Molecular, Cytogenetic and Genetic Abnormalities in MDS and Secondary AML

  • Rose Ann Padua
  • Angela McGlynn
  • Hugh McGlynn
Part of the Cancer Treatment and Research book series (CTAR, volume 108)


Myelodysplasia (MDS) is a clonal disease, which increases with age, suggesting that multiple steps are required for the evolution of the condition. Approximately 30% of MDS evolve into acute myelogenous leukemia (AML). In this review, we intend to delineate the genetic events, which may drive this sequence and therefore we will focus primarily on cytogenetic abnormalities where the genes have been identified and oncogenes and suppressor genes that have been implicated. In terms of the biological mechanisms, which characterise this process, it is generally thought that the MDS cell has impaired differentiation, and has increased apoptosis. As the disease progresses in addition, the cells have increased proliferation. As the disease evolves, the population of cells, which predominate remain immature, have decreased apoptosis and in many cases, upregulate anti-apoptotic genes and have deregulated proliferation as the number of blast cells increase. Etiological factors, which contribute to the development of leukemia, include therapeutic agents administered for a primary malignancy. The cytogenetic abnormalities, predisposition factors and genes involved in secondary leukemia will also be reviewed.


Acute Myeloid Leukemia Myelodysplastic Syndrome Acute Myelogenous Leukemia Reduce Folate Carrier Mutant NRAS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.M. & Corey, S. (1992) Oncogene co-operation in leukaemogenesis.Cancer Surveys15, 119–141.PubMedGoogle Scholar
  2. Advani, R., Visani, G., Milligan, D., Saba, H., Tallman, M., Rowe, J.M., Wiemik, P.H., Ramek, J., Dugan, K., Lum, B., Villen, J., Davis, E., Paietta, E., Litchman, M., Covelli, A., Sikic, B. & Greenberg, P. (1999) Treatment of poor prognosis AML patients using PSC833 (valspodar) plus mitoxanthrone, etoposide, and cytarabine (PSC-MEC).Advances in Experimental Medical Biology457, 47–56.CrossRefGoogle Scholar
  3. Ali, A., Mundle S.D., Ragasa, D., Reza, S., Shetty, V., Mativi, B.Y., Cartlidge, J.D., Azharuddin, M., Qawi, H., Dar, S. & Raza, A. (1999) Sequential activation of caspase-1 and caspase-3-like proteases during apoptosis in myelodysplastic syndromes.Journal of Hematotherapy Stem Cell Research8, 343–56.PubMedCrossRefGoogle Scholar
  4. Ahuja, H.G., Felix, C.A. & Aplan, P.D. (1999) The t(11;20)(p15;g11) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in an NUP98-TOPI fusion.Blood94, 3258–3261.PubMedGoogle Scholar
  5. Arai, Y. Hosoda, F., Kobayashi, H., Arai, K., Hayashi, Y., Kamada, N., Kaneko, Y. & Ohki, M. (1997) The inv(11)(p15g22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the necleoporin gene, NUP98, with the RNA helicase gene, DDX10.Blood89, 3936–3944.PubMedGoogle Scholar
  6. Ashihara, E., Shimazaki, C., Okamoto, A., Shimura, K., Takahashi, R., Sumikuma, T., Hirai H., Inaba T., Fujita, N. & Nakagawa, M. (1999) Successful peripheralBloodstem cell transplantation for myelodysplastic syndrome.Bone Marrow Transplant24, 1343–1345.PubMedCrossRefGoogle Scholar
  7. Atlas, M., Head, D., Behm, F., Schmidt, E., Zelcznik-Le, N.H., Roe, B.A., Burian, D. & Domer, P.H. (1998) Cloning and sequence analysis of four t(9;11) therapy related leukemia breakpoints.Leukemia12, 1895–1902.PubMedCrossRefGoogle Scholar
  8. Aul, C., Bowen, D.T. & Yoshida Y. (1998) Pathogenesis, etiology and epidemiology of myelodysplastic syndromes.Haematologica 8371–86.PubMedGoogle Scholar
  9. Baker, A.H., Ahonen, M. & Kahari, V.M. (2000) Potential applications of tissue inhibitor of metalloproteinase (TIMP) overexpression for cancer gene therapy.Advances in Experimental Medical Biology 465469–483.CrossRefGoogle Scholar
  10. Baker, A., Cachia, P., Ridge S., McGlynn, H., Clarke, R., Whittaker, J., Jacobs, A. & Padua R.A. (1995) FMS mutations in patients following cytotoxic therapy for lymphoma.Leukemia Research 19309–318.PubMedCrossRefGoogle Scholar
  11. Baker, D., Maher, J., RobertsI.and Dibb, N. (1994) Evidence that ras and myc mediate the synergy between SCF or M-CSF and other haemopoietic growth factors.Leukemia8, 1970–1981.PubMedGoogle Scholar
  12. Bench, A.J., Nacheva, E.P., Hood, T.L., Holden, J.L., French, L., Swanton, S., Champion, K.M., Li, J., Whittaker, P., Stavrides, G., Hunt, A.R., HuntlyB.J.Campbell, L.J., Bentley, D.R., Deloukas, P. & Green, A.R. (2000) Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes.Oncogene 193902–13.PubMedCrossRefGoogle Scholar
  13. Ben-Yehuda, D., Krichevsky, S., Capsi, O., Rund, D., Polliack, A., Abeliovich, D., Yahalom, V., Paltiel, O., Or, R., Peretz, T., Ben-Neriah, S., Yehuda, O., Rachmilwitz, E.A. (1996) Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype.Blood 884296–4303.PubMedGoogle Scholar
  14. Beaupre, D.M. & Kurzrock, R. (1999) RAS and leukemia: from basic mechanisms to gene-directed therapy.Journal of Clinical Oncology 171071–1079.PubMedGoogle Scholar
  15. Blutters-Sawatski, R., Borkhardt, A., Grathwohl, J., Repp, R., Rheinisch-Becher, I. Bohle, R.M. & Lampert, F. (1995) Secondary acute myeloid leukemia with translocation (4;11) and MLL/AF4 43 arrangement in a 15-year-old boy treated for a common acute lymphoblastic leukemia 11 years earlier.Annals of Hematology 7031–35.CrossRefGoogle Scholar
  16. Boer, J., Bonten-Surtel, J., Grosveld, G. (1998) Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis.Molecular and Cellular Biology 181236–1247.PubMedGoogle Scholar
  17. Boogaerts, M.A., Verhoef, G.E.&Demuynck H. (1996) Treatment and prognostic factors in myelodysplastic syndromes.Baillieres Clinics in Haematology 9161–183.CrossRefGoogle Scholar
  18. Borkhardt, A., Bojesen, S., Haas, O.A., Fuchs, U., Bartelheimer, D., Loncarevic, I.F., Bohle, R.M., Harbott, J., Repp, R., Jaeger, U., Viehmann, S., Henn, T., Korth, P., Scharr, D. & Lampert, F. (2000) The human GRAF gene is fused to MLL in a unique t(5;11)(g31;g23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute leukemia with a deletion 5q. Proceedings of the National Academy of Sciences USA979168–9173.CrossRefGoogle Scholar
  19. Boultwood, J., Strickson, A.J., Jabs, E.W., Cheng, J.F., Fidler, C. & Wainscoat, J.S. (2000a) Physical mapping of the human ATXI homologue (HAH1) to the critical region of the 5q-syndrome within 5q32, and immediately adjacent to the SPARC gene. Human Genetics106127–129.CrossRefGoogle Scholar
  20. Boultwood, J., Fidler, C., Strickson, A.J., Watkins, F., Kostrzewa, M., Jaju, R.J., Muller, U. & Wainscoat, J.S. (2000b) Transcription mapping of the 5q-syndrome critical region: cloning of two novel genes and sequencing, expression, and mapping of a further six novel cDNA.Genomics 6626–34.CrossRefGoogle Scholar
  21. Bouscary, D., Chen, Y.L., Guesnu, M., Picard, F., Viguier, F., Lacombe, C., Dreyfus, F. & Fontenay-Roupie M. (2000) Activity of the caspase-3/CPP32 enzyme is increased in “early stage” myelodysplastic syndromes with excessive apoptosis, but caspase inhibition does not enhance colony formation in vitro.Experimental Hematology28,784–791.PubMedCrossRefGoogle Scholar
  22. Bouscary, D., De Vos, J., Guesnu, M., Jondeau, K., Viguier, F., Melle, J., Picard, F., Dreyfus F. & Fontenay-Roupie M. (1997) Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes.Leukemia 11839–845.PubMedCrossRefGoogle Scholar
  23. Buijs, A., van Rompaey, L., Molijn, A.C., Davis, J.N., Vertegaal, A.C., Potter, M.D., Adams, C., van Baal, S., Zwarthoff, E.C., Roussel, M.F. & Grosveld, G.C. (2000) The MN1TEL fusion protein, encoded by the translocation t(12;22)(p13;g11) in myeloid leukemia, is a transcription factor with transforming activity.Molecular and Cellular Biology20, 9281–9293.PubMedCrossRefGoogle Scholar
  24. Buske, C., Humphries, R.K. (2000) Homeobox genes in leukaemogenesis.International Journal of Hematology71, 301–308.PubMedGoogle Scholar
  25. Cachia, P.G., Taylor C., Thompson, P.W., Tennant, G.B., Masters, G., Pettersson, T., Whittaker, J.A., Bumett, A.K., Jacobs, A. & Padua R.A. (1994) Non-dysplastic myelodysplasia.Leukemia8, 677–681.PubMedGoogle Scholar
  26. Castilla, L.H., Wijmenga, C., Wang, Q. Stacey, T. Speck, N.A. Echaus, M. Marin-Padilla, M. Collins, F.S. Wynshaw-Boris, A. & Liu, P.P. (1996) Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knock-in leukemia gene CBFß-MYH11.Cell87, 687–696.PubMedCrossRefGoogle Scholar
  27. Carter, G., Hughes, D.C., Clark, R.E., McCormick, F., Jacobs, A., Whittaker, J.A. & Padua R.A. (1990) Ras mutations in patients following cytotoxic therapy for lymphoma.Oncogene5, 411–416.PubMedGoogle Scholar
  28. Castro, P.D., Liang, J.C., Nagarajan, L. (2000) Deletions of chromosome 5q13.3 and 17p loci cooperate in myeloid neoplasms.Blood95, 2138–2143.PubMedGoogle Scholar
  29. Chen, J., Li, R., Yan, S., Li, Q., Bai, T. & Wang S. (1998) Analysis of the characteristics of folate binding proteins and its relationship with expression of multidrug resistance Pglycoprotein in myelodysplastic syndromes.Chinese Medical Journal 111235–238.PubMedGoogle Scholar
  30. Counter, C.M., Gupta, J., Harley, C.B., Leber, B. & Bacchetti, S. (1995) Telomerase activity in normal leukocytes and in haematological malignancies.Blood85, 2315–2320.PubMedGoogle Scholar
  31. Crane, M. M., Strom, S.S., Halabi, S., Berman, E.L., Fueger, J.J., Spitz, M.R.& Keating M.J. (1996) Correlation between selected environmental exposures and karyotype in acute myelocytic leukemia.Cancer Epidemiology Biomarkers & Prevention5, 639–644.Google Scholar
  32. Cuenco, G.M., Nucifora, G. & Ren, R. (2000) Human AMLI/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML.Proceedings of the National Academy of Sciences USA97, 1769–1765.CrossRefGoogle Scholar
  33. Damiani, D., Michieli, M., Ermacora, A., Candoni, A., Raspadori, D., Geromin, A., Stocchi, R., Grimaz, S., Masolini, P., Michelutti, A., Scheper, R.J. & Baccarani, M. (1998) Pglycoprotein (PGP), and not lung resistance-related protein (LRP), is a negative prognostic factor in secondary leukemias.Haematologica83, 290–297.PubMedGoogle Scholar
  34. Darley, R.L., Hoy, T.G., Baines, P., Padua, R.A. & Burnett, AK. (1997) MutantN-RASinduced erythroid lineage dysplasia in human CD34+ cells.Journal of Experimental Medicine185:1337–1347.PubMedCrossRefGoogle Scholar
  35. Davies, S.M., Robison, L.L., Buckley, J.D., Radloff, G.A., Ross, J.A. & Perentesis, J.P. (2000) Glutathione S-transferase polymorphisms in children with myeloid leukemia: A Children’s Cancer Group study.Cancer Epidemiology Biomarkers and Prevention9, 563–566.Google Scholar
  36. Davis, R.E. & Greenberg P.L. (1998) Bel-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression.Leukemia Research22, 767–777.PubMedCrossRefGoogle Scholar
  37. Deeg, H.J., Beckham, C., Loken, M.R., Bryant, E., Lesnikova, M., Shulman, H.M. & Gooley T. (2000) Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome.Leukemia & Lymphoma37, 405–414.Google Scholar
  38. De Souza, F.T., Menezes de Souza, J., Macedo Silva, M.L., Tabak, D. & Abdelhay, E. (1998) Correlation of N-ras point mutations with specific chromosomal abnormalities in primary myelodysplastic syndrome.Leukemia Research 22125–134.CrossRefGoogle Scholar
  39. Dissing, M., Le beau, M.M. & Pedersen-Bjergaard, J. (1998) Inversion of chromosome 16 and uncommon rearrangements of CBFB and MYHI 1 genes in the therapy-related acute myeloid leukemia:rare events related to DNA-topoisomerase Il inhibitors.Journal of Clinical Oncology 161890–1896.PubMedGoogle Scholar
  40. Dobson, D.L., Warren, A.J., Pannell, R. Forster, A., Lavenir, I., Corral, J., Smith, A.J. & Rabbitts, T.H. (1999) The MLL-AFP gene fusion in mice controls myeloproliferation and specifies acute myeloid leukemogenesis.EMBO J 183564–3574.PubMedCrossRefGoogle Scholar
  41. Dreyling, M.H., Schrader, K., Fonatsch, C., Schlegelberger, B., Haase, D., Schoch, C., Ludwig, W., Loffler, H., Buchner, T., Wormann, B., Hiddemann, W. & Bohlander SK. (1998) MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis.Blood91, 4662–4667.PubMedGoogle Scholar
  42. Dunbar, C.E., Crosier, P.S.ScNienhuis, AW. (1991) Induction of an activated ras oncogene into murine BM lymphoid progenitors via retroviral gene transfer results in thymic lymphomas.Oncogene Research 639–51.PubMedGoogle Scholar
  43. Elghetany, M.T., Vyas, S. & Yuoh, G. (1998) Significance of p53 overexpression in bone marrow biopsies from patients with bone marrow failure: aplastic anemia, hypocellular refractory anemia, and hypercellular refractory anemia.Annals of Hematology 77261–264.PubMedCrossRefGoogle Scholar
  44. Fagioli, F., Cuneo, A., Piva, N., Carli, M.G., Previati, R., Balboni, M., Tomasi, P., Cariani, D., Scapoli, G. & Castoldi, G. (1992) Distinct cytogenetic and clinicopathologic features in acute myeloid leukemia after occupational exposure to pesticides and organic solvents.Cancer 7077–85.PubMedCrossRefGoogle Scholar
  45. Felix, C.A. (1998) Secondary leukemias induced by topoisomerase-targeted drugs.Biochimica Biophysics Acta 1400233–155.Google Scholar
  46. Fomerod, M., Boer, J., van Baal, S., Morreau, H. & Grosveld, G. (1996) Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN.Oncogene 131801–1908.Google Scholar
  47. Fontenay-Roupie, M., Bouscary, D., Guesnu, M., Picard, F., Melle, J., Lacombe, C., Gisselbrecht, S., Mayeux, P. & Dreyfus, F. (1999) Ineffective erythropoiesis in myelodysplastic syndromes: correlation with Fas expression but not with lack of erythropoietin receptor signal transduction.British Journal of Haematology 106464–473.PubMedCrossRefGoogle Scholar
  48. Friedman, A.D. (1999) Leukaemogenesis by CBF proteins.Leukemia 131932–1942.PubMedCrossRefGoogle Scholar
  49. Fujisawa, S. Togawa, J. Tanaka, M. Koharazawa, H. Aoba, M. Fijita, H. Murata, T. Kanamori, H. Matsuzaki, M. Mohri, H. Ishigatsubo, Y. (1999) De novo acute myelogenous leukemia with trilineage myelodysplasia associated with t(8;21)(g22;g22). Internal Medicine 38607–611.PubMedCrossRefGoogle Scholar
  50. Gale, R.E. (1999) Evaluation of clonality in myeloid stem-cell disorders.Seminars in Hematology 36361–372.PubMedGoogle Scholar
  51. Gallagher, A.P., Burnett, A.K., Bowen, D.T., Darley, R.L. (1998) Mutant RAS selectivity promotes sensitivity of myeloid leukemia cells to apoptosis by a protein kinase C-dependent process. Cancer research582029–2035PubMedGoogle Scholar
  52. Gallagher, A.P., Darley, R.L., Padua, R.A. (1997) The molecular basis of myelodysplastic syndromes. Haematologica, 82, 191–204.PubMedGoogle Scholar
  53. Gamou, T., Kitamura, E., Hosoda, F., Shimizu, K., Shinohara, K., Hayashi, Y, Nagase, T., Yokoyama, Y. & Ohki, M. (1998) The partner gene of AML1 in 1(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family.Blood 914028–4037.PubMedGoogle Scholar
  54. Golomb, H.M., Alimena, G., Rowley, J.D., Vardiman, J.W., Testa, J.R. & Sovik, C. (1982) Correlation of occupation and karyotype in adults with acute nonlymphocytic leukemia.Blood60, 404–411.PubMedGoogle Scholar
  55. Golub, T.R., Barker, G.F., Lovett, M. & Gilliland, D.G. (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation.Cell77, 307–316.PubMedCrossRefGoogle Scholar
  56. Golub, T.R. (1997) TEL gene rearrangements in myeloid malignancy.Hematological Oncology Clinics of North America 111207–1220.CrossRefGoogle Scholar
  57. Greenberg P.L. (1998) Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment.Leukemia Research22, 1123–1136.PubMedCrossRefGoogle Scholar
  58. Greenberg, P., Cox, C., Le Beau, M.M., Fenaux, P., Morel, P., Sanz, G., Sanz, M., Vallespi, T., Hamblin, T. Oscier, D. Ohyashiki, K. Toyama, K. Aul, C. Mufti, G. & Bennett J.(1997) International scoring system for evaluating prognosis in myelodysplastic syndromes.Blood15, 2079–2088.Google Scholar
  59. Gupta, P., Niehans, G.A., LeRoy, S.C., Gupta, K., Morrison, V.A., Schultz, C., Knapp, D.J. & Kratzke R.A. (1999) Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival.Leukemia3, 44–53.CrossRefGoogle Scholar
  60. Gustafsson, B., Christenson, B., Hjalmar, V. & Winiarski J. (2000) Cellular expression of MDM2 and p53 in childhood Leukemia s with poor prognosis.Medical Pediatric Oncology34, 117–124.CrossRefGoogle Scholar
  61. Hashimoto, S., Toba, K., Watanabe, K., Takahashi, H., Abe, T., Yano, T., Kioke, T., Takahashi M. & Aizawa Y. (2000) Thrombopoietin activates the growth of megakaryoblasts in patients with chronic myeloproliferative disorders and myelodyplastic syndrome.European Journal of Haematology64, 225–230.PubMedCrossRefGoogle Scholar
  62. Hassan, Z., Fadeel, B., Zhivotovsky, B. & Hellstrom-Lindberg, E. (1999) Two pathways of apoptosis induced with all-trans retinoic acid and etoposide in the myeloid cell line P39.Experimental Hematology27, 1322–1329.PubMedCrossRefGoogle Scholar
  63. Hatake, K., Tomizuka, H., Ikeda, M., Terui, Y.&Miura Y. (1998) Apoptosis-gene expression in hematopoietic system: normal and pathological conditions (Review).International Journal of Molecular Medicine1, 121–129.PubMedGoogle Scholar
  64. Hatano, Y., Miura, I., Nakamura, T., Yamazaki, Y., Takahashi, N. & Miura, A.B. (1999) Molecular heterogeneity of the NUP98/HOXa9 fusion transcript in myelodysplastic syndromes associated with t(7;11)(p15;p15).British Journal of Haematology107, 600–604.PubMedCrossRefGoogle Scholar
  65. Haupt, Y., Harris, A.W. & Adams, J.M. (1992) Retroviral infection accelerates T lymphomagenesis in E mu-N-ras transgenic mice by activating c-myc or N-myc.Oncogene7, 981–986.PubMedGoogle Scholar
  66. Hawley, R.G., Fong, A.Z., Ngan, B.Y., Hawley, T.S. (1995) Hematopoietic transforming potential of activated ras in chimeric mice.Oncogene11, 1113–1123.PubMedGoogle Scholar
  67. Hitzler, J.K., Witte, D.P., Jenkins, N.A., Copeland, N.G., Gilbert, D.J., Naeve, C.W., Look, A.T. & Morris, S.W.(1999) cDNA cloning, expression pattem, and chromosomal localization of Mlfl, murine homologue of a gene involved in myelodysplasia and acute myeloid leukemia.American Journal of Pathology155, 53–59.PubMedCrossRefGoogle Scholar
  68. Hoefsloot, L.H., van Amelsvoort, M.P., Broeders, L.C., van der Plas, D.C., van Lom, K., Hoogerbrugge, H., Touw, I.P. & Lowenberg B. (1997) Erythropoietin-induced activation of STATS is impaired in myelodyplastic syndrome.Blood89, 1690–1700.PubMedGoogle Scholar
  69. Hofmann, W.K., Kalina, U., Wagner, S., Seipelt, G., Ries, C., Hoelzer, D. & Ottmann, O.G. (1999) Characterization of defective megakaryocytic development in patients with myelodysplastic syndromes.Experimental Hematology27, 395–400.PubMedCrossRefGoogle Scholar
  70. Horrigan, S.K., Arbieva, Z.H., Xie, H.Y., Kravarusic, J., Fulton, N.C., Naik, H., Le, T.T. & Westbrook C.A. (2000) Delineation of a minimal interval and identification of 9 candidates for a tumour suppressor gene in malignant myeloid disorders on 5q31.Blood95, 2372–2377.PubMedGoogle Scholar
  71. Horiike, S., Misawa, S., Nakai, H., Kaneko, H., Yokota, S., Taniwaki, M., Yamane, Y, Inazawa, J., Abe, T. & Kashima, K. (1994) N-ras mutation and karyotypic evolution are closely associated with leukemic transformation in myelodysplastic syndrome.Leukemia8, 1331–1336.PubMedGoogle Scholar
  72. Horiike, S., Misawa, S., Kaneko, H., Sasi, Y., Kobayashi, M., Fujii, H., Tanaka, S., Yagita, M., Abe, T., Kashima, K. & Taniwaki M. (1999) Distinct genetic involvement of the TP53 gene in therapy-related leukemia and myelodysplasia with chromosomal losses of Nos 5 and/or 7 and its possible relationship to replication error phenotype.Leukemia13, 1235–1242.PubMedCrossRefGoogle Scholar
  73. Horiike, S., Yokota, S., Nakao, M., Iwai, T., Sasai, Y., Kaneko, H., Taniwaki, M., Kashima, K., Fujii, H. Abe, T. & Misawa, S. (1997) Tandem duplication of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia.Leukemia 111442–1446.Google Scholar
  74. Ikeda, T., Ikeda, K., Sasaki, K., Kawakami, K. & Takahara, J. (1999) The inv(11)(p15;g22) chromosome translocation of therapy-related myelodysplasia with NUP98-DDX 10 and DDX10–NUP98 fusion transcripts.International Journal of Hematology69, 160–164.PubMedGoogle Scholar
  75. Ikonomi, P., Rivera, C.E., Riordan, M., Washington, G., Schechter, A.N. & Noguchi, C.T. (2000) Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation.Experimental Hematology28, 1423–143PubMedCrossRefGoogle Scholar
  76. Jacobs, A. (1991) Genetic abnormalities in myelodysplastic syndrome. [Review].Cancer Genetics & Cytogenetics56, 1–6.CrossRefGoogle Scholar
  77. Jaju, R., Boultwood, J., Olover, F.J., Kostrzewa, M., Fidler, C., Parker, N., McPherson, J.D., Morris, S.W., Muller, U. Wainscoat, J.S. Kearney, L. (1998) Molecular cytogenetic delineation of the critical deleted region in the 5q-syndrome.Genes Chromosomes Cancer22, 251–251.PubMedCrossRefGoogle Scholar
  78. Jaju, R.J., Haas, O.A., Neat, M., Harbott, J., Saha, V., Boultwood, J., Brown, J.M., PircDanoewinata H., Krings, B.W., Muller, U., Morris, S.W., Wainscoat, J.S. & Kearney L. (1999) A new recurrent translocation, t(5;11)(g35;p15.5), associated with del(5q) in childhood acute myeloid leukemia. The UK Cancer Cytogenetics Group.Blood94, 773–780.PubMedGoogle Scholar
  79. Jaju, R.J., Jones M., Boultwood, J., Kelly, S., Mason D.Y., Wainscoat, J.S., Kearney L (2000) Combined immunophenotyping and FISH identifies the involvement of B-cells in 5q-syndrome.Genes Chromosomes & Cancer29, 276–280.CrossRefGoogle Scholar
  80. Jaques, K., Kreipe, H., Feigner, J., Boultwood, J. & Parwaresch, M.R. (1993) Myelodysplastic disorders with hemizygous M-CSF receptor gene loss do not show point mutations of codon 969 within the remaining allele.Leukemia7, 650–652.Google Scholar
  81. Jiang, Y. Liang H., Guo, W., Kottickal, L.V. & Nagarajan, L. (2000) Differential expression of a novel C-terminally truncated splice form of SMAD5 in hematopietic stem cells and leukemia.Blood95, 3945–3950.PubMedGoogle Scholar
  82. Kalina, U., Hofmann, W., Koschmieder, S., Wagner, S., Kauschat, D., Hoelzer, D. & Ottmann, O.G. (2000) Alteration of c-mpl-mediated signal transduction in CD34(+) cells from patients with myelodyplastic syndromes.Experimental Hematology28,1158–1163.PubMedCrossRefGoogle Scholar
  83. Kanavaros, P., Stefanaki, K., Rontogianna, D., Darivianaki, K., Vlychou, M., Papadaki, E., Eliopoulos, G., Bakiri, M., Matsouka, C., Kakolyris, S. & Georgoulias, V. (1999) Immunohistochemical detection of p53, mdm2, wafl/p21, and Ki67 proteins in bone marrow biopsies in myelodysplastic syndromes, acute myelogenous leukemias and chronic myeloproliferative disorders.Clinics of Experimental Pathology47, 231–238.Google Scholar
  84. Kogan, S.C., Brown, D., Shultz, D.B., Truong, B.T., Lallemand-Breitenbach, V., Guillemin, M., Lagasse, E.,Weissman, I. & Bishop, J.M. (2001) BCL-2 cooperates with PMLRARa to block neutrophil differentiation and initiate acute leukemia.Journal of Experimental Medicine 193531–544..PubMedCrossRefGoogle Scholar
  85. Kogan, S.C., Lagasse, E., Atwater, S. Bae, S.C. Weissman, I. Ito. Y., & Bishop, J.M. (1998) The PEBP2betaMYH11 fusion created by Inv(16)(p13;g22) in myeloid leukemia impairs neutrophil maturation and contributes to granulocytic dysplasia.Proceedings of the National Academy of Sciences USA 95,11863–11868. CrossRefGoogle Scholar
  86. Kottaridis, P.D., Gale, R.E., Frew, M.E., Harrison, G., Langabeer, S.E., Belton, A.A., Walker, H., Wheatley, K., Bowen, D.T., Burnett, A.K. (2000) The presence of a FLT3 mutation in AML adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the MRC AML 10 and 12 trials.Blood 96:825a.Google Scholar
  87. Krishna, R.&Mayer, L.D. (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs.European Journal of Pharmacological Science 11 265–283.CrossRefGoogle Scholar
  88. KurotakiH.Tsushima, Y., Nagai, K.&Yagihashi, S.(2000) Apoptosis, bel-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia.Acta Haematology 102, 115–123. CrossRefGoogle Scholar
  89. Larson, R.A., Le Beau, M.M., Vardiman, J.W. & Rowley J.D. (1996) Myeloid leukemia after hematotoxins.Environmental Health Perspectives 1041303–1307.PubMedGoogle Scholar
  90. Larson R.A., Wang Y., Banerjee M, Wiemels J., Hartford C., Le Beau M.M. & Smith, M.T. (1999) Prevalence of the inactivating6°9C—>T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukaemia.Blood 94:803–807. PubMedGoogle Scholar
  91. Lavau, C., Du, C., Thirman, M. & Zeleznik-Le, N. (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid Leukemia.EMBO Journal 194655–4664.PubMedCrossRefGoogle Scholar
  92. Leithauser, F., Dhein, J., Mechtersheimer, G., Koretz, K., Bruderlein, S., Henne, C., Schmidt, A., Debatin, K.M., Krammer, P.H. & Moller, P. (1993) Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells.Laboratory Investigations 69415–29Google Scholar
  93. Lepelley, P., Campergue, L., Grardel, N., Preudhomme, C., Cosson, A. & Fenaux P. (1996) Is apoptosis a massive process in myelodysplastic syndromes?British Journal of Haematology 95368–371.PubMedCrossRefGoogle Scholar
  94. Lepelley, P., Grardel, N., Emy, O., laru, T., Obein, V., Cosson, A.&Fenaux, P. (1998) FAS/APO-1 (CD95) expression in myelodysplastic syndromes.Leukemia & Lymphoma 30307–312.Google Scholar
  95. Li, B., Yang, J. Andrews, C. Chen, T.X. Toofanfard, P. Huang, R.W. Horvathe, E. Chopra H. Raza, A. & Priester, H.D. (2000) Telomerase activity in preleukemia and acute myelogenous leukemia.Leukemia & Lymphoma 36579–587.CrossRefGoogle Scholar
  96. Lubbert, M., Mino, J., Jr., Kitchingman, G., McCormick, F., Mertelsmann, R., Herrmann, F. & Koeffler, H.P. (1992) Prevalence of N-ras mutations in children with myelodysplastic syndromes and acute myeloid leukemia.Oncogene 7263–268.PubMedGoogle Scholar
  97. Luo, S.S., Ogata, K., Yokose, N., Kato, T. & Dan, K. (2000) Effects of thrombopoietin on proliferation of blasts from patients with myelodyplastic syndromes.Stem Cells 18112–119.PubMedCrossRefGoogle Scholar
  98. Lyman, S.D. (1998) Biologic effects and potential clinical applications of FLT3 ligand.Current Opinion in Hematology 5192–196.PubMedCrossRefGoogle Scholar
  99. Lyons, J., Janssen, J.W., Bartram, C., Layton, M. & Mufti, G.J. (1988) Mutation of Ki-ras and N-ras oncogenes in myelodysplastic syndromes.Blood 711707–1712.PubMedGoogle Scholar
  100. Mackarehtschian, K., HardinJ.D.Moore, K.A., Boast, S., Goff, S.P. & Lemischka, I.R.(1995)Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors.Immunity 3147–161.PubMedCrossRefGoogle Scholar
  101. MacKenzie, K.L., Doinikov, A., Millington, M., Shounan, Y., Symonds, G. (1999) Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice.Blood93,2043–2056.PubMedGoogle Scholar
  102. Maher, J., Baker, D., Dibb, N. & RobertsI.(1996) Mutant ras promotes haemopoietic cell proliferation or differentiation in a cell-specific manner.Leukemia 1083–90.PubMedGoogle Scholar
  103. Maher, J., Baker, D.A., Manning, M., Dibbs, N.J., Roberts, I.A. (1995) Evidence for cell-specific differences in transformation by N-, H- and k-ras.Oncogene 111639–1647.PubMedGoogle Scholar
  104. Maher, J., Colona, F., BakerD.Luzzatto, L.&Roberts, I. (1994) Retroviral-mediated gene transfer of a mutant H-ras gene into normal human bone marrow alters myeloid cell proliferation and differentiation.Experimental Hematology 228–12.PubMedGoogle Scholar
  105. Maciejewski, J.P., Selleri, C., Sato, T., Anderson, S. & Young, N.S. (1995) Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia.British Journal of Haematology91, 245–252.PubMedCrossRefGoogle Scholar
  106. Matsumoto, N., Yoneda-Kato, N., IguchiT.Kishimoto, Y., Kyo, T. Sawada, H. Tatsumi, E. & Fukuhara S. (2000) Elevated MLF1 expression correlates with malignant progression from myelodysplastic syndrome.Leukemia 14, 1757–1765.PubMedCrossRefGoogle Scholar
  107. McGlynn, A.P., Padua, R.A., Burnett, A.K. & Darley, R.L. (2000) Alternative effects of RAS and RAF oncogenes on the proliferation and apoptosis of factor dependent FDC-P1 cells.Leukemia Research24,47–54.PubMedCrossRefGoogle Scholar
  108. McGlynn, H., Baker, A.H. & Padua R.A. (1998) Biological consequences of a point mutation at codon 969 of the FMS gene.Leukemia Research 22365–372.PubMedCrossRefGoogle Scholar
  109. McGlynn, H., Kapelko, K., Baker, A.H. & Padua R.A. (1997) Allelic loss of the FMS gene in acute myeloid leukemia.Leukemia Research 21919–923.PubMedCrossRefGoogle Scholar
  110. Melnick, A. Carlile, G.W. McConnell, M.J. Polinger, A. Hiebert, S.W. & Licht, J.D. A(2000) ML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein.Blood 963939–3947.PubMedGoogle Scholar
  111. Merlat, A., Lai, J.L., Sterkers, Y., Demory, J.L., Bauters, F., Preudhomme, C. & Fenaux, P. (1999) Therapy-related myelodysplastic syndrome and acute myeloid leukemia with 17p deletion: A report on 25 cases.Leukemia13, 250–257.PubMedCrossRefGoogle Scholar
  112. Michaux, L., Wlodarska, I., Dierlamm, J., Mugneret, F., Herens, C., Beverloo, B., Verhest, A., Verellen-Dumoulin, C., Verhoef, G., Selleslag, D., Madoe, V., Lecomte, M., Deprijck, B., Ferrant, A., Delannoy, A., Marichal, S., Duhem, C., Dicato, M. & Hagemeijer A. (2000) MLL amplification in myeloid Leukemia s: A study of 14 cases with multiple copies of 11q23.Genes Chromosomes & Cancer 2940–47.CrossRefGoogle Scholar
  113. Misawa, S., Horiike, S., Kaneko, H., Sasi, Y., Ueda, Y., Nakao, M., Yokot, S., Tanaka, S., Taniwaki, M., Fujii, H., Nakagawa, H., Tsuda, S. & Kashima, K. (1998) Significance of chromosomal alterations and mutations of the N-RAS and TP53 genes in relation to leukemogenesis of acute myeloid leukemia.Leukemia Research 22631–637.PubMedCrossRefGoogle Scholar
  114. Mitelman, M.F., Brand, L. & Nilsson, P.G. (1978). Relation array occupational exposure to potential mutagenic carcinogenic agents, clinical findings and bone marrow chromosomes in acute lymphocytic leukemia.Blood 521229–1237.PubMedGoogle Scholar
  115. Mizuki, M. Fenski, R. HalfterH.Matsumara, I. Schmidt, R. Muller, C. Gruning, W. Kratz-Albers, K. Serve, S. Steur, C. Buchner, T. Kienast, J. Kanakura, Y. Berdel, W.E. Serve, H. (2000) FLT3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the RAS and STATS pathways.Blood 963907–3914.PubMedGoogle Scholar
  116. Molnar, L., Berki, T., Hussain, A., Nemeth, P. & Losonczy, H. (2000) Detection of TNFalpha exon in the bone marrow and determination of TNFa]pha production of peripheral blood mononuclear cells in myelodysplastic syndrome.Pathology & Oncology Research6, 18–23.CrossRefGoogle Scholar
  117. Mundle, S.D., Mativi, B.Y., Bagai, K., Feldman, G., Cheema, P., Gautam, U., Reza, S., Cartlidge, J.D., Venugopal, P., Shetty, V., Gregory, S.A., Robin, E., Rifkin, S., Shah, R. & Raza, A. (1999) Spontaneous down-regulation of Fas-associated phosphatase-1 may contribute to excessive apoptosis in myelodysplastic marrows.International Journal of Hematology70, 83–90.PubMedGoogle Scholar
  118. Mundle, S.D., Mativi, B.Y., Cartlidge, J.D., Dangerfield, B., Broady-Robinson, L., Li, B., Shetty, V., Venugopal, P., Gregory, S.A., Preisler, H.D. & Raza A. (2000) Signal antonymy unique to myelodysplastic marrows correlates with altered expression of E2F1.British Journal of Haematology109, 376–81.PubMedCrossRefGoogle Scholar
  119. Mundle, S.D., Reza, S., Ali, A., Mativi, Y., Shetty, V., Venugopal, P., Gregory, S.A. & Raza A. (1996) Correlation of tumor necrosis factor alpha (TNF alpha) with high Caspase 3-like activity in myelodysplastic syndromes.Cancer Letters40, 201–207.Google Scholar
  120. Nakao, K., Nishino, M., Takeuchi, K., Iwata, M., Kawano, A., Arai, Y. & Ohki, M. (2000) Fusion of the nucleoporin gene NUP98 and the putative RNA helicase gene, DDX10, by inversion 11 (p15q22) chromosome translocation in a patient with etoposiderelated myelodysplastic syndrome.Internal Medicine39, 412–415.PubMedCrossRefGoogle Scholar
  121. Naoe, T., Takeyama, K., Yokozawa, T., Kiyoi, H., Seto, M., Uike, N., Ino, T., Utsunomiya, A., Maruta, A., Jin-nai, I., Kamada, N., Kubota, Y., Nakamura, H., Shimazaki, C., Horiike, S., Kodera, Y., Saito, H., Ueda, R., Wiemels, J. & Ohno, R. (2000) Analysis of genetic polymorphism in NQOI, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia.Clinical Cancer Research6, 4091–4095.PubMedGoogle Scholar
  122. Narod S.A. & Dube I.D. (1989) Occupational history and involvement of chromosomes 5 and 7 in acute nonlymphocytic leukemia.Cancer Genetics & Cytogenetics .38, 261–269.CrossRefGoogle Scholar
  123. Nishiyama, M., Arai, Y., Tsunematsu, Y., Kobayashi, H., Asami, K., Yabe, M., Kato, S., Oda, M., Eguchi, H., Ohki, M.&Kaneko, Y. (1999) 11p15 translocations involving the NUP98 gene in childhood therapy-related acute myeloid leukemia/myelodysplastic syndrome.Genes Chromosomes & Cancer26, 215–220.CrossRefGoogle Scholar
  124. Nisse, C., Lorthois, C., Dorp, V., Eloy, E., Haguenoer, J.M. & Fenaux P. (1995) Exposure to occupational and environmental-factors in myelodysplastic syndromes - preliminary-results of a case-control study.Leukemia9, 693–699.PubMedGoogle Scholar
  125. Nucifora, G. (1997) The EVI1 gene in myeloid leukemia.Leukemia11, 2022–2031.PubMedCrossRefGoogle Scholar
  126. Nucifora, G., Begy, C.R., Kobayashi, H., Roulston, D., Claxton, D. PedersenBjergaard, J. Parganas, E. Ihle, J.N. & Rowley, J.D. (1994) Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at (3;21)(q26;q22) translocations.Proceedings of the National Academy of Sciences USA91, 4004–4008.CrossRefGoogle Scholar
  127. Ogata, K. & Tamura, H. (2000) Thrombopoietin and myelodyplastic syndromes.International Journal of Hematology72, 173–177.PubMedGoogle Scholar
  128. Ohyashi, J.H., Iwama, H., Yahata, N., Ando, K., Hayashi, S. Shay, J.W. Ohyashiki, K. (1999) Telomere stabiltiy is frequently impaired in high-risk groups of patients with myelodysplastic syndromes.Clinical Cancer Research5, 1155–1160.Google Scholar
  129. Padua, R.A, Guinn, B., Al-Sabah, A., Smith, M., Taylor, C., Pettersson, T., Ridge, S., Carter, G., White, D., Oscier, D., Chevret, S., & West, R. (1998)RAS FMSandp53mutations and poor clinical outcome in myelodysplasia: a 10-year follow-up.Leukemia12, 887–892.PubMedCrossRefGoogle Scholar
  130. Padua, R.A. & West, R.R. (2000) Oncogene mutation and prognosis in the myelodysplastic syndromes (MDS).British Journal of Haematology111, 873–874, 2000.Google Scholar
  131. Pan, L., Ohnishi, K., Zhang, W.J., Yoshida, H., Maksumova, L., Muratkhodjaev, F., Shigeno, K., Nakamura, S., Luo, J.M., Hao, H.L., Fujisawa, S., Naito, K., Shinjo, K., Takeshita, A. & Ohno, R.(2000)In vitroIL-12 treatment of peripheral blood mononuclear cells from patients with leukemia or myelodysplastic syndromes: increase in cytotoxicity and reduction in WTI gene expression.Leukemia14, 1634–1641.PubMedCrossRefGoogle Scholar
  132. Paquette, R.L., Landaw, E.M., Pierre, R.V., Kahan, J., Lubbert, M., Lazcano, O., Isaac, G., McCormick, F. & Koeffler, H.P. (1993) N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome.Blood82, 590–599.PubMedGoogle Scholar
  133. Parcharidou, A., Raza, A., Economopoulos, T., Papageorgiou, E., Anagnostou, D., Papadaki, T. & Raptis, S. (1999) Extensive apoptosis of bone marrow cells as evaluated by the in situ end-labeling (ISEL) technique may be the basis for ineffective haematopoiesis in patients with myelodysplastic syndromes.European Journal of Haematology62, 1926.Google Scholar
  134. Parker, J.E., Fishlock, K.L., Mijovic, A., Czepulkowski, B., Pagliuca, A.&Mufti G.J. (1998) ‘Low-risk’ myelodysplastic syndrome is associated with excessive apoptosis and an increased ratio of pro-versus anti-apoptotic bcl-2-related proteins.British Journal of Haematology103, 1075–1082.PubMedCrossRefGoogle Scholar
  135. Parker, J.E., Mufti, G.J., Rasool, F., Mijovic, A., Devereux, S., & Pagliuca, A. (2000) The role of apoptosis, proliferation, and the bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS.Blood96, 3932–3938.PubMedGoogle Scholar
  136. Parrado, A., Chomienne, C., & Padua, R.A. (2000) Retinoic acid receptor alpha(RARa)mutations in human leukemia.Leukemia & Lymphoma39, 271–282.CrossRefGoogle Scholar
  137. Patmasiriwat, P., Fraizer, G., Kantarjian, H. & Saunders, G.F. (1999) WTI and GATA1 expression in myelodysplastic syndrome and acute leukemia.Leukemia13, 891–900.PubMedCrossRefGoogle Scholar
  138. Peeters, P., Wlodarska, I., Baens, M., Criel, A., Selleslag, D., Hagemeijer, A., van den Berghe, H., & Marynen, P. (1997) Fusion of ETV6 to MDS/EVI1 as a result of t(3;12)(g26;p13) in myeloproliferative disorders.Cancer Research57, 564–569.PubMedGoogle Scholar
  139. Preudhomme, C. Nisse, C. Hebbar, M. Vanrumbeke, M. Brizard, A. Lai, J.L. Fenaux, P. (1997) Glutatione S transferase theta 1 gene defects in myelodysplastic syndromes: correlation with karyotype and exposure to potential carcinogens.Leukemia11, 1580–1582.PubMedCrossRefGoogle Scholar
  140. Quesnel, B. & Fenaux, P. (1999 P15INK4b gene methylation and myelodysplastic syndromes.Leukemia & Lymphoma35, 437–443.CrossRefGoogle Scholar
  141. Raza, A., Alvi, S., Borok, R.Z., Span, L., Parcharidou, A., Alston, D., Rifkin, S., Robin, E., Shah, R. & Gregory, S.A. (1997) Excessive proliferation matched by excessive apoptosis in myelodysplastic syndromes: the cause-effect relationship.Leukemia & Lymphoma27, 111–118.Google Scholar
  142. Raza, A., Mundle, S., Iftikhar, A., Gregory, S., Marcus, B., Khan, Z., Alvi, S., Shetty, V., Dameron, S. & Wright, V. (1995) Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis.American Journal of Hematology48, 143–154.PubMedCrossRefGoogle Scholar
  143. Raza, A., Mundle, S., Shetty, V., Alvi, S., Chopra, H., Span, L., Parcharidou, A., Dar, S., Venugopal, P., Borok, R., Gezer, S., Showel, J., Loew, J., Robin, E., Rifkin, S., Alston, D., Hernandez, B., Shah, R., Kaizer, H., Gregory, S. & Preisler, H. (2000a) A paradigm shift in myelodysplastic syndromes.Leukemia, 101648–1652.Google Scholar
  144. Raza, A., Qawi, H., Lisak, L., Andric, T., Dar, S., Andrews, C., Venugopal, P., Gezer, S., Gregory, S., Loew, J., Robin, E., Rifkin, S., Hsu, W.T. & Huang, R.W. (2000b) Patients with myelodysplastic syndromes benefit from palliative therapy withMolecular, Cytogenetic & Genetic Abnormalitiesamifostine, pentoxifylline, and ciprofloxacin with or without dexamethasone.Blood1:1580–7.Google Scholar
  145. Redner, R., Wang, J., & Liu, J.M. (1999) Chromatin remodelling and leukemia: new therapeutic paradigms.Blood94, 417–428.PubMedGoogle Scholar
  146. Ribizzi, I., Damowski, J.W., Goulette, F.A., Sertoli, M.R. & Calabresi, P. (2000) Amifostine cytotoxicity and induction of apoptosis in a human myelodysplastic cell line.Leukemia Research24, 519–525.PubMedCrossRefGoogle Scholar
  147. Ries, C., Loher, F., Zang, C., Ismair, M.G. & Petrides, P.E. (1999) Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes.Clinical Cancer Research5, 1115–1124.PubMedGoogle Scholar
  148. Rigolin, G.M., Cuneo, A., Roberti, M.G., Bardi, A., Bigoni, R., Piva, N., Minotto, C., Agostini, P., Del Senno, L., Spanedda, R. & Castoldi, G. (1998) Exposure to myelotoxic agents and myelodysplasia: case-control study and correlation with clinicobiological findings.British Journal of Haematology103,189–197.PubMedCrossRefGoogle Scholar
  149. Ross, J.F., Wang, H., Behm, F.G., Mathew, P., Wu, M., Booth, R. & Ratnam, M. (1999) Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia.Cancer85, 348–357.PubMedCrossRefGoogle Scholar
  150. Rothman, N., Smith, M.T., Hayes, R.B., Traver, R.D., Hoener, B., Campleman, S., Li, G.L., Dosemeci, M., Linet, M., Zhang, L., Xi, L., Wacholder, S., Lu, W., Meyer, K.B., Titenko-Holland, N., Stewart, J.T., Yin, S. & Ross, D. (1997) Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C-->T mutation and rapid fractional excretion of chlorzoxazone.Cancer Research15, 2839–42.Google Scholar
  151. Roulston, D. Espinosa, R., Nucifora, G., Larson, R.A., Le Beau, M.M & Rowley, J.D. (1998) CBA2(AMLI) translocation with novel partner chromosomes in myeloid leukemias: association with prior therapy.Blood92, 2879–2885.Google Scholar
  152. Rowley, J.D. & Golomb, H.M. (1984) The 4th intemational workshop on chromosomes in leukemia - a prospective-study of acute nonlymphocytic leukemia Chicago, Illinois, USA, September 2–7, 1982.Cancer Genetics & Cytogenetics11, 249–360.CrossRefGoogle Scholar
  153. Rowley, J.D., Reshmi, S., Sobulo, O., Musvee, T., Anastasi, J., Raimondi, S. Schneider, N.R. Barredo, J.C. Cantu, E.S. Schlegelberger, B. Behm, F. Doggett, N.A. Borrow, J. & Zeleznik-Le, N. (1997) All patients with the t(11;16)(g23;p13.1) that involves MLL and CBP have treatment-related haematologic disorders. Blood90, 535–541.PubMedGoogle Scholar
  154. Sasai, Y., Horiike, S., Misawa, S., Kaneko, H., Kobayashi, M., Fujii, H., Kashima, K. & Taniwaki, M. (1999) Genotype of glutathione S-transferase and other genetic configurations in myelodysplasia.Leukemia Research23, 975–81.PubMedCrossRefGoogle Scholar
  155. Schnittger, S., Kinkelin, U., Schoch, C., Heinecke, A., Haase, D., Haferlach, T., Buchner, T., Wormann, B., Hiddemann, W. & Griesinger, F. (2000) Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML.Leukemia14, 796–804.PubMedCrossRefGoogle Scholar
  156. Sheng, X.M., Kawamura, M., Ohnishi, H., Hanada, R., Kojima, S., Kobayashi, M., Bessho, F., Yanagisawa, M. & Hayashi, Y. (1997) Mutations of theRASgenes in childhood acute myeloid leukemia, myelodysplastic syndrome and juvenile chronic myelocytic leukemia.Leukemia Research21, 697–701.PubMedCrossRefGoogle Scholar
  157. Shetty, V., Hussaini, S., Broady-Robinson, L., Allampallam, K., Mundle, S., Borok, R., Cartlidge, J., Broderick, E., Mazzoran, L., Zorat, F., & Raza, A. (2000) Intramedullary apoptosis of hematopietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high density fraction of bone marrow aspirates.Blood96, 1388–1392.PubMedGoogle Scholar
  158. Shimada, H., Arai, Y., Sekiguchi, S., Ishii, T., Tanitsu, S. & Sasaki, M. (2000) Generation of the NUP98–1–1OXD13 fusion transcript by a rare translocation, t(2;11)(q31;p15), in a case of infant leukemia.British Journal of Haematology, 10210–213.CrossRefGoogle Scholar
  159. Shimazaki, K., Ohshima, K., Suzumiya, J., Kawasaki, C.& Kikuchi, M. (2000) Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes.British Journal of Haematology 110584–590.Google Scholar
  160. Smith, M.A., McCaffrey, R.P. & Karp, J.E. (1996) The secondary leukemias: challenges and research directions.Journal of the National Cancer Institute 88407–418.PubMedCrossRefGoogle Scholar
  161. Soderholm, J., Kobayashi, H., Mathieu, C., Rowley, J.D. & Nucifora, G. (1997) TheLeukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator.Leukemia, 11352–358.PubMedCrossRefGoogle Scholar
  162. Soekarman, D., von Lindern, M., Daenen, S., de JongB.Fonatsch, C., Heinze, B., Bartram, C. Hagemeijer A. & Grosveld, G. (1992) The translocation (6;9)(p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with clinical features.Blood 792990–2007.PubMedGoogle Scholar
  163. Stevenson, F.K., King, C.A., Spellerberg, M.B., ZhuD.Rice, J., Sabota, S., Thompsett, A., Radl, J. & Hamblin, T.J. (1999) DNA vaccines against haematological malignacies.Haematologica 84, 11–13. PubMedGoogle Scholar
  164. Stillman, W.S., Varella-Garcia, M. & Irons, R.D. (2000) The benzene metabolite, hydroquinone, selectively induces 5q-and -7 in human CD34+CD19- bone marrow cell.Experimental hematology 28169–76.PubMedCrossRefGoogle Scholar
  165. Suciu, S., Kuse, R., Weh, H.J. & Hossfeld, D.K. (1990) Results of chromosome-studies and their relation to morphology, course, and prognosis in 120 patients withde novomyelodysplastic syndrome.Cancer Genetics & Cytogenetics 4415–26.CrossRefGoogle Scholar
  166. Sugiyama, H. (2000) Genetic diagnosis of leukemia: diagnosis of relapse and complete remission, and prediction of leukemia onset.Rinsho Byori 48155–161.PubMedGoogle Scholar
  167. Takahashi, T., Yamamoto, R., Tanaka, K., Kamada, N. & MiyagawaK.(2000) Mutation analysis of the WTI gene in secondary leukemia.Leukemia 141316–1317.PubMedCrossRefGoogle Scholar
  168. Tamaki, H., Ogawa, H., Ohyashiki, K., Ohyashiki, J.H., IwamaH.Inoue, K., Soma, T., Oka, Y., Tatekawa, T., Oji, Y., Tsuboi, A., Kim, E.H., Kawakami, M., Fuchigami, K., Tomonaga, M., Toyama, K., Aozasa, K., Kishimoto, T. & Sugiyama, H. (1999) The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes.Leukemia 13393–399.PubMedCrossRefGoogle Scholar
  169. Tan, B., Piwnica-Worms, D., & Ratner, L. (2000) Multidrug resistance transporters and modulation.Current Opinion in Oncology 12450–458.PubMedCrossRefGoogle Scholar
  170. Tang, J.L., Tien, H.F., Lin, M.T., Chen, P.J. & Chen, Y.C. (1998) P53 mutation in advanced stage of primary myelodysplastic syndrome.Anticancer Research 183757–3761.PubMedGoogle Scholar
  171. Taylor, C., Hughes, D.C., Zappone, E., Cazzola, M., Carter, G., Jacobs, A., & Padua, R.A. (1995a) A screen for RAS mutations in individuals at risk of secondary leukemia due to occupational exposure to petrochemicals.Leukemia Research 19299–301.CrossRefGoogle Scholar
  172. Taylor, C., McGlynn, H., Carter, G. Baker, A. Warren, N. Ridge, S.A. Owen, G. Thompson, E. Thompson, P.W. Jacobs, A. Padua, R.A. (1995b) RAS and FMS mutations following therapy of childhood acute lymphoblastic leukaemia.Leukemia 9466–470.Google Scholar
  173. Taylor, C., Larghero, J., Thomas, K., Warren, N., Carter, G., Hughes, D., Culligan, D., Al-Sabah, A., Whittaker, J., Chomienne, C. & Padua, R.A. (2000)HRASmutations in haematologically normal individuals.Hematology Journal, 1399–402, 2000.PubMedCrossRefGoogle Scholar
  174. Tennant, G.B., Walsh, V., Truran, L.N., Edwards, P., Mills, K.l. & Burnett, A.K. (2000) Abnormalities of adherent layers grown from bone marrow of patients with myelodysplasia. British Journal of Haematology 111853–862.PubMedCrossRefGoogle Scholar
  175. Tosi, S., Harbott, J., Teigler-Schlegel, A., Haas, O.A., Pirc-Danoewinata, H., Harrison, C.J., Biondo, A., Cazzaniga, G., Kempsi, H., Scherer, S.W. & Kearney, L. (2000) t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia.Genes Chromosomes & Cancer29, 325–332.CrossRefGoogle Scholar
  176. Tsoplou, P., Kouraklis-Symeonidis, A., Thanopoulou, E., Zikos, P., Orphanos, V. & Zoumbos, N.C. (1999) Apoptosis in patients with myelodysplastic syndromes: differential involvement of marrow cells in ‘good’ versus ‘poor’ prognosis patients and correlation with apoptosis-related genes.Leukemia13, 1554–1563.PubMedCrossRefGoogle Scholar
  177. Uchida, T., Kinoshita, T., Hotta, T., & Murate, T. (1998) High-risk myelodysplastic syndromes and hypermethylation of the pl5Ink4B gene.Leukemia & Lymphoma32, 9–18.Google Scholar
  178. van Kamp, H., de Pijper, C., Verlaan-de Vries, M., Bos, J.L., Leeksma, C.H., Kcrkhofs, H., Willemze, R., Fibbe, W.E. & Landegent, J.E. (1992) Longitudinal analysis of point mutations of the N-ras proto-oncogene in patients with myelodysplasia using archived blood smears.Blood79, 1266–1270.PubMedGoogle Scholar
  179. Vanleeuwen F.E. (1996) Risk of acute myelogenous leukemia and myelodysplasia following cancer-treatment.Baillieres Clinical Haematology9, 57–85.CrossRefGoogle Scholar
  180. Vieira, L., Marques, B., Ambrosio, A.P., Chumbo, M., Reis, A.B., Junior, E.C. & Boavida, M.G. (2000) TEL and MN1 fusion in myelodysplastic syndrome:new evidence for therapy-related event.British Journal of Haematology, 10238–239.CrossRefGoogle Scholar
  181. Wattel, E., Solary, E., Hecquet, B., Caillot, D., Ifrah, N., Brion, A., Milipied, N., Janvier, M., Guerci, A., Rochant, H., Cordonnier, C., Dreyfus, F., Veil, A., Hoang-Ngoc, L., Stoppa, A.M., Gratecos, N., Sadoun, A., Tilly, H., Brice, P., Lioure, B., Desablens, B., Pignon, B., Abgrall, J.P., Leporrier, M., Fenaux, P. et al. (1999) Quinine improves results of intensive chemotherapy (IC) in myelodysplastic syndromes (MDS) expressing P-glycoprotein (PGP). Updated results of a randomized study. Groupe Francaise des Myelodysplasies (GFM) and Groupe GOELAMS.Avances in Experimental Medicine and Biology457, 35–46.CrossRefGoogle Scholar
  182. West, R.R., Stafford, D.A., Farrow, A., & Jacobs, A. (1995) Occupational and environmental exposures and myelodysplasia - a case-control study.Leukemia Research19, 127–139.PubMedCrossRefGoogle Scholar
  183. West, R.R., Stafford, D., White, A.D., Bowen, D.T., Padua, R.A. (2000) Cytogenetic abnormalities in the myelodysplastic syndromes and occupational or environmental exposure.Blood95, 2093–2097.PubMedGoogle Scholar
  184. Westbrook, C.A., Hsu, W., Chyna, B., Litvak, D., Raza, A. & Horrigan, S.K. (2000a) Cytogenetic and molecular diagnosis of chromosome 5 deletions in myelodysplasia.British Journal of Haematology110, 847–855.CrossRefGoogle Scholar
  185. Westbrook, C.A., Hu, Z., Arbieva, Z., Kravarusic, J., Chyna, B., Edassery, S. & Horrigan, S.K. (2000b) Novel nuclear receptor coactivator is a candidate for the del(5q) leukemia tumor suppressor gene.Experimental Hematology28, 1492.CrossRefGoogle Scholar
  186. White, A.D., Hoy, T.G. & Jacobs, A. (1994) Extended cytogenetic follow-up and clinical progression in patients with myelodysplastic syndromes (MDS).Leukemia & Lymphoma12, 401–412.CrossRefGoogle Scholar
  187. White, A.D., Jones, B.M., Clark, R.E. & Jacobs A. (1992) Chromosome aberrations following cytotoxic therapy in patients in complete remission from lymphoma.Carcinogenesis13,1095–1099.PubMedCrossRefGoogle Scholar
  188. Wieser, R., Volz, A., Vinatzer, U., Gardiner, K., Jager, U., Mitterbauer, M., Ziegler, A. & Fonatsch, C. (2000) Transcription factor GATA-2 gene is located near 3q21 breakpoints in myeloid leukemia.Biochemical Biophysical Research Communications273, 239–245.CrossRefGoogle Scholar
  189. Wilbanks, A.M., Mahajan, S., Frank, D.A., Druker, B.J., Gilliland, D.G. & Carroll, M. (2000) TEL/PDGFbetaR fusion protein activates STATI and STATS a common mechanism for transformation by tyrosine kinase fusion proteins.Experimental Hematology28, 584–593.PubMedCrossRefGoogle Scholar
  190. Xi, Z.F., Russell, M., Woodward, S., Thompson, F., Wagner, L. & Taetle, R. (1997) Expression of the Zn finger gene, EVI-1, in acute promyelocytic leukemia.Leukemia11, 212–220.PubMedCrossRefGoogle Scholar
  191. Xu, F., Taki, T., Yang, H.W., Hanada, R., Hongo, T., Ohnishi, H., Kobayashi, M, Bessho, F., Yanagisawa, M. & Hayashi, Y. (1999) Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukemia as well as acute myeloid leukemia, not in myelodysplastic syndrome or juvenile chronic myelogenous leukemia in children.British Journal of Haematology105, 155–162.PubMedCrossRefGoogle Scholar
  192. Yagasaki, F., Jinnai, I., Yoshida, S., Yokoyama, Y., Matsuda, A., Kusumoto, S., Yobayashi, H., Terasaki, H., Ohyashiki, I., Bessho, M., & Hirashima, K. (1999) Fusion of TEL/ETV6 to a novel ACS2 in myelodysplastic syndrome and acute myelogenous leukemia with t(5;12)(q31;p13).Genes Chromosomes & Cancer26, 192–202.CrossRefGoogle Scholar
  193. Yergeau, D.A., Hetherington, C., Wang, Q., Zhang, P., Sharpe, A.H., Binder, M., Marin-Padilla, M., Tenen, D.G., Speck, N.A. & Zhang, D.E. (1997) Embryonic lethality and impairment of hematopoiesis in mice heterozygous for an AML-ETO fusion gene.Nature Genetics15, 303–306.PubMedCrossRefGoogle Scholar
  194. Yin, S.N., Hayes, R.B., Linet, M.S., Li, G.L., Dosemeci, M., Travis, L.B., Li, C.Y., Zhang, Z.N., Li, D.G., Chow, W.H., Wacholder, S., Wang, Y.Z., Jiang, Z.L., Dai, T.R., Zhang, W.Y., Chao, X.J., Ye, P.Z., Kou, Q.R., Zhang, X.C., Lin, X.F., Meng, J.F., Ding, C.Y., Zho, J.S.&Blot, W.J. (1996) A cohort study of cancer among benzene-exposed workers in China - overall results.American Journal Of Industrial Medicine29, 227–235.PubMedCrossRefGoogle Scholar
  195. Yokota, S., Kiyoi, H., Nakao, M., Iwai, T., Misawa, S., Okuda, T., Sonoda, Y., Abe, T., Kahsima, K., Matsuo, Y., & Naoe, T. (1997) Internal Tandem duplication of the FLT3 gene is preferentially seen in acute myleoid leukemia and myelodysplastic syndrome among various haematological malignancies. A study on a large series of patients and cell lines.Leukemia11, 1605–1609.Google Scholar
  196. Yoshida, Y. (1993) Hypothesis: apoptosis may be the mechanism reponsible for the premature intramedullary cell death in the myelodysplastic syndrome.Leukemia7,144–146.PubMedGoogle Scholar
  197. Yu, B.D., Hanson, R.D., Hess, J.L., Homing, S.E.& Korsemeyer, S.J. (1998) MLL, a mammalian trithorax-group gene functions as a transcriptional maintenance factor in morphogenesis. Proceedings of the Nartional Academy of Sciences USA, 95, 10632–10636.CrossRefGoogle Scholar
  198. Yunis, J.J., Boot, A.J., Mayer, M.G. & Bos, J.L. (1989) Mechanisms of ras mutation in myelodysplastic syndrome.Oncogene4, 609–614.PubMedGoogle Scholar
  199. Zhang, L.P., Wang, Y.X., Shang, N., Smith, M.T. (1998) Benzene metabolites induce the loss and long arm deletion of chromosomes 5 and 7 in human lymphocytes.Leukemia Research22:105–113.PubMedCrossRefGoogle Scholar
  200. Zwicrzina, H., Anderson, J.E., Rollinger-Holzinger, I., Torok-Storb, B., Nuessler, V. & Lyman, S.D. (1999) Endogenous FLT-3 ligand serum levels are associated with desease stage in patients with myelodysplastic syndromes.Leukemia13, 553–557.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Rose Ann Padua
    • 1
  • Angela McGlynn
    • 2
  • Hugh McGlynn
    • 2
  1. 1.Hematology DepartmentUniversity of Wales College of MedicineCardiffUK
  2. 2.Cancer and Ageing Research GroupSchool of Biomedical SciencesUniversity of Ulster at ColeraineUK

Personalised recommendations