Advertisement

Compression Coding for IAP Data

  • David Zhang
  • Xiaobo Li
  • Zhiyong Liu
Part of the The International Series on Asian Studies in Computer and Information Science book series (ASIS, volume 11)

Abstract

This chapter deals with an important issue in IAP data management for Internet PRIP computations: compression coding. Because of the large data volume and the need for fast transmission (sometimes almost real-time), compression coding is critical. The introduction section gives an overview on the motivation (“why”) and the general approaches (“how”) to IAP data compression. As an example for the spatial-domain methods, Section 13.2 presents two improvements to the reconstruction phase of a quadtree compression algorithm. Section 13.3 discusses a vector quantization scheme that works for a transform-domain compression algorithm. The data structures used in those compression algorithms, a quadtree and a wavelet coefficient tree, are closely related to an encryption coding method discussed in Chapter 16.

Keywords

Discrete Cosine Transform Wavelet Coefficient Vector Quantization Arithmetic Code Compression Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
  2. [2]
    M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using wavelet transform.IEEE Trans. Image Proc.1(2):205–220, 1992CrossRefGoogle Scholar
  3. [3]
    Y.Arai, T. Agui, and M. Nakajima. A fast dct-sq scheme for images.Trans. of the IEICE71(11):1095,1988. Google Scholar
  4. [4]
    A. Averbuch, D. Lazar, and M. Israeli. Image compression using wavelet transform and multiresolution decomposition.IEEE Trans. Image Proc.5(1):4–15, 1996. CrossRefGoogle Scholar
  5. [5]
    Y.Cohen, M. Landy, and M. Pavel.Hierarchical coding of binary images.IEEE Trans. Pattern Anal. Mach. Intel. PAMI-7.pages 284–298, 1985. CrossRefGoogle Scholar
  6. [6]
    J.H. Conway and N.J.A. Sloane.Sphere Packings Lattices and Groups.Springer-Verlag, 1988. Google Scholar
  7. [7]
    P.C. Cosman, S.M. Perlmutter, and K.O. Perlmutter. Tree-structured vector quantization with significance map for wavelet image coding.Proceedings Data Compression Conferencepages 33–41, March 1995Google Scholar
  8. [8]
    L.H. Croft and J.A. Robinson. Subband image coding using watershed and watercourse lines of the wavelet transform.IEEE Trans. Image Proc.3(6):759–771, 1994. CrossRefGoogle Scholar
  9. [9]
    L. Davis and A. Rosenfeld. Noise cleaning by iterated local averaging.IEEE Trans. Systems, Man and Cyber. SMC-8(9):705–710, 1978CrossRefGoogle Scholar
  10. [10]
    D. Fuhrmann. Quadtree traversal algorithms for pointer-based and depth first representations.IEEE Trans. Pattern Anal. Mach. Intel. PAMI-10.pages 955–960, 1988.CrossRefGoogle Scholar
  11. [11]
    I Gargantini. An effective way to represent quadtrees.Commun. ACM.25:905–910, 1982.MATHCrossRefGoogle Scholar
  12. [12]
    R. C. Gonzalez and R.E. Woods.Digital Image Processing.Addison-Wesley, 1992.Google Scholar
  13. [13]
    W.I. Grosky and R. Jain. Optimal quadtrees for image segments.IEEE Trans. Pattern Anal. Mach. Intel. PAMI-5.pages 77–83, 1983.MATHCrossRefGoogle Scholar
  14. [14]
    F.C. Holroyd and D.C. Mason. Efficient linear quadtree construction algorithm.Image and Vision Computingpages 218–224, 1990.Google Scholar
  15. [15]
    G.M. Hunter and K. Steiglitz. Operations on images using quad trees.IEEE Trans. Pattern Anal. Mach. Intel PAMI-1.pages 145–153, 1979.CrossRefGoogle Scholar
  16. [16]
    L. Jones and S. Iyengar. Space and time efficient virtual quadtrees.IEEE Trans. Pattern Anal. Mach. Intel. PAMI-6pages 244–247, 1984.CrossRefGoogle Scholar
  17. [17]
    J. Knipe. Improved spatial and transform domain compression schemes, Master thesis, University of Alberta, 1996.Google Scholar
  18. [18]
    J. Knipe and X. Li. A new quadtree decomposition reconstruction method.Proc. of 13th Int’l Conference on Pattern Recognitionpages B364–369, 1996.Google Scholar
  19. [19]
    J. Knipe and X. Li. An improved lattice vector quantization scheme for wavelet compression.IEEE Trans. Signal Proc.46(1):239–243, 1998.CrossRefGoogle Scholar
  20. [20]
    J. Knipe and X. Li. On the reconstruction of quadtree data.IEEE Trans. Image Proc.7(12):1653–1660, 1998.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    S. Lai, X. Li, and W. Bischof. On techniques for detecting circumscribed masses in mammogrrams.IEEE Trans. Medical Imaging8(4):377–386, 1990.CrossRefGoogle Scholar
  22. [22]
    Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer design.IEEE Trans. Commun.COM-28(1):84–95, 1980.Google Scholar
  23. [23]
    F.J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes.North-Holland, 1978.Google Scholar
  24. [24]
    M. Manohar, P. Sudarsana, and S. S. Iyengar. Template quadtrees for representing region and line data present in binary images.Comput. Vision, Graphics, and Image Proc.51:338–354, 1990.CrossRefGoogle Scholar
  25. [25]
    J. Modayil, H. Cheng, and X. Li. An improved piecewise approximation algorithm for image compression.Pattern Recognition31(8):1179–1190, Aug 1998.CrossRefGoogle Scholar
  26. [26]
    M. Nagao and T. Matsuyama Edge preserving smoothing.Computer Graphics and Image Processing9:394–407, 1979.CrossRefGoogle Scholar
  27. [27]
    W.B. Pennebaker and J.L. Mitchell.JPEG Still Image Data Compression Standard.Van Nostrand Reinhold, 1993.Google Scholar
  28. [28]
    A. Rosenfeld and A. Kak.Digital Picture Processing.Academnic, 1982.Google Scholar
  29. [29]
    A. Said and W.A. Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical trees.Submitted to IEEE Trans. Circuits and Systems for Video Tech.1995.Google Scholar
  30. [30]
    H. Samet. An algorithm for converting rasters to quadtrees.IEEE Trans. Pattern Anal. Mach. Intel. PAMI-3.pages 93–95, 1981.CrossRefGoogle Scholar
  31. [31]
    H. Samet and M. Tamminen. Efficient component labelling of images of arbitrary dimension represented by linear bintrees.IEEE Trans. Pattern Anal. Mach. Intel. PA MI-10pages 579–586, 1988.CrossRefGoogle Scholar
  32. [32]
    H. Samet and R.E. Webber. On encoding boundaries with quadtrees.IEEE Trans. Pattern Anal. Mach. Intel. PAMI-6pages 365–369, 1984.CrossRefGoogle Scholar
  33. [33]
    D.G. Sampson, E.A.B. da Silva, and M. Ghanbari. Wavelet transform image coding using lattice vector quantization.Electronics Letters30(18):1477–1478, 1994.CrossRefGoogle Scholar
  34. [34]
    A. Scher, F.R.D. Velasco, and A. Rosenfeld. Some new image smoothing techniques.IEEE Trans. Systems Man and Cyber.SMC-10(3):153–158, 1980.Google Scholar
  35. [35]
    C.A. Shaffer and H. Samet. Optimal quadtree construction algorithms.Comput. Vision Graphics and Image Proc.37:402–419, 1987.CrossRefGoogle Scholar
  36. [36]
    J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.IEEE Trans. Signal Proc.41(12):3445–3462, 1993.MATHCrossRefGoogle Scholar
  37. [37]
    E. Shusterman and M. Feder. Image compression via improved quadtree decomposition.IEEE Transactions on Image Processing.3(2):207–215, 1994.CrossRefGoogle Scholar
  38. [38]
    Peter Strobach. Tree-structured scene adaptive coder.IEEE Trans. Commun.38(4):477–486, 1990.CrossRefGoogle Scholar
  39. [39]
    Peter Strobach. Quadtree-structured recursive plane decomposition coding of images.IEEE Trans. Sig. Proc.39(6):1380–1397, 1991.CrossRefGoogle Scholar
  40. [40]
    G.J. Sullivan and R.L. Baker. Efficient quadtree coding of images and video.IEEE Transactions on Image Processing3(3):327–331, 1994.CrossRefGoogle Scholar
  41. [41]
    R. Wilson. Quad-tree predictive coding: A new class of image data compression algorithms. Proc. Int. Conf. Acoustics Speech and Signal Proc., 29.3.11984.Google Scholar
  42. [42]
    A. Zandi, J.D. Allen, E.L. Schwartz, and M. Boliek. Crew: Compression with reversible embedded wavelets.Proceedings Data Compression Conferencepages 212–221, March 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David Zhang
    • 1
  • Xiaobo Li
    • 2
  • Zhiyong Liu
    • 3
  1. 1.Hong Kong Polytechnic UniversityHong Kong
  2. 2.University of AlbertaCanada
  3. 3.National Natural Science Foundation of ChinaChina

Personalised recommendations