Apoptosis in MDS: A New Perspective

  • Suneel D. Mundle
Part of the Cancer Treatment and Research book series (CTAR, volume 108)


As described in many chapters in this volume it is evident that excessive intramedullary apoptosis constitutes a salient feature of the pathobiology of myelodysplastic syndromes (MDS). Since the first indication of increased apoptosis upon examining the bone marrow (BM) histology in 1990 by Clark and Lampert, followed by histochemical demonstration by our group in 1994–95 ([Mundle et al., 1994a] and [b]; [Raza et al., 1995a] and [b]), a number of studies using a variety of techniques in independent demographic populations around the globe have repeatedly confirmed this finding ([Yoshida & Mufti, 1999]). In spite of such an endorsement, it must be acknowledged that as pointed out by [Dar et al. (1999)], exceptions to this rule showing undetectable apoptosis are also commonly found in MDS. In cases with high apoptosis, the most striking feature is the engagement of all types of hematopoietic and stoma] cells in the apoptotic death process. As a result the presence of an apoptosis-inducing microenvironmental factor(s) with a wide range of target cells was suspected. Different studies have revealed exceedingly high levels of proinflammatory factors like tumor necrosis factor alpha (TNFa), interferon gamma (IFN y), interleukin (IL) 1 and 6, etc. ([Mundle et al., 1996]; [Shetty et al., 1996]; [Kitagawa et al., 1997]; [Gersuk et al., 1998]; [Deeg et al., 2000]). Subsequent studies highlighted TNFa. as probably the most apical trigger of apoptosis in MDS ([Mundle et al., 1999 a] and [b]).


Tumor Necrosis Factor Alpha Myelodysplastic Syndrome Acute Myelogenous Leukemia Paroxysmal Nocturnal Hemoglobinuria Leukemic Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, A., Mundle, S.D., Ragasa, D., Reza, S., Shetty, V., Mativi, B.Y., Cartlidge, J.D., Azharuddin, M., Qawi, H., Dar, S., & Raza, A. (1999) Sequential activation of Caspase-1 and Caspase-3-like proteases during apoptosis in myelodysplastic syndromes.Journal of Hematotherapy & Stem Cell research8, 343–356.CrossRefGoogle Scholar
  2. Anzai, N., Kawabata, H., Hishita, T., Yoshida, Y., Ueda, Y., & Okuma, M. (1997) Ca2+/Mg2t dependent endonuclease in marrow CD34 positive and erythroid cells in myelodysplasia.Leukemia Research21, 731–734.PubMedCrossRefGoogle Scholar
  3. Bouscary, D., de Vos, J., Guesnu, M., Jondeau, K., Viguier, F., Melle, J., Picard, F., Dreyfus, F., & Fontenay-Roupie, M. (1997) Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes.Leukemia11, 839–845.PubMedCrossRefGoogle Scholar
  4. Bouscary, D., Chen, Y.L., Guesnu, M., Picard, F., Viguier, F., Lacombe, C., Dreyfus, F. & Fontenay-Roupie, M. (2000) Activity of the caspase-3/CPP32 enzyme is increased in “early stage” myelodysplastic syndromes with excessive apoptosis, but caspasc inhibition does not enhance colony formation in vitro.Experimental Hematology28, 784–791.PubMedCrossRefGoogle Scholar
  5. Brada, S.J.L., de Wolf, J.Th.W., hendriks, D.W., Smit, J.W. & Vellenga, E. (1998) CD34+/CD36-cells from myelodysplasia patients have a limited capacity to proliferate but can differentiate in response to Epo and MGF stimulation. Leukemia12,882–886.PubMedCrossRefGoogle Scholar
  6. Bretz, J.D., Arscott, P.L., Myc, A., & Baker, J.R. Jr. (1999) Inflammatory cytokine regulation of Fas-mediated apoptosis in thyroid follicular cells.Journal of Biological Chemistry274, 25433–25438.PubMedCrossRefGoogle Scholar
  7. Clark, D.M. & Lampert, I.A. (1990) Apoptosis is a common histopathological finding in myelodysplsia: the correlate of ineffective hematopoiesis.Leukemia and Lymphoma2, 415–418.CrossRefGoogle Scholar
  8. Dai, C-H., Price, J.O., Brunner, T., & Krantz, S.B. (1998) Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon y to produce erythroid cell apoptosis.Blood91, 1235–1242.PubMedGoogle Scholar
  9. Dar, S. Mundle, S. Andric, T. Qawi, H. Shctty, V. Reza, S. Mativi, B.Y. Allampallam, K.. Ali, A. Venugopal, P. Gezer, S. Broady-Robinson, L. Cartlidge J.D. Showel, M. Hussaini, S. Ragasa, D. Ali, I. Chaudhary, A. Waggoner, S. Lisak, L. Huang, R.W. & Raza, A. (1999) Biological characteristics of myelodysplastic syndrome patients who demonstrate high versus no intramedullary apoptosis.European Journal of Haematology62, 90–94.PubMedCrossRefGoogle Scholar
  10. Davis, R.E. & Greenberg, P.L. (1998) Bel-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression.Leukemia Research22, 767–777.PubMedCrossRefGoogle Scholar
  11. Deeg, H.J., Beckham, C., Loken, M.R., Bryant, E., Lesnikova, M., Shulman, H.M., & Gooley, T. (2000) Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndromes.Leukemia and Lymphoma37, 405–414.PubMedGoogle Scholar
  12. Fontenay-Roupie, M., Bouscary, D., Guesnu, M., Picard, F., Melle, J., Lacombe, C., Gisselbrecht, S., Mayeux, M., & Dreyfus, F. (1999) Ineffective erythropoiesis in myelodysplastic syndromes: correlation with Fas expression but not with lack of erythropoietin receptor signal transduction.British Journal of Haematology106, 464–473.PubMedCrossRefGoogle Scholar
  13. Ganser, A. (1999) Finally progress in the understanding of myelodysplastic syndromes?Wiener klinische wochenschrift (the middle european journal of medicine)111/19, 781–783.Google Scholar
  14. Gersuk, G.M., Lee, L.W., Beckham, C.A., Anderson, J., & Deeg, H.J. (1996) Fas (CD95) receptor and Fas-ligand expression in bone marrow cells from patients with myelodysplastic syndrome [letter].Blood 881122–1123.PubMedGoogle Scholar
  15. Gersuk, G.M., Beckham, C., Loken, M.R., Kiener, P., Anderson, J.E., Ferrand, A., Troutt, A.E., Ledbetter, J.A., & Deeg, H.J. (1998) A role for tumor necrosis factor-a, Fas and Fas-ligand in marrow failure associated with myelodysplastic syndrome.British Journal of Haematology 103176–188.PubMedCrossRefGoogle Scholar
  16. Gupta, P, Niehans, G.A., LeRoy, S.C., Gupta, K., Morrison, V.A., Schultz, C., Knapp, D.J., & Kratzke, R.A. (1999) Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival.Leukemia 1344–53.PubMedCrossRefGoogle Scholar
  17. Hoffman, R., Fitting, P., Preisler, H., Raza, A., Chyna, B., Horrigan, S. & Westbrook, C. (1998) Analysis of primitive hematopoietic progenitor cells in myelodysplastic syndromes.Blood 92sppl.1, 417a; abstract # 1724Google Scholar
  18. Horikawa, K., Nakakuma, H., Kawaguchi, T., iwamoto, N., Nagakura, S., Kagimoto, T., & Taktsuki, K. (1997) Apoptosis resistance of blood cells from patients with Paroxysmal Nocturnal Hemoglobinuria, Aplastic Anemia, and Myelodysplastic syndrome.Blood 902716–2722.PubMedGoogle Scholar
  19. Kitagawa, M., Saito, I., Kuwata, T., Yoshida, S., Yamaguchi, S., Takahashi, M., Tanizawa, T., Kamiyama, R., & Hirokawa, K. (1997) Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes.Leukemia 112049–2054.PubMedCrossRefGoogle Scholar
  20. Kitagawa, M., Yamaguchi, S., Takahashi, M., Tanizawa, T., Hirokawa, K., & Kamiyama, R. (1998) Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia.Leukemia 12486–492.PubMedCrossRefGoogle Scholar
  21. Kurotaki, H., Tsushima, Y., Nagai, K., & Yagihashi, S. (1999) Apoptosis, bel-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia.Acta Haematologica 102115–123.CrossRefGoogle Scholar
  22. Lepelley, P, Campergue, L., Grardel, N., Preudhomme, C., Cosson, A., & Fenaux, P. (1996) Is apoptosis a massive process in myelodysplastic syndromes?British Journal of Haematology 95368–371.PubMedCrossRefGoogle Scholar
  23. Matthes, T.W., Meyer, G., Samii, K., & Beris, P. (2000) Increased apoptosis in acquired sideroblastic anaemia.British Journal of Haematology 111843–852.PubMedCrossRefGoogle Scholar
  24. Moulian, N., Renovoize, C., Desodt, C., Serraf, A., & Berrih-Aknin, S. (1999) Functional Fas expression in human thymic epithelial cells.Blood 932660–2670.PubMedGoogle Scholar
  25. Mundle, S., Iftikhar, A., Shetty V., Alvi, S., Dameron, S., Gregory, S., Marcus, B., Khan, S. & Raza, A. (1994a) In situ end labeling of DNA to detect apoptotic cell death in a variety of human tumors.Cell Death & Differentiation 1117–122.Google Scholar
  26. Mundle, S., Iftikhar, A., Shetty V., Dameron, S., Wright-Quinones, V., MarcusB.Loew, J., Gregory, S. & Raza, A. (1994b) Novel in situ double-labeling for simultaneous detection of proliferation and apoptosis.Journal of Histochemistry and Cytochemistry 421533–1537.CrossRefGoogle Scholar
  27. Mundle, S., Venugopal, P., Cartlidge, J., Pandav, D., Broady-Robinson, L., Gezer, S., Robin, E., Rifkin, S., Klein, M., Alston, D., Hernandez, B., Rosi, D., Alvi, S., Shetty, V., Gregory, S., & Raza, A. (1996) Indication of an involvement of interleukin-113 converting enzyme-like protease in intramedullary apoptotic cell death in the bone marrow of patients with myelodysplastic syndromes (MDS).Blood 882640–2647.PubMedGoogle Scholar
  28. Mundle, S., Mativi, B.Y., Bagai, K., Feldman, G., Cheema, P., Gautam, U., Reza, S., Cartlidge, J., Venugopal, P., Shetty, V., Gregory S.A., Robin, E., Rifkin, S., Shah, R. & Raza, A. (1999a) Spontaneous down-regulation of Fas-associated phosphatase- I (Fap-I) may contribute to the excessive apoptosis in myelodysplastic marrows.International Journal of Hematology 7083–90.Google Scholar
  29. Mundle, S., Reza, S., Ali, A., Mativi, B.Y., Shetty, V., Venugopal, P., Gregory, S.A., & Raza, A. (1999b) Correlation of tumor necrosis factor a (TNFa) with high Caspase-3-like activity in myelodysplastic syndromes.Cancer Letters 140201–207.CrossRefGoogle Scholar
  30. Mundlc, S., Venugopal, P. Shetty, V. Ali, A. Chopra, H. Rose, S. Mativi, B.Y. Gregory, S. Preisler, H. & Raza, A. (1999e) The relative extent and propensity of CD34` vs. Cd34-cells to undergo apoptosis in myelodysplastic marrows.International Journal of Hematology 69152–159.Google Scholar
  31. Mundle, S., Mativi, B.Y., Cartlidge, J., Dangerfield, B., Broady-Robinson, L., Li, B., Shetty, V., Venugopal, P., Gregory, S.A., Preisler, H.D. & Raza, A. (2000) Signal antonymy unique to meylodysplastic marrows correlates with altered expression of E2F1.British Journal of Haematology 109376–381.PubMedCrossRefGoogle Scholar
  32. Parker, J.E., Fishlock, K.L., Czepulkowski, B., Mijovic, a., Pagliuca, A., & Mufti, G.J. (1998) `Low Risk’ myelodysplastic syndrome (MDS) is associated with excessive apoptosis and increased ratio of pro-versus anti-apoptosis bel-2 related proteins.British Journal of Haematology 1031075–1082.PubMedCrossRefGoogle Scholar
  33. Parker, J.E., Mufti, G.J., Rasool, F., Mijovic, A., Devereux, S., & Pagliuca, A. (2000) The role of apoptosis, proliferation, and the bcl-2-related proteins in the myelodyspalstic syndromes and acute myeloid leukemia secondary to MDS.Blood 963932–3938.PubMedGoogle Scholar
  34. Rajapaksa, R., Ginzton, N.,Rott, L.S. & Greenberg, P.L. (1996) Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells.Blood 884275–4287.PubMedGoogle Scholar
  35. Raza, A., Yousuf, N., Bohkari, S.A.J., Sheikh, Y., Akhtar, S., Chughtai, S., Umerani, A., Mehdi, S.A., Miller, M.A., Masterson, M., & Lampkin, B. (1992) In situ cell cycle kinetics in bone marrow biopsies following sequential infusions of IUdR/BrdU in patients with hematopoietic malignancies.Leukemia Research 16299–306.PubMedCrossRefGoogle Scholar
  36. Raza A., Mundle, S., Iftikhar, A., Gregory, S., MarcusB.Khan, Z., Alvi, S., Shetty, V., Dameron, S., Wright, V., Adler, S., Loew, J., Shott, S., Ali, N., & PreislerH.D.(1995a) Simultaneous assessment of cell kinetics and programmed cells death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis.American Journal of Hematology 48,143–154.CrossRefGoogle Scholar
  37. Raza, A., Gezer, S., Mundle, S., Borok, R., Rifkin, S., Iftikhar, A., Shetty, V., Parcharidou, A., Loew, J., Alvi, S., Chaney, C., Showel, J., Gregory, S., & Preisler, H.D. (1995b) Apoptosis in bone marrow biopsies involving stromal and hematopoietic cells in 45 patients with myelodysplastic syndromes.Blood 86268–276.Google Scholar
  38. Shetty, V., Mundle, S., Alvi, S., Showel, M., Broady-Robinson, L., Dar, S., Borok, R., Showel, J., Gregory, S., Rifkin, S., Gezer, S., Parcharidou, A., Venugopal, P., Shah, R., Hernandez, B., Klein, M., Alston, D., Robin, E., Dominguez, C. & Raza, A. (1996) Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes.Leukemia Research 20891–900.PubMedCrossRefGoogle Scholar
  39. Shetty, V., Hussaini, S., Broady-Robinson, L., Allampallam, K., Mundle, S., Borok, R., Cartlidge, J., Broderick, E., Mazzoran, L., Zorat, F., & Raza, A. (2000) Intramedullary apoptosis of hematopictic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high density fraction of bone marrow aspirates.Blood 961388–1392.PubMedGoogle Scholar
  40. Yoshida, Y. & Mufti, G.J. (1999) Apoptosis and its significance in MDS: controversies revisited.Leukemia Research 23777–785.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Suneel D. Mundle
    • 1
  1. 1.MDS Center and Section of Myeloid DiseasesDepartment of Medicine Rush UniversityChicago

Personalised recommendations