P. Structure of the human gene encoding granule membrane protein-140, a member of the selectin family of adhesion receptors for leukocytes. J.Biol.Chem. 1990;265:21381–21385.PubMedGoogle Scholar
  146. 146.
    Pan, J. and McEver, R.P. Characterization of the promoter for the human P-selectin gene. J.Biol.Chem. 1993;268:22600–22608.PubMedGoogle Scholar
  147. 147.
    Pan, J. and McEver, R.P. Regulation of the human P-selectin promoter by Bcl-3 and specific homodimeric members of the NF-KB/Rel family. J.Biol.Chem. 1995;270:23077–23083.PubMedCrossRefGoogle Scholar
  148. 148.
    Khew-Goodall, Y., Wadham, C, Stein, B.N., Gamble, J.R., and Vadas, M.A. Stat6 activation is essential for interleukin-4 induction of P-selectin transcription in human umbilical vein endothelial cells. Arterioscler.Thromb.Vasc.Biol. 1999;19:1421–1429.PubMedCrossRefGoogle Scholar
  149. 149.
    Pan, J., Xia, L., and McEver, R.P. Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J.Biol.Chem. 1998;273:10058–10067.PubMedCrossRefGoogle Scholar
  150. 150.
    Pan, J., Xia, L., Yao, L., and McEver, R.P. Tumor necrosis factor-a or lipopolysaccharide-induced expression of the murine P-selectin gene in endothelial cells involves novel kB sites and a variant ATF/CRE element. J.Biol.Chem. 1998;273:10068–10077.PubMedCrossRefGoogle Scholar
  151. 151.
    Granger, D.N. and Kubes, P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J.Leukoc.Biol. 1994;55:662–675.PubMedGoogle Scholar
  152. 152.
    Ley, K. and Tedder, T.F. Leukocyte interactions with vascular endothelium: New insights into selectin-mediated attachment and rolling. J.Immunol. 1995;155:525–528.PubMedGoogle Scholar
  153. 153.
    Hynes, R.O. and Wagner, D.D. Genetic manipulation of vascular adhesion molecules in mice. J.Clin.Invest. 1996;98:2193–2195.PubMedCrossRefGoogle Scholar
  154. 154.
    Frenette, P.S. and Wagner, D.D. Insights into selectin function from knockout mice. Thromb.Haemost. 1997;78:60–64.PubMedGoogle Scholar
  155. 155.
    Etzioni, A., Frydman, M., Pollack, S., Avidor, I., Phillips, M.L., Paulson, J.C., and Gershoni-Baruch, R. Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N.Engl.J.Med. 1992;327:1789–1792.PubMedCrossRefGoogle Scholar
  156. 156.
    Von Andrian, U.H., Berger, E.M., Ramezani, L., Chambers, J.D., Ochs, H.D., Harlan, J.M., Paulson, J.C., Etzioni, A., and Arfors, K.-E. In vivo behavior of neutrophils from two patients with distinct inherited leukocyte adhesion deficiency syndromes. J.Clin.Invest. 1993;91:2893–2897.PubMedCrossRefGoogle Scholar
  157. 157.
    Philips, M.L., Schwartz, B.R., Etzioni, A., Bayer, R., Ochs, H.D., Paulson, J.C., and Harlan, J.M. Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2. J.Clin.Invest. 1995;96:2898–2906.CrossRefGoogle Scholar
  158. 158.
    Maly, P., Thall, A.D., Petryniak, B., Rogers, G.E., Smith, P.L., Marks, R.M., Kelly, R.J., Gersten, K.M., Cheng, G.Y., Saunders, T.L. et al. The α(l,3)Fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 1996;86:643–653.PubMedCrossRefGoogle Scholar
  159. 159.
    Weninger, W., Ulfman, L. H., Cheng, G., Souchkova, N., Quackenbush, E. J., Lowe, J. B., and von Andrian, U. H. Specialized contributions by alpha(l,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels [In Process Citation]. Immunity 2000;12:665–676.PubMedCrossRefGoogle Scholar
  160. 160.
    Labow, M.A., Norton, C.R., Rumberger, J.M., Lombard-Gillooly, K.M., Shuster, D.J., Hubbard, J., Bertko, R., Knaack, P.A., Terry, R.W., Harbison, M.L. et al. Characterization of E-selectin-deficient mice: demonstration of overlapping function of the endothelial selectins. Immunity 1994; 1:709–720.PubMedCrossRefGoogle Scholar
  161. 161.
    Arbones, ML., Ord, D.C., Ley, K., Ratech, H., Maynard-Curry, C, Otten, G., Capon, D.J., and Tedder, T.F. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994;1:247–260.PubMedCrossRefGoogle Scholar
  162. 162.
    Ley, K., Bullard, DC, Arbonés, M.L., Bosse, R., Vestweber, D., Tedder, T.F., and Beaudet, A.L. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J.Exp.Med. 1995;181:669–675.PubMedCrossRefGoogle Scholar
  163. 163.
    Subramaniam, M., Saffaripour, S., Watson, S.R., Mayadas, T.N., Hynes, R.O., and Wagner, D.D. Reduced recruitment of inflammatory cells in a contact hypersensitivity response in P-selectin-deficient mice. J. Exp.Med. 1995;181:2277–2282.PubMedCrossRefGoogle Scholar
  164. 164.
    Tedder, T.F., Steeber, D.A., and Pizcueta, P. L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J.Exp. Med. 1995;181:2259–2264.PubMedCrossRefGoogle Scholar
  165. 165.
    Bullard, D.C., Kunkel, E.J., Kubo, H., Hicks, M.J., Lorenzo, I., Doyle, N.A., Doerschuk, CM., Ley, K., and Beaudet, A.L. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J.Exp.Med. 1996;183:2329–2336.PubMedCrossRefGoogle Scholar
  166. 166.
    Frenette, P.S., Mayadas, T.N., Rayburn, H., Hynes, R.O., and Wagner, D.D. Susceptibility to infection and altered hematopoiesis and mice deficient in both P- and E-selectin. Cell 1996;84:563–574.PubMedCrossRefGoogle Scholar
  167. 167.
    Robinson, S.D., Frenette, P.S., Rayburn, H., Cummiskey, M., Ullman-Cullere, M., Wagner, D.D., and Hynes, R.O. Multiple, targeted deficiencies in selectins reveal a predominant role for P-selectin in leukocyte recruitment. Proc Natl Acad Sci USA 1999;96:11452–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Jung, U. and Ley, K. Mice lacking two or all three selectins demonstrate overlapping and distinct functions for each selectin. J Immunol 1999;162:6755–62.PubMedGoogle Scholar
  169. 169.
    Zannettino, A.C.W., Berndt, M.C., Butcher, C, Butcher, E.C., Vadas, M.A., and Simmons, P.J. Primitive human hematopoietic progenitors adhere to P-selectin (CD62P). Blood 1995;85:3466–3477.PubMedGoogle Scholar
  170. 170.
    Dercksen, M.W., Weimar, I.S., Richel, D.J., Breton-Gorius, J., Vainchenker, W., Slaper-Cortenbach, I.CM., Pinedo, H.M., von dem Borne, A.E.G.Kr., Gerritsen, W.R., and Van der Schoot, C.E. The value of flow cytometric analysis of platelet glycoprotein expression of CD34+ cells measured under conditions that prevent P-selectin-mediated binding of platelets. Blood 1995;86:3771–3782.PubMedGoogle Scholar
  171. 171.
    Laszik, Z., Jansen, P.J., Cummings, R.D., Tedder, T.F., McEver, R.P., and Moore, K.L. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood 1996;88:3010–3021.PubMedGoogle Scholar
  172. 172.
    Spertini, O., Cordey, A.-S., Monai, N., Giuffre, L., and Schapira, M. P-selectin glycoprotein ligand-1 (PSGL-1) is a ligand for L-selectin on neutrophils, monocytes and CD34+ hematopoietic progenitor cells. J.Cell Biol. 1996;135:523–531.PubMedCrossRefGoogle Scholar
  173. 173.
    Frenette, P.S., Subbarao, S., Mazo, I.B., Von Andrian, U.H., and Wagner, D.D. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc.Natl.Acad.Sci.USA 1998;95:14423–14428.PubMedCrossRefGoogle Scholar
  174. 174.
    Nguyen, M., Strubel, N.A., and Bischoff, J. A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 1993;365:267–269.PubMedCrossRefGoogle Scholar
  175. 175.
    Koch, A.E., Halloran, M.M., Haskell, C.J., Shah, M.R., and Polverini, P.J. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 1995;376:517–519.PubMedCrossRefGoogle Scholar
  176. 176.
    Lefer, A.M., Weyrich, A.S., and Buerke, M. Role of selectins, a new family of adhesion molecules, in ischaemia-reperfusion injury. Cardiovasc.Res. 1994;28:289–294.PubMedCrossRefGoogle Scholar
  177. 177.
    Sharar, S.R., Winn, R.K., and Harlan, J.M. The adhesion cascade and anti-adhesion therapy: An overview. Springer Semin.lmmunopathol. 1995;16:359–378.Google Scholar
  178. 178.
    Lefer, D.J. Pharmacology of selectin inhibitors in ischemia/reperfusion states. Annu.Rev.Pharmacol.Toxicol. 2000;40:283–294.PubMedCrossRefGoogle Scholar
  179. 179.
    Cyster, J.G., Shotton, D.M., and Williams, A.F. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J. 1991;10:893–902.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Rodger P. McEver
    • 1
    • 2
  1. 1.W.K. Warren Medical Research Institute, Departments of Medicine and Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences Center 825 N.E.Oklahoma CityUSA
  2. 2.the Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations