Skip to main content

An Introduction to Probabilistic Graphical Models

  • Chapter
Estimation of Distribution Algorithms

Part of the book series: Genetic Algorithms and Evolutionary Computation ((GENA,volume 2))

Abstract

In this chapter we will introduce two probabilistic graphical models -Bayesian networks and Gaussian networks-that will be used to carry out factorization of the probability distribution of the selected individuals in the Estimation of Distribution Algorithms based approaches. For both paradigms we will present different algorithms to induce the underlying model from data, as well as some methods to simulate such models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1974). New look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716ā€“723.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Best, D. J. (1979). Some easily programmed pseudo-random normal generators. Aust. Comp. J., 11:60ā€“62.

    MATHĀ  Google ScholarĀ 

  • Bouckaert, R. R. (1194). A stratified simulation scheme for inference in Bayesian belief networks, pages 110ā€“117. Morgan Kaufmann Publishers, San Francisco.

    Google ScholarĀ 

  • Bouckaert, R. R. (1995). Bayesian Belief Networks: From Construction to Inference. PhD Thesis, University of Utrecht.

    Google ScholarĀ 

  • Bouckaert, R. R., Castillo, E., and GutiĆ©rrez, J. M. (1996). A modified simulation scheme for inference in Bayesian networks. International Journal of Approximate Reasoning, 14:55ā€“80.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal deviates. Ann. Math. Statist., 29:610ā€“611.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Brent, R. P. (1974). A Gaussian pseudo random generator. Comm. Assoc. Comput. Mach., 17:704ā€“706.

    MATHĀ  Google ScholarĀ 

  • Buntine, W. (1991). Theory refinement in Bayesian networks. In Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, pages 52ā€“60.

    Google ScholarĀ 

  • Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8(2):195ā€“210.

    ArticleĀ  Google ScholarĀ 

  • Castillo, E., GutiĆ©rrez, J. M., and Hadi, A. S. (1997). Expert Systems and Probabilistic Network Models. Springer-Verlag, New York.

    BookĀ  Google ScholarĀ 

  • Charniak, E. (1991). Bayesian networks without tears. AI Magazine, 12:50ā€“63.

    Google ScholarĀ 

  • Chavez, R. M. and Cooper, G. F. (1990). A randomized approximation al-gorithm for probabilistic inference on Bayesian belief networks. Networks,20(5):661ā€“685.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Chickering, D. M., Geiger, D., and Heckerman, D. (1994). Learning Bayesian networks is NPā€”hard. Technical report, Microsoft Research, Redmond, WA.

    Google ScholarĀ 

  • Chickering, D. M., Geiger, D., and Heckerman, D. (1995). Learning Bayesian networks: Search methods and experimental results. In Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics, pages 112ā€“128.

    Google ScholarĀ 

  • Chickering, M. (1996). Learning equivalence classes of Bayesian networks structures. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages 150ā€“157, Portland, OR. Morgan Kaufmann.

    Google ScholarĀ 

  • Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14:462467.

    Google ScholarĀ 

  • Cooper, G. F. (1990). The computational complexity of probabilistic inference using belief networks. Artificial Intelligence, 42:393ā€“405.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Cooper, G. F. and Herskovits, E. A. (1992). A Bayesian method for the induc-tion of probabilistic networks from data. Machine Learning, 9:309ā€“347.

    MATHĀ  Google ScholarĀ 

  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999).Probabilistic Networks and Expert Systems. Springer-Verlag, New York. Dagum

    Google ScholarĀ 

  • P. and Horvitz, E. (1993). A Bayesian analysis of simulation algorithmsfor inference in belief networks. Networks, 23(5):499ā€“516.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistics Society, Series B, 41:1ā€“31.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • de Campos, L. M. (1998). Automatic learning of graphical models. I: Basic methods. In Gamez, J. A. and Puerta, J. M., editors, Probabilistic Expert System, pages 113ā€“140. Ediciones de la Universidad de Castillaā€”La Mancha. (In Spanish).

    Google ScholarĀ 

  • DeGroot, M. (1970). Optimal Statistical Decisions. McGrawā€”Hill, New York.

    Google ScholarĀ 

  • Dempster, A. P. (1972). Covariance selection. Biometrika, 32:95ā€“108.

    Google ScholarĀ 

  • Fung, R. M. and Chang, K. C. (1990). Weighting and integrating evidence for stochastic simulation in Bayesian networks. In Henrion, M., Shachter, R. D., Kanal, L. N., and Lemmer, J. F., editors, Uncertainty in Artificial Intelligence, volume 5, pages 209ā€“220, Amsterdam. Elsevier.

    Google ScholarĀ 

  • Fung, R. M. and Del Favero, B. (1994). Backward simulation in Bayesian net-works. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages 227ā€“234. Morgan Kaufmann Publishers, San Francisco.

    Google ScholarĀ 

  • Geiger, D. and Heckerman, D. (1994). Learning Gaussian networks. Technical report, Microsoft Advanced Technology Division, Microsoft Corporation, Seattle, Washington.

    Google ScholarĀ 

  • Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Technical report, Microsoft Advanced Technology Division, Microsoft Corporation, Seattle, Washington.

    Google ScholarĀ 

  • Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197ā€“243.

    MATHĀ  Google ScholarĀ 

  • Heckerman, D. and Wellman, M. P. (1995). Bayesian networks. Communications of the ACM, 38:27ā€“30.

    ArticleĀ  Google ScholarĀ 

  • Henrion, M. (1988). Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In Lemmer, J. F. and Kanal, L. N., editors, Uncertainty in Artificial Intelligence, volume 2, pages 149ā€“163. North-Holland, Amsterdam.

    Google ScholarĀ 

  • Henrion, M., Breese, J. S., and Horvitz, E. J. (1991). Decision analysis and expert systems. AI Magazine, 12:64ā€“91.

    Google ScholarĀ 

  • Herskovits, E. and Cooper, G. (1990). KutatĆ³: An entropy-driven system for construction of probabilistic expert systems from database. Technical report, Knowledge Systems Laboratory, Medical Computer Science, Stanford University, California.

    Google ScholarĀ 

  • Howard, R. and Matheson, J. (1981). Influence diagrams. In Howard, R. and Matheson, J., editors, Readings on the Principles and Applications of Decision Analysis, volume 2, pages 721ā€“764. Strategic Decision Group, Menlo Park, CA.

    Google ScholarĀ 

  • Hryceij, T. (1990). Gibbs sampling in Bayesian networks. Artificial Intelligence, 46(3):351ā€“363.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Jensen, C. S., Kong, A., and KjƦrulff, U. (1993). Blocking Gibbs samplingin very large probabilistic expert systems. Technical report, Department ofMathematics and Computer Science, University of Aalborg, Denmark.

    Google ScholarĀ 

  • Jensen, F. V. (1996). An introduction to Bayesian networks. University Collegeof London.

    Google ScholarĀ 

  • Jensen, F. V., Olesen, K. G., and Andersen, S. K. (1990). An algebra of Bayesianbelief universes for knowledge based systems. Networks, 28(5):637ā€“659.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Krause, P. J. (1998). Learning probabilistic networks. Technical report, PhilipsResearch Laboratories.

    Google ScholarĀ 

  • Kreiner, S. (1989). On tests of conditional independence. Technical report, Statistical Research Unit, University of Copenhagen.

    Google ScholarĀ 

  • Kullback, S. (1951). On information and sufficiency. Annals of Math. Stats., 22:79ā€“86.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Lam, W. and Bacchus, F. (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10(4):269ā€“293.

    ArticleĀ  Google ScholarĀ 

  • LarraƱaga, P., Kuijpers, C. M. H., Murga, R. H., and Yurramendi, Y. (1996a). Searching for the best ordering in the structure learning of Bayesian net-works. IEEE Transactions on Systems, Man and Cybernetics, 41(4):487ā€“493.

    Google ScholarĀ 

  • LarraƱaga, P., Lozano, J. A., and Bengoetxea, E. (2001). Estimation of Dis-tribution Algorithms based on multivariate normal and Gaussian networks. Technical Report KZZA-IK-1ā€“01, epartment of Computer Science and Ar-tificial Intelligence, University of the Basque Country, Spain.

    Google ScholarĀ 

  • LarraƱaga, P., Poza, M., Yurramendi, Y., Murga, R. H., and Kuijpers, C. M. H. (1996b). Structure learning of Bayesian networks by genetic algorithms. A performance analysis of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):912ā€“926.

    ArticleĀ  Google ScholarĀ 

  • Lauritzen, S. L. (1996). Graphical Models. Oxford University Press.

    Google ScholarĀ 

  • Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50(2):157ā€“224.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Madigan, D. and Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occams window. Journal of the American Statistical Association, 89:1535ā€“1546.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Marsaglia, G., Ananthanarayanan, K., and Paul, N. J. (1976). Improvements on fast methods for generating normal random variables. Information Processing Letters, 5:27ā€“30.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • McCarthy, J. (1956). Measures of the value of information. In Proceedings of the National Academy of Sciences, pages 645ā€“655.

    Google ScholarĀ 

  • Myers, J. W., Laskey, K. B., and Levitt, T. (1999). Learning Bayesian networks from incomplete data with stochastic search algorithms. In Proceedings ofthe Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 476ā€“485.

    Google ScholarĀ 

  • Neapolitan, E. (1990). Probabilistic Reasoning in Expert Systems. John Wiley and Sons, New York.

    Google ScholarĀ 

  • Pearl, J. (1987). Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence, 32:245ā€“257.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, Palo Alto, CA.

    Google ScholarĀ 

  • Pearl, J. (1993). Belief networks revisited. Artificial Intelligence, 59:49ā€“56. Pearl, J. (1996). Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29:241ā€“288.

    MathSciNetĀ  Google ScholarĀ 

  • Ripley, B. D. (1983). Computer generation of random variables: a tutorial. Int. Statist. Rev., 51:301ā€“319.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Ripley, B. D. (1987). Stochastic Simulation. John Wiley and Sons.

    Google ScholarĀ 

  • Robinson, R. W. (1977). Counting unlabelled acyclic digraphs. In Lecture Notesin Mathematics: Combinatorial Mathematics V, pages 28ā€“43. Springer-Verlag.

    Google ScholarĀ 

  • SalmerĆ³n, A., Cano, A., and Moral, S. (2000). Importance sampling in Bayesiannetworks using probability trees. Computational Statistics and Data Analy-sis, 34:387ā€“413.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • SangĆ¼esa, R. and CortĆ©s, U. (1998). Learning causal networks from data: a survey and a new algorithm for recovering possibilistic causal networks. AI Communications, 10:31ā€“61.

    Google ScholarĀ 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 7(2):461ā€“464.

    ArticleĀ  Google ScholarĀ 

  • Shachter, R. and Kenley, C. (1989). Gaussian influence diagrams. Management Science, 35:527ā€“550.

    ArticleĀ  Google ScholarĀ 

  • Shachter, R. D. and Peot, M. A. (1990). Simulation approaches to general probabilistic inference on belief networks. In Henrion, M., Shachter, R. D., Kanal, L. N., and Lemmer, J. F., editors, Uncertainty in Artificial Intelligence, volume 5, pages 221ā€“234. Elsevier, Amsterdam.

    Google ScholarĀ 

  • Shafer, G. R. (1996). Probabilistic Expert Systems. Society for Industrial and Applied Mathematics.

    Google ScholarĀ 

  • Shwe, M. and Cooper, G. (1991). An empirical analysis of likelihood-weighting simulation on a large multiply connected medical belief network. Comput. and Biomed. Res., 24:453ā€“475.

    ArticleĀ  Google ScholarĀ 

  • Smith, P. W. and Whittaker, J. (1998). Edge exclusion tests for graphical Gaussian models. In Learning in Graphical Models, pages 555ā€“574. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    ChapterĀ  Google ScholarĀ 

  • Speed, T. P. and Kiiveri, H. (1986). Gaussian Markov distributions over finite graphs. Annals of Statistics, 14:138ā€“150.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Spirtes, P., Glymour, C., and Scheines, R. (1991). An algorithm for fast recovery of sparse causal graphs. Social Science Computing Reviews, 9:62ā€“72.

    ArticleĀ  Google ScholarĀ 

  • Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, Prediction, and Search. Lecture Notes in Statistics 81, Springer-Verlag.

    Google ScholarĀ 

  • Wermuth, N. (1976). Model search among multiplicative models. Biometrics, 32:253ā€“263.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Whittaker, J. (1990). Graphical models in applied multivariate statistics. John Wiley and Sons.

    Google ScholarĀ 

  • Wong, M. L., Lam, W., and Leung, K. S. (1999). Using evolutionary computation and minimum description length principle for data mining of probabilistic knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(2):174ā€“178.

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

LarraƱaga, P. (2002). An Introduction to Probabilistic Graphical Models. In: LarraƱaga, P., Lozano, J.A. (eds) Estimation of Distribution Algorithms. Genetic Algorithms and Evolutionary Computation, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1539-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1539-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5604-2

  • Online ISBN: 978-1-4615-1539-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics