Skip to main content

Power System Economic Operation Overview

  • Chapter
Operation of Restructured Power Systems

Abstract

Power system operation in many electricity supply systems worldwide, has been experiencing dramatic changes due to the ongoing restructuring of the industry. The visible changes have been many, shifting of responsibilities, changes in the areas of influence, shift in the operating objectives and strategies, distribution of work, amongst others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. X. Liang and J. D. Glover, “Improved cost functions for economic dispatch computations”, IEEE Transactions on Power Systems, May’91, pp.821–829.

    Google Scholar 

  2. B. H. Chowdhury and S. Rehman, “A review of recent advances in economic dispatch”, IEEE Transactions on Power Systems, Nov.’90, pp. 1248–1259.

    Google Scholar 

  3. H. H. Happ, “Optimal power dispatch- A comprehensive survey”, IEEE Transactions on Power Apparatus and Systems, Vol.PAS-96, May/June 1977, pp.841–854.

    Article  Google Scholar 

  4. IEEE Working Group, “Description and bibliography of major economy - security functions. Part-II: Bibliography (1959–1972)”, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, Jan.’81, pp.215–223.

    Article  Google Scholar 

  5. IEEE Working Group, “Description and bibliography of major economy - security functions. Part-Ill: Bibliography (1973–1979)”, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, Jan/81, pp.224–235.

    Article  Google Scholar 

  6. C. B. Somuah and N. Khunaizi, “Application of linear programming re-dispatch technique to dynamic generation allocation”, IEEE Transactions on Power Systems, Feb.’90, pp. 20–26.

    Google Scholar 

  7. G. Demartini, G. P. Granelli, P. Marannino, M. Montagna and M. Ricci, “Coordinated economic and advance dispatch procedures”, IEEE Transactions on Power Systems, Nov.’96, pp. 1785–1791.

    Google Scholar 

  8. F. N. Lee and A. M. Breipohl, “Reserve constrained economic dispatch with prohibited operating zones”, IEEE Transactions on Power Systems, Feb.’93, pp. 246–254.

    Google Scholar 

  9. N. A. Chowdhury and R. Billinton, “Risk constrained economic load dispatch in interconnected generating system”, IEEE Transactions on Power Systems, Nov.’90, pp. 1239–1247.

    Google Scholar 

  10. G. B. Sheble, “Real-time economic dispatch and reserve allocation using merit order loading and linear programming rules”, IEEE Transactions on Power Systems, Nov.’89, pp.1414–1420.

    Google Scholar 

  11. J. Nanda, L. Hari and M. L. Kothari, “Economic emission load dispatch with line flow constraints using a classical technique”, IEE Proceedings, Generation, Transmission and Distribution, Jan.’94, pp. 1–10.

    Google Scholar 

  12. J. A. Momoh, M. E. El-Hawary and R. Adapa, “A review of selected optimal power flow literature to 1993. Part-I: Non-linear and quadratic programming approaches”, IEEE Transactions on Power Systems, Feb.’99, pp. 96–104.

    Google Scholar 

  13. J. A. Momoh, M. E. El-Hawary and R. Adapa, “A review of selected optimal power flow literature to 1993. Part-II: Newton, linear programming and interior point methods”, IEEE Transactions on Power Systems, Feb.’99, pp. 105–111.

    Google Scholar 

  14. M. Huneault and F. D. Galiana, “A survey of the optimal power flow literature”, IEEE Transactions on Power Systems, May’91, pp. 762–770.

    Google Scholar 

  15. J. Carpentier, “Contribution e ľétude do Dispatching Economise”, Bulletin Society Francaise Electriciens, August 1962.

    Google Scholar 

  16. H. W. Dommel and W. F. Tinney, “Optimal power flow solutions”, IEEE Transactions on Power Apparatus and Systems, October 1968, pp. 1866–1876.

    Google Scholar 

  17. A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, 2nd Edition, John Wiley and Sons, Inc. 1996.

    Google Scholar 

  18. GAMS Release 2.25, A User’s Guide, GAMS Development Corporation.

    Google Scholar 

  19. R. Lugtu, “Security constrained dispatch”, IEEE Transactions on Power Apparatus and Systems, Jan/Feb.’79.

    Google Scholar 

  20. A. Monticelli, M. V. F. Pereira and S. Granville, “Security constrained optimal power flow with post-contingency corrective rescheduling”, IEEE Transactions on Power Systems, February 1987.

    Google Scholar 

  21. B. Stott, O. Alsac and A. J. Monticelli, “Security analysis and optimization”, Proceedings of the IEEE, December 1987, pp. 1623–1644.

    Google Scholar 

  22. G. Opoku, “Optimal power system VAR planning”, IEEE Transactions on Power Systems, Feb. ‘90, pp. 53–60.

    Google Scholar 

  23. Y. T. Hsiao, C. C. Liu, H. D. Chiang and Y. L. Chen, “A new approach for optimal VAR sources planning in large scale electric power systems”, IEEE Transactions on Power Systems, Aug.’93, pp. 988–996.

    Google Scholar 

  24. N. Deeb and S. M. Shahidehpour, “Cross decomposition for multi-area optimal reactive power planning”, IEEE Transactions on Power Systems, Nov.’93, pp. 1539–1544.

    Google Scholar 

  25. S. Granville and M. C. A. Lima, “Application of decomposition techniques to VAR planning: Methodological and computational aspects”, IEEE Transactions on Power Systems, Nov.’94, pp. 1780–1787.

    Google Scholar 

  26. D. Chattopadhyay, K. Bhattacharya and J. Parikh, “Optimal reactive power planning and its spot pricing. An integrated approach”, IEEE Transactions on Power Systems, Nov/95, pp. 2014–2020.

    Google Scholar 

  27. M. Bjelogrlic, M. S. Calovic, P. Ristanovic and B. S. Babic, “Application of Newton’s optimal power flow in voltage/reactive power control”, IEEE Transactions on Power Systems, Nov.’90, pp.1447–1454.

    Google Scholar 

  28. D. S. Kirschen and H. P. Van Meeteren, “MW/voltage control in a linear programming based optimal power flow”, IEEE Transactions on Power Systems, May’88, pp.481–489.

    Google Scholar 

  29. R. Mukerji, W. Neugebauer, R. P. Ludorf and A. Catelli, “Evaluation of wheeling and non-utility generation (NUG) options using optimal power flow”, IEEE Transactions on Power Systems, Feb.’92, pp.201–207.

    Google Scholar 

  30. Y. Z. Li and A. K. David, “Optimal multi-area wheeling”, IEEE Transactions on Power Systems, Feb.’94, pp.288–294.

    Google Scholar 

  31. Y. Z. Li and A. K. David, “Wheeling rates of reactive power flow under marginal cost pricing”, IEEE Transactions on Power Systems, Aug.’94, pp. 1263–1269.

    Google Scholar 

  32. M. C. Caramanis, R. E. Bohn and F. C. Schweppe, “Optimal spot pricing. Practice and Theory”, IEEE Transactions on Power Systems, Sept.’82, pp.3234–3245.

    Google Scholar 

  33. M. L. Baughman and S. N. Siddiqi, “Real time pricing of reactive power: Theory and case study results”, IEEE Transactions on Power Systems, Feb.’91, pp.23–29.

    Google Scholar 

  34. S. Ruzic and N. Rajakovic, “A new approach for solving extended unit commitment problem”, IEEE Transactions on Power Systems, Feb.’91, pp. 269–277.

    Google Scholar 

  35. H. Ma and S. M. Shahidehpour, “Unit commitment with transmission security and voltage constraints”, IEEE Transactions on Power Systems, May’99, pp. 757–764.

    Google Scholar 

  36. F. N. Lee and Q. Feng, “Multi-area unit commitment”, IEEE Transactions on Power Systems, May’92, pp.591–599.

    Google Scholar 

  37. F. N. Lee, J. Huang and R. Adapa, “Multi-area unit commitment via sequential method and a DC power flow network model”, IEEE Transactions on Power Systems, Feb.’94, pp. 279–287.

    Google Scholar 

  38. K. Aoki, M. Itoh, T. Satoh, K. Nara and M. Kanezashi, “Optimal long-term unit commitment in large scale systems including fuel constrained thermal and pumped storage hydro”, IEEE Transactions on Power Systems, Aug.’89, pp. 1065–1073.

    Google Scholar 

  39. F. N. Lee, “A fuel-constrained unit commitment method”, IEEE Transactions on Power Systems, Aug. ‘89, pp. 1208–1218.

    Google Scholar 

  40. S. Vemouri and L. Lemonidis, “Fuel constrained unit commitment”, IEEE Transactions on Power Systems, Feb.’92, pp. 410–415.

    Google Scholar 

  41. W. J. Hobbs, G. Hermon, S. Warner and G. B. Sheble, “An enhanced dynamic programming approach for unit commitment”, IEEE Transactions on Power Systems, Aug.’88, pp. 1201–1205.

    Google Scholar 

  42. C. Wang and S. M. Shahidehpour, “Effects of ramp-rate limits on unit commitment and economic dispatch”, IEEE Transactions on Power Systems, Aug.’93, pp. 1341–1350.

    Google Scholar 

  43. F. N. Lee, L. Lemonidis and K. C. Liu, “Price based ramp-rate model for dynamic dispatch and unit commitment”, IEEE Transactions on Power Systems, Aug.’94, pp. 1233–1242.

    Google Scholar 

  44. C. Wang and S. M. Shahidehpour, “Optimal generation scheduling with ramping costs”, IEEE Transactions on Power Systems, Feb.’95, pp. 60–67.

    Google Scholar 

  45. S. Y. Lai and R. Baldick, “Unit commitment with ramp multipliers”, IEEE Transactions on Power Systems, Feb.’99, pp. 58–64.

    Google Scholar 

  46. J. Batut and A. Renaud, “Daily generation scheduling optimization with transmission constraints: A new class of algorithms”, IEEE Transactions on Power Systems, Aug.’92, pp. 982–989.

    Google Scholar 

  47. S. J. Wang, S. M. Shahidehpour, D. S. Kirschen, S. Mokhtari and G. D. Irisarri, “Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation”, IEEE Transactions on Power Systems, Aug.’95, pp. 1294–1301.

    Google Scholar 

  48. R. Baldick, “The generalized unit commitment problem”, IEEE Transactions on Power Systems, Feb.’95, pp. 465–475.

    Google Scholar 

  49. G. B. Sheble and G. N. Fahd, “Unit commitment literature synopsis”, IEEE Transactions on Power Systems, Feb.’94, pp. 128–135.

    Google Scholar 

  50. B. W. Bentley, “Integrating non-utility generation into the NEPOOL resource planning process”, IEEE Transactions on Power Systems, Nov.’88, pp. 1754–1756.

    Google Scholar 

  51. N. S. Rau and C. M. Necsulescu, “A model for economy energy exchanges in interconnected power systems”, IEEE Transactions on Power Systems, Aug.’89, pp. 1147–1153.

    Google Scholar 

  52. L. Zhang, P. B. Luh, X. Guan and G. Merchel, “Optimization-based inter-utility power purchases”, IEEE Transactions on Power Systems, May’94, pp.891–897.

    Google Scholar 

  53. S. Ruzic and N. Rajakovic, “A new approach for solving extended unit commitment problem”, IEEE Transactions on Power Systems, Feb.’91, pp. 269–277.

    Google Scholar 

  54. F. N. Lee, J. Huang and R. Adapa, “Multi-area unit commitment via sequential method and a DC power flow network model”, IEEE Transactions on Power Systems, Feb.’94, pp. 279–287.

    Google Scholar 

  55. J. Batut and A. Renaud, “Daily generation scheduling optimization with transmission constraints: A new class of algorithms”, IEEE Transactions on Power Systems, Aug.’92, pp. 982–989.

    Google Scholar 

  56. F. N. Lee, “Three-area joint dispatch production costing”, IEEE Transactions on Power Systems, Feb.’88, pp. 294–300.

    Google Scholar 

  57. F. N. Lee, “A new multi-area production costing method”, IEEE Transactions on Power Systems, Aug.’88, pp. 915–922.

    Google Scholar 

  58. G. Fahd and G. B. Sheble, “Optimal power flow emulation of interchange brokerage systems using linear programming”, IEEE Transactions on Power Systems, May’92, pp. 497–504.

    Google Scholar 

  59. K. W. Doty and P. L. McEntire, “An analysis of electric power brokerage systems”, IEEE Transactions on Power Apparatus and Systems, Feb.’82, pp.389–396.

    Google Scholar 

  60. G. Fahd, D. A. Richards and G. B. Sheble, “The implementation of an energy brokerage system using linear programming”, IEEE Transactions on Power Systems, Feb.’92, pp. 90–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhattacharya, K., Bollen, M.H.J., Daalder, J.E. (2001). Power System Economic Operation Overview. In: Operation of Restructured Power Systems. The Kluwer International Series in Engineering and Computer Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1465-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1465-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5567-0

  • Online ISBN: 978-1-4615-1465-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics