Skip to main content
  • 629 Accesses

Abstract

Rapid tooling (RT) or rapid manufacturing (RM, i.e. rapid manufacturing due to fast fabrication of molds or tools or direct fabrication of functional prototypes) can be accomplished through the use of rapid prototyping processes followed by some subsequent processes [1]. An RP model can be used as a pattern to investment cast the actual part; and an injection mold (mainly cavity and core inserts) can be designed and fabricated based on the pattern to manufacture the final parts. RT is a natural technological extension of RP. Current RP technologies are neither able to prototype products in a wide range of materials, nor well suited to manufacture a large batch of parts. This has led to the adoption of various tooling options; such options and techniques are collectively termed RT [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.D. Hilton, P.F. Jacobs, Rapid Tooling: Technologies and Industrial Applications, Marcel Dekker, Inc, New York, 2000.

    Book  Google Scholar 

  2. A. Rosochowski, A. Matuszak, J. Mater. Proc. Tech., Vol.106 (2000), 91.

    Article  Google Scholar 

  3. C. Ainsley, H.Q. Gong, RP. J., Vol.5, (1999), 35.

    Google Scholar 

  4. DTM Corporation, www.dtm-corp/applications, 2001.

    Google Scholar 

  5. EOS GmbH, Germany, http://www.eos-gmbh.de, 2001.

  6. Sandia National Laboratory, USA, http://www.sandia.gov/LabNews/LN12-05-97/lens_story.html, 1997.

  7. SDM, Stanford University Rapid Prototyping Laboratory, http://www-rpl.stanford/planner.html, 1997.

  8. F. Klocke and U. Clemens, Proc. of the 5th Eur. Confer. on RP. and manuf., (1996), 211.

    Google Scholar 

  9. CMB, Controlled Metal Build-up, Fraunhofer Insititue of Prodution Technology, Aachen, Genmany, 1999.

    Google Scholar 

  10. R.C. Soar, A. Arthur and P.M. Dickens, Proc. of the 2nd Inter. Confer. on RP. and Tooling Res., edited by G. Bennett (1997),65.

    Google Scholar 

  11. 3D Keltool, 3D Systems, Inc., Valencia, CA, http://www.3dsystems.com, 2001.

  12. P. Jacobs, Proc of the 2nd National Confer, on Development in RP. and Tooling, (1997).

    Google Scholar 

  13. A.D. Venus, S J van de Crommert, S. O’Hagen, Proc of the 2nd National Confer. on Development in RP. and Tooling, (1997).

    Google Scholar 

  14. Y.H. Tan, BEng Thesis, National University of Singapore, (1999), 27.

    Google Scholar 

  15. X.H. Wang, J.Y.H. Fuh, Y.S. Wong, Proc of Inter. Confer. of Precision Engineering, Singapore, (2000), 455.

    Google Scholar 

  16. IMOLDTM, ManuSoft Plastic Pte. Ltd, Singapore, http://www.manusoft.com.sg, 2001.

  17. E. Sachs, S. Allen, M. Cima, E. Wylonis, and H. Guo, Proc. of the 7th Solid Freeform Fabrication Symp., Austin, USA, (1996), 448.

    Google Scholar 

  18. B. Strucker, Proc of Solid Freeform Fabrication Symp., (1995), 278.

    Google Scholar 

  19. B.E. Stucker, W.L. Bradley, S. Noraset-thekul, P.T. Eubank, Technical Report, Texas A&M University, 1996.

    Google Scholar 

  20. A. Arthur, P.M. Dickens, R.C. Cob, RP. J., vol.2(l), (1996), 4.

    Google Scholar 

  21. H.M. Zaw, J.Y.H. Fuh, A.Y.C. Nee, L. Lu, J. Mater. Proc. Techn., vol.89–90 (1999), 182.

    Article  Google Scholar 

  22. L. Li, Y.S. Wong, J.Y.H. Fuh, L. Lu, Mater. Design, (2001), in print.

    Google Scholar 

  23. W.E. Lee, E. Gursoz, F.B. Prinz, et al., Manuf. Rev., vol.3(l), (1990), 40.

    Google Scholar 

  24. B. Yang, M.C. Leu, CIRP Annals — Manuf. Tech., vol. 48(1) (1999), 119.

    Article  Google Scholar 

  25. K.D.V. Prasad, P. Christodoulou, V.S. Subramanian, J. Mater. Proc. Tech., vol.89–90 (1999), 231.

    Google Scholar 

  26. S.J. Dover, C.E. Bocking, G. Bennett, Proc. of 1st National Confer, on RP. and Tooling, Mech Eng Publications Ltd, (1995), 157.

    Google Scholar 

  27. S.J. Dover, C.E. Bocking, RP. News Letter, Iss. 9 (1996), 157.

    Google Scholar 

  28. H. Dürr, R. Pilz, N.S. Eleser, Computers in Industry, Vol.39 (1999), 35.

    Article  Google Scholar 

  29. M.W. Khaing, MEng Thesis, National University of Singapore, (2001), 95.

    Google Scholar 

  30. N.P. Karapatis, J.-P.S. van Griethuysen, R. Glardon, RP J., Vol.4 (2), (1998), 77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lü, L., Fuh, J.Y.H., Wong, Y.S. (2001). Rapid Tooling and Its Applications. In: Laser-Induced Materials and Processes for Rapid Prototyping. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1469-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1469-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7400-8

  • Online ISBN: 978-1-4615-1469-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics