Advertisement

Abstract

Early work on digital topology is reviewed, including the discrete Jordan curve theorem, adjacency relations and adjacency trees, simple points, and border following.

Keywords

Euclidean Plane Simple Point Digital Picture Simple Closed Curve Hexagonal Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Rosenfeld. Connectivity in digital pictures. Journal of the ACM, 17:146–160, 1970.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    R. Stefanelli and A. Rosenfeld. Some parallel thinning algorithms for digital pictures. Journal of the ACM, 18:255–264, 1971.MATHCrossRefGoogle Scholar
  3. [3]
    A. Rosenfeld. Arcs and curves in digital pictures. Journal of the ACM, 20:81–87, 1973.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    A. Rosenfeld. Adjacency in digital pictures. Information and Control, 26:24–33,1974MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    A. Rosenfeld. A characterization of parallel thinning algorithms. Information and Control, 29:286–291, 1975.MathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Rosenfeld. A converse to the Jordan curve theorem for digital curves. Information and Control, 29:292–293, 1975.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    A. Rosenfeld. Fuzzy digital topology. Information and Control, 40:76–87, 1979.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    A. Rosenfeld. Digital topology. American Mathematical Monthly, 86:621–630, 1979.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A. Rosenfeld. Picture Languages. Academic Press, New York, 1979. Ch. 2.MATHGoogle Scholar
  10. [10]
    A. Rosenfeld. Three-dimensional digital topology. Information and Control, 50:119–127, 1981.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    D. G. Morgenthaler and A. Rosenfeld. Surfaces in three-dimensional digital images. Information and Control, 51:227–247, 1981.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    G. M. Reed and A. Rosenfeld. Recognition of surfaces in three-dimensional digital images. Information and Control, 53:108–120, 1982.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    L. Janos and A. Rosenfeld. Digital connectedness: An algebraic approach. Pattern Recognition Letters, 1:135–139, 1983.MATHCrossRefGoogle Scholar
  14. [14]
    C. N. Lee and A. Rosenfeld. Connectivity issues in 2D and 3D images. In Proceedings, Conference on Computer Vision and Pattern Recognition, pages 278–285. IEEE Computer Society, 1986.Google Scholar
  15. [15]
    C. N. Lee and A. Rosenfeld. Computing the Euler number of a 3D image. In Proceedings, First International Conference on Computer Vision, pages 567–571. IEEE Computer Society, 1987.Google Scholar
  16. [16]
    T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics and Image Processing, 48:357–393, 1989.CrossRefGoogle Scholar
  17. [17]
    T. Y. Kong, R. Litherland, and A. Rosenfeld. Problems in the topology of binary digital images. In J. van Mill and G. M. Reed, editors, Open Problems in Topology, pages 376–385. North-Holland, Amsterdam, 1990.Google Scholar
  18. [18]
    T. Y. Kong and A. Rosenfeld. If we use 4- or 8-connectedness for both the objects and the background, the Euler characteristic is not locally computable. Pattern Recognition Letters, 11:231–232, 1990.MATHCrossRefGoogle Scholar
  19. [19]
    C. N. Lee and A. Rosenfeld. Simple connectivity is not locally computable for connected 3D images. Computer Vision, Graphics and Image Processing, 51:87–95, 1990.CrossRefGoogle Scholar
  20. [20]
    T. Y. Kong and A. Rosenfeld. Digital topology: A comparison of the graph-based and topological approaches. In G. M. Reed, A. W. Roscoe, and R. F. Wachter, editors, Topology and Category Theory in Computer Science, pages 273–289. Oxford University Press, Oxford, 1991.Google Scholar
  21. [21]
    A. Rosenfeld and T. Y. Kong. Connectedness of a set, its complement, and their common boundary. In R. A. Melter, A. Rosenfeld, and P. Bhattacharya, editors, Vision Geometry (Hoboken, NJ, October 20–21,1989), pages 125–128. American Mathematical Society, Providence, 1991.Google Scholar
  22. [22]
    C. N. Lee, T. Poston, and A. Rosenfeld. Winding and Euler numbers for 2D and 3D digital images. Graphical Models and Image Processing, 53:522–527, 1991.MATHCrossRefGoogle Scholar
  23. [23]
    A. Rosenfeld, T. Y. Kong, and A. Y. Wu. Digital surfaces. Graphical Models and Image Processing, 53:305–312, 1991.MATHCrossRefGoogle Scholar
  24. [24]
    T. Y. Kong, A. W. Roscoe, and A. Rosenfeld. Concepts of digital topology. Topology and its Applications, 46:219–262, 1992.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    C. N. Lee, T. Poston, and A. Rosenfeld. Holes and genus of 2D and 3D digital images. Graphical Models and Image Processing, 55:20–47, 1993.CrossRefGoogle Scholar
  26. [26]
    L. Latecki, U. Eckhardt, and A. Rosenfeld. Well-composed sets. Computer Vision and Image Understanding, 61:70–83, 1995.CrossRefGoogle Scholar
  27. [27]
    R. W. Hall, T. Y. Kong, and A. Rosenfeld. Shrinking binary images. In T. Y. Kong and A. Rosenfeld, editors, Topological Algorithms for Digital Image Processing, pages 31–98. Elsevier, Amsterdam, 1996.CrossRefGoogle Scholar
  28. [28]
    T. Y. Kong and A. Rosenfeld. Digital topology—A brief introduction and bibliography. In T. Y. Kong and A. Rosenfeld, editors, Topological Algorithms for Digital Image Processing, pages 263–292. Elsevier, Amsterdam, 1996.CrossRefGoogle Scholar
  29. [29]
    A. Rosenfeld and A. Nakamura. Local deformations of digital curves. Pattern Recognition Letters, 18:613–620, 1997.CrossRefGoogle Scholar
  30. [30]
    A. Rosenfeld, T. Y. Kong, and A. Nakamura. Topology-preserving deformations of two-valued digital pictures. Graphical Models and Image Processing, 60:24–34, 1998.CrossRefGoogle Scholar
  31. [31]
    P. K. Saha, D. Dutta Majumder, and A. Rosenfeld. Local topological parameters in a tetrahedral representation. Graphical Models and Image Processing, 60:423–436, 1998.MATHCrossRefGoogle Scholar
  32. [32]
    P. K. Saha and A. Rosenfeld. Strongly normal sets of convex polygons or polyhedra. Pattern Recognition Letters, 19:1119–1124, 1998.MATHCrossRefGoogle Scholar
  33. [33]
    A. Nakamura and A. Rosenfeld. Topology-preserving deformations of fuzzy digital pictures. In E. Kerre and M. Nachtegael, editors, Fuzzy Techniques in Image Processing. Physica-Verlag, Heidelberg, 1999.Google Scholar
  34. [34]
    P. K. Saha and A. Rosenfeld. Determining simplicity and computing topological change in strongly normal partial tilings of R 2 or R 3. Pattern Recognition, 33:105–118, 2000.MATHCrossRefGoogle Scholar
  35. [35]
    A. Nakamura and A. Rosenfeld. Digital knots. Pattern Recognition, 33:1541–1553, 2000.CrossRefGoogle Scholar

References

  1. [36]
    H. Abelson and A. diSessa. Turtle Geometry. MIT Press, Cambridge, MA, 1980.Google Scholar
  2. [37]
    R. Ayala, E. Domínguez, A. R. Francés, and A. Quintero. Weak lighting functions and strong 26-surfaces. Theoretical Computer Science, 2001. To appear.Google Scholar
  3. [38]
    G. Bertrand. Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters, 15:1003–1011, 1994.CrossRefGoogle Scholar
  4. [39]
    G. Bertrand. On P-simple points. C. R. Acad. Sci. Paris, Série I, 321:1077–1084, 1995.MathSciNetMATHGoogle Scholar
  5. [40]
    R. O. Duda, P. E. Hart, and J. H. Munson. Graphical data processing research study and experimental investigation. Stanford Research Institute, Menlo Park, CA, NTIS AD-650 926, March 1967. 28–30.Google Scholar
  6. [41]
    S. Fourey. Nombre d’Intersection et d’Entrelacement de Courbes Discrètes et Application à la Caractérisation de la Préservation de la Topologie en Imagerie. PhD thesis, Université de Caen, France, 2000.Google Scholar
  7. [42]
    C. J. Gau and T. Y. Kong. Minimal non-simple sets of voxels in binary images on a face-centered cubic grid. International Journal of Pattern Recognition and Artificial Intelligence, 13:485–502, 1999.CrossRefGoogle Scholar
  8. [43]
    D. Gordon and J. K. Udupa. Fast surface tracking in three-dimensional binary images. Computer Vision, Graphics and Image Processing, 45:196–214, 1989.CrossRefGoogle Scholar
  9. [44]
    R. W. Hall. Tests for connectivity preservation for parallel reduction operators. Topology and Its Applications, 46:199–217, 1992.MathSciNetMATHCrossRefGoogle Scholar
  10. [45]
    G. T. Herman. Geometry of Digital Spaces. Birkhäuser, Boston, 1998.MATHGoogle Scholar
  11. [46]
    J. G. Hocking and G. S. Young. Topology. Addison-Wesley, Reading, MA, 1961.MATHGoogle Scholar
  12. [47]
    E. Khalimsky. Pattern analysis of N-dimensional digital images. In Proceedings, International Conference on Systems, Man and Cybernetics, pages 1559–1562. IEEE Systems, Man and Cybernetics Society, 1986.Google Scholar
  13. [48]
    E. Khalimsky, R. D. Kopperman, and P. R. Meyer. Computer graphics and connected topologies on finite ordered sets. Topology and its Applications, 36:1–17, 1990.MathSciNetMATHCrossRefGoogle Scholar
  14. [49]
    T. Y. Kong. On topology preservation in 2-D and 3-D thinning. International Journal of Pattern Recognition and Artificial Intelligence, 9:813–844, 1995.CrossRefGoogle Scholar
  15. [50]
    T. Y. Kong and E. Khalimsky. Polyhedral analogs of locally finite topological spaces. In R. M. Shortt, editor, General Topology and Applications: Proceedings of the 1988 Northeast Conference, pages 153–164. Marcel Dekker, New York, 1990.Google Scholar
  16. [51]
    T. Y. Kong and A. W. Roscoe. Continuous analogs of axiomatized digital surfaces. Computer Vision, Graphics and Image Processing, 29:60–86, 1985.MATHCrossRefGoogle Scholar
  17. [52]
    R. D. Kopperman, P. R. Meyer, and R. G. Wilson. A Jordan surface theorem for three-dimensional digital spaces. Discrete and Computational Geometry, 6:155–161, 1991.MathSciNetMATHCrossRefGoogle Scholar
  18. [53]
    V. A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing, 46:141–161, 1989.CrossRefGoogle Scholar
  19. [54]
    V. A. Kovalevsky. Topological foundations of shape analysis. In Y. L. O, A. Toet, D. H. Foster, H. J. A. M. Heijmans, and P. Meer, editors, Shape in Picture: Mathematical Description of Shape in Grey-Level Images, pages 21–36. Springer-Verlag, Berlin, 1994.Google Scholar
  20. [55]
    C. M. Ma. On topology preservation in 3D thinning. CVGIP: Image Understanding, 59:328–339, 1994.CrossRefGoogle Scholar
  21. [56]
    R. Malgouyres. A definition of surfaces of ℤ3: A new 3D discrete Jordan theorem. Theoretical Computer Science, 186:1–41, 1997.MathSciNetMATHCrossRefGoogle Scholar
  22. [57]
    D. G. Morgenthaler. Three-dimensional simple points: Serial erosion, parallel thinning and skeletonization. Technical Report TR-1005, Computer Vision Laboratory, University of Maryland, College Park, 1981.Google Scholar
  23. [58]
    G. M. Reed. On the characterization of simple closed surfaces in three-dimensional digital images. Computer Vision, Graphics and Image Processing, 25:226–235, 1984.MATHCrossRefGoogle Scholar
  24. [59]
    C. Ronse. A topological characterization of thinning. Theoretical Computer Science, 43:31–41, 1986.MathSciNetMATHCrossRefGoogle Scholar
  25. [60]
    C. Ronse. Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics, 21:67–79, 1988.MathSciNetMATHCrossRefGoogle Scholar
  26. [61]
    P. K. Saha, B. B. Chaudhuri, B. Chanda, and D. Dutta Majumder. Topology preservation in 3D digital space. Pattern Recognition, 27:295–300, 1994.MathSciNetCrossRefGoogle Scholar
  27. [62]
    G. Tourlakis and J. Mylopoulos. Some results on computational topology. Journal of the ACM, 20:439–455, 1973.MathSciNetMATHCrossRefGoogle Scholar
  28. [63]
    Y. F. Tsao and K. S. Fu. A 3D parallel skeletonwise thinning algorithm. In Proceedings, Conference on Pattern Recognition and Image Processing, pages 678–683. IEEE Computer Society, 1982.Google Scholar
  29. [64]
    O. Veblen. Theory of plane curves in nonmetrical analysis situs. Trans. Amer. Math. Soc., 6:83–88, 1905.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • T. Yung Kong
    • 1
  1. 1.City University of New YorkUSA

Personalised recommendations