Advertisement

Metal-Based System via Laser Melting

  • L. Lü
  • J. Y. H. Fuh
  • Y. S. Wong
Chapter

Abstract

The advantage of SLS is that it uses only low power laser. However, since the powder is not totally melted during laser scanning, the SLS-processed parts are not fully dense and hence, have relatively low strength. To overcome this disadvantage of traditional SLS, selective laser melting (SLM) and selective laser cladding (SLC) processes have been developed that enable full melting of the powder. Basically, the SLM process is the same as SLS except for the much higher laser energy density used. The powder bed is fully or partially melted directly to form metallic bonding [1]. The selective laser cladding (SLC) process is based on the surface cladding treatment.

Keywords

Laser Power Titanium Carbide Selective Laser Melting Powder Feed Rate Laser Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow, RP. J., Vol. 1 (1995), 26.Google Scholar
  2. 2.
    O.D.D. Soares and M. P. Amor, Applied Laser Tooling, Martinus Nijhoff, 1987.CrossRefGoogle Scholar
  3. 3.
    W.M. Steen, Laser Material Processing, Springer-Verlag, 1991.CrossRefGoogle Scholar
  4. 4.
    J. Gerken, H. Haferkamp and H. Schmidt, Proc. 27 th ISATA, Achen, Germany, Automotive Automation, Croydon, 1994.Google Scholar
  5. 5.
    S.C. Peng, C.J. Chou and J.Y. Jeng, Proc. 27 th ISATA, Achen, Germany, Automotive Automation, Croydon, 31Oct. - 4 Nov. 1994, 273.Google Scholar
  6. 6.
    V.M. Weerasinghe and W.M. Steen, Computer simulation model for laser cladding, Transport Phenomena in Mater. Proc., New York, ASME, 1983,15.Google Scholar
  7. 7.
    T.R. Anthony and H.E. Cline, J. App. Phys., Vol. 48 (1977), 3888.CrossRefGoogle Scholar
  8. 8.
    C. Chan, J. Mazumder and M.M. Chen, Lasers in Mater Proc, ASM, 1983, 150.Google Scholar
  9. 9.
    R. Vilar, Mater. Sci. Forum, Vol. 301 (1999), 229.CrossRefGoogle Scholar
  10. 10.
    V.M. Weerasinghe and W.M. Steen, Applied Laser Tooling, Ed. O.D.D. Soares and M. Perez-Amor, Martinus Nijhoff Pub., Dordrecht, 1987,183.CrossRefGoogle Scholar
  11. 11.
    Z.D. Chen, T.A. Mai and G.C. Lim, Conf. Proc. of ICALEO’98, Orlando, Florida, USA, 1989.Google Scholar
  12. 12.
    P.A. Vetter, T. Engle and J. Fontaine, Laser Mater. Proc: Industrail and Microelectronics Applications, Bellingham: Spie - Intern. Soc. Optical Eng., 1994, 452.CrossRefGoogle Scholar
  13. 13.
    J. Lin and W.M. Steen, J. Laser Applications, Vol. 10 (1998), 55.CrossRefGoogle Scholar
  14. 14.
    J.Y. Jeng, S.C. Peng and C.J. Chou, Intern. J. Adv. Manuf. Tech., Vol. 16 (2000), 681.CrossRefGoogle Scholar
  15. 15.
    N.K. Tolochko, T. Laoui, Y.V. Khlopkov, S.E. Mozzharov, V.l. Titov and M.B. Ignatiev, RPJ., Vol. 6 (2000), 155.Google Scholar
  16. 16.
    F.G. Arcella and F.H. Froes, JOM, Vol. 52, (5) (2000), 28.CrossRefGoogle Scholar
  17. 17.
    D.H. Abbott and F.G. Arcella, Adv. Mater. Proc, Vol. 5 (1998), 29.Google Scholar
  18. 18.
    G. K. Lewis and E. Schlienger, Mater. Design, Vol. 21 (2000), 417.CrossRefGoogle Scholar
  19. 19.
    J. Mazumder, J. Choi, K. Nagarathnam, J. Koch and D. Hetzner, JOM, May (1997), 55.Google Scholar
  20. 20.
    J.A. Benda, Solid Free Form Fabrication Symp., The University of Texas at Austin, 1994, 277.Google Scholar
  21. 21.
    Y. Song, CIRP Ann. 1997, Manufacturing Tech., Pub. Annl. Inter. Inst, for Prod. Eng. Res., Vol. 46/1 (1997), 129.Google Scholar
  22. 22.
    H.J. Niu and I.T.H. Chang, Scripta Mater., Vol. 41 (1999), 1229.CrossRefGoogle Scholar
  23. 23.
    D. L. Bourell, H.L Marcus, J.W. Barlow, J.J. Beaman, Intern. J. Powder Metall., Vol. 28, No. 4 (1992), 371.Google Scholar
  24. 24.
    B.V. Schueren and J.P. Kruth, Laser Assisted Net Shape Eng. Proc. of the LANE’94, Ed. M. Geiger and F. Vollertsen, Meisenbach Bamberg, Erlangen, Vol. 11 (1994), 793.Google Scholar
  25. 25.
    L. Rayleigh, Proc. London Math., Vol. 10, (1878), 4.CrossRefGoogle Scholar
  26. 26.
    F.A. Nichols and W.W. Mullins, Trans. Met. Soc. AIME, Vol. 233 (1965), 1840.Google Scholar
  27. 27.
    H.J. Niu and I.T.H. Chang, Scripta Mater., Vol. 39 (1998), 67.CrossRefGoogle Scholar
  28. 28.
    K.C. Mills and B.J. Keene, Inter. Mater. Rev., Vol. 35 (1990), 185.CrossRefGoogle Scholar
  29. 29.
    H.J. Niu and I.T.H. Chang, J. Mater. Sci., Vol. 35 (2000), 31.CrossRefGoogle Scholar
  30. 30.
    F. Costache, A. Marian, D.M. Buca and V. Iov, SIOEL’99, Sixth Symp. on Optoelectronics, Ed. Teodor Necsoiu, Maria Robu, Dan C, Dumitras, Proc. of SPIE Vol. 4068 (2000), 555.Google Scholar
  31. 31.
    F.H. Froes, Mater. Tech., Vol. 15 (2000), 8.Google Scholar
  32. 32.
    P.K.D.V. Yarlagadda, P. Christodoulou and V.S. Subramanian, J. Mater. Proc Tech., Vols. 89–90 (1999), 231.CrossRefGoogle Scholar
  33. 33.
    G. Semon, A Practice Guid to Electro-Discharge Machining, 2nd ed., Ateliers desGoogle Scholar
  34. 34.
    B.E. Stucker, W.L. Bradley, S. Norasetthekul and P.T. Eubank “The Production of Electrical Discharge Machining Electrodes Using SLS: Preliminary Results”, Texas A&M University.Google Scholar
  35. 35.
    A. Upadhyaya, R.M. German, Intern. J. Powder Metall, Vol. 34, (2) (1998), 43.Google Scholar
  36. 36.
    S S. Charshan, Guide to Laser Materials Processing, Laser Institue of America, 1993.Google Scholar
  37. 37.
    N.M. Parikh, M. Humenik, J. Amer. Ceramic Soc, Vol. 40 (1957), 315.CrossRefGoogle Scholar
  38. 38.
    M. Nicholas and P.M. Pools, J. Mater. Sci., Vol. 2 (1967), 269.CrossRefGoogle Scholar
  39. 39.
    W.D. Callister, Mater. Sci. Eng., 2nd Edition, John Wiley & Sons, 1991, 74.Google Scholar
  40. 40.
    Metal Handbook Binary Alloy Phase Diagrams, 2nd edition ASM International: Materials Park, OH., Vol. 2 (1991), 1442.Google Scholar
  41. 41.
    M.M. Sun, J.C. Nelson, J.J. Beaman, J.W. Barlow, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1991, 46.Google Scholar
  42. 42.
    L. Lu, J.Y.H. Fuh, Z.D. Chen, C.C. Leong and Y.S. Wong, Mater. Res. Bul., Vol. 35 (2000), 1555.CrossRefGoogle Scholar
  43. 43.
    R.G. Colters, Mater. Sci. Eng, Vol.70 (1985), 1.Google Scholar
  44. 44.
    W.J. Lu, X.N. Zhang, D. Zhang, R.J. Wu, Y J. Bian an P.W. Fang, Acta Metall. Sínica, Vol. 35 (1999), 536.Google Scholar
  45. 45.
    T. Nukami and M. C. Flemings, Metall. Mater. Trans. A, Vol. 26A (1995), 1877.CrossRefGoogle Scholar
  46. 46.
    F.D.S. Marquis, S.S. Batsanov, J. A. Puszynski, Proc. and Fabrication of Adv. Mater. V, The Minerals, Metals & Materials Soc, 1996, 668.Google Scholar
  47. 47.
    M.J. Capaldi, J.V. Wood, J. Mater. Synth. Proc, Vol. 4, (4) (1996), 245.Google Scholar
  48. 48.
    L. Fouilland-Paille, S. Ettaqi, S. Benayoun, J.J. Hantzpergue, Surface Coatings Tech., Vol. 88 (1996), 204.CrossRefGoogle Scholar
  49. 49.
    I. Gotman, M.J. Koczak, Mater. Sci. Eng., A187 (1994), 189.CrossRefGoogle Scholar
  50. 50.
    D. Brodkin, Surya R. Kalidindi, Michel W. Barsoum, A. Zavaliangos J. Amer. Ceram. Soc, Vol. 79, (7) (1996), 1945.CrossRefGoogle Scholar
  51. 51.
    O. Yamada, J. Amer. Ceram. Soc, Vol. 70, (9) (1987), C206.CrossRefGoogle Scholar
  52. 52.
    K.K. Udwadia, J. A. Puszynski, In-situ Reactions for Synthesis of Composites, Ceramics and Intermetallics, edited by E.V. Barrera, F.D.S. Marquis, S.G. Fishman, N.N. Thadhani, W.E. Frazier, Z.A. Munir, TMS, 1995.Google Scholar
  53. 53.
    C.C. Leong, M.Eng Thesis, National University of Singapore, (2000).Google Scholar
  54. 54.
    M.W. Barsoum, B. Houng, J. Amer. Ceram. Soc, Vol. 76, (6) (1993), 1445.CrossRefGoogle Scholar
  55. 55.
    P. Mogilevsky, J. Gotman, E.Y. Gutmanas, Mater. Sci. Eng., A171 (1993), 271.CrossRefGoogle Scholar
  56. 56.
    D.L Bourell, H.L. Marcus, J.W. Barlow, and J.J. Beaman, J. Powder Metall, Vol. 28, (4) (1992), 371.Google Scholar
  57. 57.
    T.H. Ihn, S.W. Lee, S.K. Joo, Powder Metall, Vol. 37, (4) (1994), 283.Google Scholar
  58. 58.
    S.K. Raghunathan, C. Persad, D.L. Bourell, H.L. Marcus, Mater. Sci. Eng., A131 (1991), 243.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • L. Lü
    • 1
  • J. Y. H. Fuh
    • 1
  • Y. S. Wong
    • 1
  1. 1.The National University of SingaporeSingapore

Personalised recommendations