Skip to main content

From a Robust Hierarchy to a Hierarchy of Robustness

  • Chapter
Foundations of Image Understanding

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 628))

Abstract

An attempt is made to present a (somewhat personal) history of how at the Computer Vision Laboratory in the late 1980’s adopting robust techniques from statistics arose naturally from a quest for better multiresolution image analysis algorithms. While today these robust techniques are routinely used in the vision community, their rapid dissemination was in no small measure due to the unfettered research atmosphere which characterized the lab. Beside trying to record an instance of interdisciplinary research, a few technical issues (most of which were not yet understood then) are also discussed.

How odd it is that anyone should not see that all observation must be for or against some view if it is to be of any service.

—Charles Darwin (1809–1882)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Baronti, A. Casini, F. Lotti, L. Favaro, and V. Roberto. Variable pyramid structures for image segmentation. Computer Vision, Graphics, and Image Proc., 49:346–356, 1990.

    Article  Google Scholar 

  2. M. Basseville and A. Benveniste. Design and comparative study of some sequential jump detection algorithms for digital signals. IEEE Trans. Acoustics, Speech, Signal Proc., 31:521–535, 1983.

    Article  Google Scholar 

  3. P. J. Besl, J. B. Birch, and L. T. Watson. Robust window operators. In Proceedings of the Second International Conference on Computer Vision, pages 591–600, Tampa, FL, December 1988.

    Google Scholar 

  4. M. Bister, J. Cornelis, and A. Rosenfeld. A critical view of pyramid segmentation algorithms. Pattern Recognition Letters, 11:605–617, 1990.

    Article  MATH  Google Scholar 

  5. R. C. Bolles and M. A. Fischler. A RANSAC-based approach to model fitting and its application to finding cylinders in range data. In Proceedings of the Sixth International Joint Conference on Artificial Intelligence, pages 637–643, Vancouver, Canada, 1981.

    Google Scholar 

  6. P. J. Burt, T. H. Hong, and A. Rosenfeld. Segmentation and estimation of region properties through co-operative hierarchical computation. IEEE Trans. Systems, Man, and Cybernetics, 11:802–809, 1981.

    Article  Google Scholar 

  7. K. Cho and P. Meer, Image segmentation from consensus information. Computer Vision and Image Understanding, 68:72–89, 1997.

    Article  Google Scholar 

  8. G. C. Chow. Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28:591–605, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Comaniciu and P. Meer. Mean shift analysis and applications. In Proceedings of the Seventh International Conference on Computer Vision, pages 1197–1203, Kerkyra, Greece, September 1999.

    Google Scholar 

  10. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, 1993.

    Google Scholar 

  11. M. A. Fischler and R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM, 24:381–395, 1981.

    Article  MathSciNet  Google Scholar 

  12. K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory, 21:32–40, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. R. Hansen and R. Chellappa. Two-dimensional robust spectrum estimation. IEEE Trans. Acoustics, Speech, Signal Proc., 36:1051–1066, 1988.

    Article  MATH  Google Scholar 

  14. R. M. Haralick and H. Joo. 2D-3D pose estimation. In Proceedings of the Ninth International Conference on Pattern Recognition, pages 385–391, Rome, Italy, November 1988.

    Google Scholar 

  15. T. H. Hong, M. O. Shneier, R. L. Hartley, and A. Rosenfeld. Using pyramids to detect good continuation. IEEE Trans. Systems, Man, and Cybernetics, 13:631–635, 1983.

    Article  Google Scholar 

  16. J. M. Jolion, P. Meer, and S. Bataouche. Robust clustering with applications in computer vision. IEEE Trans. Pattern Analysis Machine Intelligence, 13:791–802, 1991.

    Article  Google Scholar 

  17. J. M. Jolion and A. Rosenfeld. A Pyramid Framework for Early Vision. Kluwer, 1994.

    Google Scholar 

  18. R. L. Kashyap and E. B. Eom. Robust image models and their applications. In Advances in Electronics and Electron Physics, volume 70, pages 79–157. Academic Press, 1988.

    Google Scholar 

  19. D. Y. Kim, J. J. Kim, P. Meer, D. Mintz, and A. Rosenfeld. Robust computer vision: A least median of squares based approach. In Proceedings of the DARPA Image Understanding Workshop, pages 1117–1134, Palo Alto, CA, May 1989.

    Google Scholar 

  20. N. Kiryati and A. Bruckstein. What’s in a set of points? IEEE Trans. Pattern Analysis Machine Intelligence, 14:496–500, 1992.

    Article  Google Scholar 

  21. W. G. Kropatsch. Building irregular pyramids by dual-graph contraction. IEE Proc. Vis. Image Signal Process., 142:366–374, 1995.

    Article  Google Scholar 

  22. G. Li. Robust regression. In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Exploring Data Tables, Trends, and Shapes, pages 281–343. Wiley, 1985.

    Google Scholar 

  23. B. Matei and P. Meer. Optimal rigid motion estimation and performance evaluation with bootstrap. In Proceedings of the Computer Vision and Pattern Recognition Conference, pages 339–345, Fort Collins, CO, June 1999.

    Google Scholar 

  24. C. E. Mathieu and I. E. Magnin. On the choice of the first level on graph pyramids. Journal of Mathematical Imaging and Vision, 6:85–96, 1996.

    Article  Google Scholar 

  25. P. Meer. Stochastic image pyramids. Computer Vision, Graphics, and Image Processing, 45:269–294, 1989.

    Article  Google Scholar 

  26. P. Meer, D. Mintz, D. Y. Kim, and A. Rosenfeld. Robust regression methods in computer vision: A review. International Journal of Computer Vision, 6:59–70, 1991.

    Article  Google Scholar 

  27. P. Meer, D. Mintz, A. Montanvert, and A. Rosenfeld. Consensus vision. In Proceedings of the Workshop on Qualitative Vision, pages 111–115, Boston, MA, July 1990.

    Google Scholar 

  28. P. Meer, D. Mintz, and A. Rosenfeld. Least median of squares based robust analysis of image structure. In Proceedings of the DARPA Image Understanding Workshop, pages 231–254, Pittsburgh, PA, September 1990.

    Google Scholar 

  29. P. Meer, C. A. Sher, and A. Rosenfeld. The chain pyramid: Hierarchical contour processing. IEEE Trans. Pattern Analysis Machine Intelligence, 12:363–376, 1990.

    Article  Google Scholar 

  30. D. Mintz. Robust consensus based edge detection. Technical Report CAR-TR-546, Center for Automation Research, 1991. University of Maryland, College Park.

    Google Scholar 

  31. D. Mintz, P. Meer, and A. Rosenfeld. Consensus by decomposition: A paradigm for fast high breakdown point robust estimation. Technical Report CAR-TR-525, Center for Automation Research, 1990. University of Maryland, College Park.

    Google Scholar 

  32. D. Mintz, P. Meer, and A. Rosenfeld. A fast, high breakdown point robust estimator for computer vision applications. In Proceedings of the DARPA Image Understanding Workshop, pages 255–258, Pittsburgh, PA, September 1990.

    Google Scholar 

  33. A. Montanvert, P. Meer, and A. Rosenfeld. Hierarchical image analysis using irregular tessellations. IEEE Trans. Pattern Analysis Machine Intelligence, 13:307–316, 1991.

    Article  Google Scholar 

  34. S. Peleg, O. Federbusch, and R. A. Hummel. Custom-made pyramids. In L. Uhr, editor, Parallel Computer Vision, pages 125–146. Academic Press, 1986.

    Google Scholar 

  35. A. Rosenfeld, editor. Multiresolution Image Processing and Analysis. Springer, 1984.

    Google Scholar 

  36. A. Rosenfeld. Pyramid algorithms for perceptual organization. Behavior Research Methods, Instruments, & Computers, 18:595–600, 1986.

    Article  Google Scholar 

  37. A. Rosenfeld. Some pyramid techniques for image segmentation. Technical Report CAR-TR-203, Center for Automation Research, University of Maryland, College Park, May 1986.

    Google Scholar 

  38. P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. Wiley, 1987.

    Google Scholar 

  39. C. A. Sher and A. Rosenfeld. A pyramid programming environment on the Connection Machine. Pattern Recognition Letters, 11:241–245, 1990.

    Article  MATH  Google Scholar 

  40. M. O. Shneier. Extracting linear features from images using pyramids. IEEE Trans. Systems, Man, and Cybernetics, 12:569–572, 1982.

    Article  Google Scholar 

  41. M. Spann, C. Horne, and J. M. H. Du Buf. The detection of thin structures in images. Pattern Recognition Letters, 10:175–179, 1989.

    Article  MATH  Google Scholar 

  42. C. V. Stewart. Bias in robust estimation caused by discontinuities and multiple structures. IEEE Trans. Pattern Analysis Machine Intelligence, 19:818–833, 1997.

    Article  Google Scholar 

  43. A. Tirumalai and B. G. Schunk. Robust surface approximation using least median of squares. Technical Report CSE-TR-13-89, Artificial Intelligence Laboratory, 1988. University of Michigan, Ann Arbor.

    Google Scholar 

  44. S. G. Ziavras and P. Meer. Adaptive multiresolution structures for image processing on parallel computers. Journal of Parallel and Distributed Computing, 23:475–483, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meer, P. (2001). From a Robust Hierarchy to a Hierarchy of Robustness. In: Davis, L.S. (eds) Foundations of Image Understanding. The Springer International Series in Engineering and Computer Science, vol 628. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1529-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1529-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5599-1

  • Online ISBN: 978-1-4615-1529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics